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UNCONDITIONAL AND SHRINKING BASES
IN LOCALLY CONVEX SPACES

L. J. WEILL

Let E be a locally convex space with an unconditional
Schauder basis {x^ and let {fk} be the sequence of coefficient
functionals biorthogonal to {Xk}. Owing to works of R. C.
James and S. Karlin it is known that if E is a Banach space
then each of the three conditions which follow is necessary
and sufficient for {fk} to be a basis for £7* in the strong
(norm) topology.

(1) E has no subspace topologically isomorphic to the
