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HOMOMORPHISMS OF B*-ALGEBRAS

JAMES D. STEIN, JR.

This paper is divided into two sections, The first deals
with Banach algebra homomorphisms of a von Neumann
algebra %, and extends the Bade-Curtis theory for commuta-
tive B*-algebras to von Neumann algebras, as well as char-
acterizing the separating ideal in the closure of the range of
the homomorphism., The second section concerns homomor-
phisms of B*-algebras; the chief result being the existence
of an ideal _# with cofinite closure such that the restriction
of the homomorphism to any closed, two-sided ideal contained
in _“ is continuous,

1. Homomorphisms of von Neumann algebras. Let 2 be a
von Neumann algebra, and let v:% — B be a Banach algebra homo-
morphism. The reduction theory enables us to write

U= 3B (C(X) QBEA) @ W, ,

where %, is the direct sum of the type II and type III parts, X, is
a hyperstonian compact Hausdorff space, and 5% is Hilbert space of
dimension 7 (oo is an allowed index of ¢, 57, is separable Hilbert
space). It was shown in [6] that there is an integer N such that

y i D (C(X:)  B(57)) U,

1s continuous.
Some definitions are in order.

S, B) ={zeB|x,}cA>2,—0, v, —2};

S(v, B) is a closed, 2-sided ideal in B ([2]). If feC(X)), Te B(5#),
then {f&® T will denote (z, y) €2, where y = 0e 2, and

v z @ (C(X.) ® B(5£))

has f@Q T in the 4'* component ‘and zero in all other components.
Let ¢;: C(X;) — B be defined by ¢,(f) = vKf R I,>), where I, is the
identity of B(S57;), and let F); be the Bade-Curtis [1] singularity set
associated with ¢,. Let M(F)) = {fe C(X)) | f(F) = 0}, let T(F)) =
{feC(X))|f vanishes on a neighborhood of F}}, and let R(F)) =
{feC(X)) | f is constant in a neighborhood of each point of F}}. It
was shown in [6] that v is continuous on
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g D (B(F)) ® B(o7,) D ;=§“+1 D CX)RQRB(7)BY,,

and that this sub-algebra, denoted by 2, is dense in 2. Let x« be
the unique continuous extension of v |, to 2 and let x =y — p. In
this section the Bade-Curtis results ([1], Theorems 4.3 and 4.5) will
be extended to 2, and a complete characterization of S(v, B) will be
obtained.

THEOREM 1.1. (a) The range of pt is closed in B and v(A) =
w(A) @ S, B), the direct sum being topological.

(b) S, B) = M.

(c) Let

M=36MF)RBEA)® 3 (CX)QB) %L .

Then S(y,B)-M = M-Sy, B) = (0), and N | M is a homomorphism.

Proof. p(A) is closed by [2], Lemma 5.3. We first show M) &
S, B). If e, choose a sequence {x,} from the dense sub-algebra
such that lim,_.x, = . Since g is continuous,

p(@) = lim p(z,) = lim y(x,) ,
and since lim,_.(z, — x) = 0,

mz) — v() = lim (v(x,) — v(z)) = limy(z, — @) = se S(v, B) .

But v(z) = p(x) + Mx) and v(x) = p(x) — s, so M) = —se S(v, B).
If seS(y, B), there is a sequence {x,} in 2 such that

limx, = 0, limy(x,) =s.

n—roo n—co

Now lim,_.. p#(x,) = 0, and s = lim,_., (z¢(x,) + Mx,)), so
s = M) || = 1l s — @) + sl ) ||+ 1] () [ — 0,

and so S(v, B) = AM2A).

Let U =v*S(v,B)). We now show g(2)n Sk, B)=(0). If
p(x) e S(v, B), since v(z) = p(x) + M) and MA) S S(v, B), we see that
v(z) e S(v, W), and so x¢ U. But by [6], Theorem II. 5, and [7], Pro-
position 2.1, U = Ker (v) =Ker (¢), so g#(x) = 0.

To complete the proof of (a) and (b), all we need show is that
any zcv(A) can be written z = p(x) + s, where xe, sec S, D).
Let D:%/U—vQ)/S(v, B) be defined by d(x + U) = v(x) + S, B),
by [2], Theorem 4.6, and [5], Theorem 4.9.2, this is a continuous
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isomorphism of a B*-algebra and thus has closed range. So z +
S, B) = v(z) + S(v, B), and so Ise€ S(v, B) such that z = v(x) + s =
pr@) + (M) + s). But Mx) + se S(v, B).

Define T by substituting T(F;) for M(F;), 1 <7 < N, in the de-
finition of M. The same proof as [6], Prop. II. 3, shows that T is
dense in M, and by the continuity of g to show u(M)-S(v, B) = (0)
we need merely show xze?, zeT = pE)\z) =0 (the proof of
S, B)- (M) = (0) is symmetric). Clearly zoxe T, and ¢ and v agree
on T, so p\@) = @) — p1@) = pRp) — pu@)p@) = vize) —
p(zx) = 0. That \ | M is a homomorphism follows from g(M)-S(v, B) =
(0) and the arguments of Bade and Curtis ([1], p. 601).

The analogue of [1], Theorem 4.3d, will be stated but, once the
definitions are made, the proofs precisely parallel the proofs given in
[1], and so will be omitted. It should be noted, however, that the
proofs carry over because, for 1 <17 < N, C(X)) Q B(>7)) is actually
the algebraic tensor product.

For 1<71< N, let F, = {w: 11 =k = n, and for each 7, 1 <
4 < N, choose functions e;, , € C(X;) such that e;, is 1 in a neighbor-
hood of ; , and e¢;,e;,; =0,k +j. Let I, denote the identity of
B(.277), and define \; .(2) = M<e;,, @ I>x) (note that this is equal to
Male;, @ I)). Let R = N, (), let M(w; ) be all functions in C(X;)
vanishing at w; ,, and let M, ,, be A with C(X,) ® B(>#,) replaced in
the direct sum by M(w, .) ® B(57).

PROPOSITION 1.2,

(b) S@®) = X3 SR,
the direct sum being topological.

(¢) (t,7) # (k, 1) = R;, ;- R,y = (0),
and

R, .- p(M;,,) = p(M;,,)-R,,, = (0) .

(d) The restriction of \; . to M, , is a homomorphism.

It is possible to obtain a characterization of the ideal S(v,B) by
examining the action of v as related to the operator algebras B(57),
rather than the function spaces C(X;). For 1 <17 < N, let e¢; be the
identity of C(X)), and let M () = Me; ® [ )x) ; then Mzx) = ¥ ().
Now
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1(Ke; @ Ini(x)
= pe; Q@ IN)vKe; @ Ipw) — ple; @ Iyw)]
= v(e; Q I;p<e; @ Ipx) — ple;  I;)<e; Q IHx)
= 341'7\'&(‘”) ’
and if 7 = j then

lim Ay (z,) = lim A\ ;(y,)

n—co

yields the fact that both these limits are zero, and consequently
N ——
S, ®) = X SN,

a topological direct sum. Now each of these components will be
characterized.

Fix n such that 1<#n < N, and let {T,;|1<14,5j=<n} be a
system of matrix units for B(57), i.e., T; ;T\, = 0;:T;,;,. Define, for
1<4%j=<mn, maps v, ; t;,,;, and 7;; of C(X,) into B by v, ;(f) =
¥§<f® T, ) tai(f) = pKFQ T, ), and v, ;(f) = v;, () — pa, 5(f).

r = i fii ® Tm‘> )

i,j=1

we can clearly write
ve) = 35 v i)

similar assertions hold for p(x) and M\(z). All maps are linear, but
the ¢ off-diagonal >’ maps (those for which % % j) are not necessarily
homomorphisms.

Computational procedures similar to those already employed will
show

1en @ T, D)5, {(F) = 0uVi, ()

and
Vi, (F)en @ Ty, 1)) = 0;7:,(f) »
so if
lim 7v;, ;(f) = lim 7, 1(g.)
and ¢ = k, left multiplication by p(le, ® T;,;>) shows that

lim,, s, i(fa) = 0
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the same trick with right multiplication works if j = [, and so

n

A = > D Vi, i(20)

7=1

and this is a topological direct sum.
Since T, ; = T;,.T,, ;,, we see that

v, (f9) = v({fa R T, ;>)
=V Q T, 1 X9 R Th, 1)) = i, (S)vi, (9) ;
consequently v, ; is a homomorphism for 1 <4 < n (letj = k = ¢) and
so by [1], Th. 4.3b), v, Q0 is the Jacobson radical of v, .(C(X,)).
Since p(<e, @ T, D)7, () =7, ;(f), it is clear that

Forr@) = (e, @ T, V75, A . This yields

ProrosiTioN 1.3. S(v, B) is the direct sum of Jacobson radicals
of commutative Banach algebras and ‘‘ rotations’ of these radicals.

Note that v, ;(f) = v;,:(f)v; ;(e,), and so the continuity of the
y; ;, and hence the continuity of v, depends only on the continuity
of the diagonal homomorphisms v, ;. Coupling this fact with Theorem
4.5 of [1], we observe that if all the Jacobson radicals of the closures
of the images of the diagonal homomorphisms are nil ideals, then the
homomorphism is continuous.

2. Homomorphisms of B*-algebras. Let 2 be a B*-algebra,
and let v:2%— B be a Banach algebra homomorphism, with S(v, B)
defined as in §1.

DEFINITION 2.1.
T ={reU|v@®) Sk, B) = (0)},
Tr={weUA| S, B)-v@) = (0)}.
DEFINITION 2.2.
Sz ={we A sup[|v@z) || < -},
o= (e |sup[[p@a) [| < oo},
I =N

T 1y T ry Sy 2, and 7 are all two-sided ideals in A (see [4]
and [6]), and in a recent paper [4] Johnson has shown that .7, is a
cofinite ideal in A, and observes that, if one could show v|.7, is
continuous, one would have a direct extension of the Bade-Curtis
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theory to arbitrary B*-algebras. An examination of this problem,
coupled with an analysis of these ideals, constitutes the body of this
section.

We first note that 7 —c.7;. For, if x¢ 7, then there is an
se S(v, B) such that v(x)s = 0, and consequently 3I{x,} A such that
z,—0, v(x,) —s, and so v(zzx,) — v(x)s = 0. Given M > 0, choose «,
such that

|, || < % | v(@z,) || > 3 (| v@)s || -
Then
L
ENI

has norm one and

e )l|> 2

and so x¢. 7. Similarly % C 7.
Repeated use throughout this section will be made of the follow-
ing lemma and its corollaries. ‘

LEemMmA 2.1. Let {f,}, {9.} be sequences from 2 such that m =+
N=0,0,=0, 9.fn=0. Then there is an integer N such that
n=N=g,f, € .

Proof. Suppose not, and renumber to obtain a sequence such that
9.fn €I, for any n. Then for each n choose z, € Il such that ||z, || <1,

[ V(@,g.fa) [| > 02 ([ g, || [| v(f) ]
Let

X = 12‘1 (1/2% || g 1)2egs 5

then clearly x e A. We also have

afy = 3 (U281 00 g fs = 2,0,042" 11 941D
and so

o) I v(f) | = [[v@fa) i
= || V(@9 ) 1127 gu Il > m [[V(f) ]

which implies || y(z) || > %, a contradiction.

COROLLARY 2.1.1. If {9.}, {f.} C U satisfy 9.9, = 0, 9.fn = Fus
then AN such that n = N = f, € 4.
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CorOLLARY 2.1.2. If {f,}eW satisfies fnfn =0, then IN such
that n = N = flel,.

COROLLARY 2.1.3. If {f.}, {9.} A satisfy gng, =0, fng, =0, then
AN such that n = N= f,9,¢€1,.

We can now combine these results with those of Johnson ([4], Th.
2.1) to see that, if A is a B*-algebra, .7 is a cofinite ideal. The
advantage of using .7 can be seen from the following.

ProroSITION 2.1, Let v: A —B be a Banach algebra homomor-
phism, and let W be a closed linear subspace of #. Then

sup{[[v(@y) [z, yell, o] =1, (lyll=1}<e.

Proof. For ze¥, let L, and R, map 2 into B and be defined by
L.(z) = v(zz), R,(x) = v(xz) ; these are clearly linear. If ze._#, then
both L, and R, are continuous. For, if z, — 0 and L,(x,) - 0, we can
assume || L(x,)!| =0 > 0. Given M > 0, choose z, such that

e f{S-‘E—
i n ol =

M b
‘then

M x ”gl, HL1<TM:C7L)

'zM;

since this can be done for any M it contradicts ze¢.%. Now, for
each zell,

sup {l| L.(v) [| |ze W, || z]|| = 1} = sup{[|v(z2) || [ze 1L, || 2 ]| = 1}
= sup{||v@z) || [ze, ||z =1} <
since e _%,. By the Uniform Boundedness Principle ([3], 2.3.21)
sup{[| L. || [zeW, [|z]| £ 1} < e
and so
sup{||v(ze) || [z, well, [jz]| = 1, [[e|| =1} < o

.completing the proof.

ProrosITION 2.2. Let A be a C*-algebra, and let WS _Z be a
closed two-sided ideal. Then v |1 is continuous.

Proof. Let Uecl, and recall that U is a *-ideal. Use the polar
decomposition to write U = TP, where T is a partial isometry (hence
[|T|| = 1) and Pis a positive operator satisfying P* = U*U. Assume
lU|| =1, then since P is self-adjoint, ||P|}?= | P*P|| = | P =
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NU*U||=|U|*=1, so ||P|| =1. Since P is self-adjoint, it has a
square root Qe€ll, so we can write U = (TQ)Q, where TQ,Qcll,
T =TI =1L1Ql =1. So, by Proposition 2.1,

sup{[[»(U)[[ | Ue|Ue, || U] =1}
ssup{[y@y) ||, yel, flell=L |yl =1} < e,

and so v |1 is continuous.

If 1 is a commutative B*-algebra, Proposition 2.2 shows that, if
N is a closed neighborhood of the Bade-Curtis singularity set, v is
continuous on the ideal of all functions vanishing on N, and Proposi-
tion 2.2 can be regarded as the analogue for B*-algebras of that
theorem, especially in view of the remarks following Corollary 2.1.3.
However, it appears to be a difficult problem to obtain the full strength
of the Bade-Curtis results using these methods, but if a method is
found there is a good chance that it would generalize the Bade-Curtis
results to arbitrary B*-algebras.

We now turn our attention to C(X), where X is a compact Haus-
dorff space. The notation of § 1 applies.

ProrosiTiON 2.3. T(F) S 7, andif 7 1is closed, v is continuous.

Proof. Let f vanish on a neighborhood of F. If f¢ .7, 3{g,} € C(X)
such that ||g.[| =1, [|v(fg9.) || = »*. Let h,=1/ng,, then h,f—0,
and since v is continuous on T(F'), v(h,f)— 0. But

v, f) ]| = % (g, 0) ] = n,

a contradiction.

If 7 is closed, M(F)=T(F)<.7, and by Proposition 2.2,
y| M(F) is continuous. Using the technique of Theorem 4.1 of [1],
v is continuous.

Since T(F) < .7 and, if K denotes the kernel of v, KN T(F) =
Kn T(F) ([7], 2.3), one might wish to show that K N .7 = K (clearly
Kc.”). If feKn._#, then g,—0=y(g,f) —0. Let ge M(F),
and choose a sequence {g,} from T(F) such that ¢g,—g. Then
g.fe KN T(F) < K, and so

v(gf) = Liffi v(g.f)=0.

So M(F)-(Kn.”)< K.
If A = C(X), Corollary 2.1.2 can be strengthened so the conclu-
sion is 3N such that n = N = f,, e .#. If this integer N is independent
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of the sequence {f,}, then the homomorphism is continuous, if X is
such that every point is a G;. We first note that, if {F,|n =1, 2,--.}
is a disjoint sequence of open sets, then n = N, f(E)) = 0= fec_7;
this is a clear consequence of Corollary 2.1.2. The goal will be to
show that, if N is independent of sequence, then M(F) < .7, as in
Proposition 2.3 this will show v is continuous. Choose open sets
E,G < X such that ENG = F, and let fe M(F). Let

A ={veX|f@) =3},

and let B, = A, N G: then B, is closed and disjoint from E for all
k. By Urysohn’s Lemma, choose a function g, such that 0 < g, < 1,
g(E) =1, g.(B,) =0. We assert that {g,f|n =1,2,...} is Cauchy.
Assume 1 > m, and look at || ¢g,f — ¢.f|l. This value is the maximum
of the supremums of |g¢,f(x) — ¢, f(x)| on the sets K, B,, and K, =
X ~ (B, U E). This supremum is clearly 0 on E (since ¢, (&)=
9.(E) =1) and on B, (since n > m = B, < B,), and clearly
1 1 2

sup | g, f(x) — g fl2) | < — + = < 2|
' n m m

ze Ky

so the sequence is Cauchy, and there is an i € C(X) such that ||g,f —
hi|—0. WE)=fX), since g, (E)=1 for all n. If zeG and
| f(x)] > 0, there is an integer Ksuchthatk > K—=2cA,=2¢B,—
g f(@) = 0; if f@) =0 g,f(x) = 0 for all k, and so h(G) = O.

Now choose sequences of disjoint open sets {FE,}, {G,} (the E, are
not necessarily disjoint from the G,) such that F < E, NG,, £ 2 E,
and G2 G).. If geCX), 9(G) =0=ge. 7, or g(E]}) =0=ge. 7,
s0 WG) =0=he 7; similarly (h — fE)=0=—h — fe._”, so f=
h+(f—hye.”. Thus M(F)<E .7, completing the proof. A similar
idea also works for von Neumann algebras by reducing it to a con-
sideration of ¢, : C(X)— B defined by @,(f) = v({f & I)).
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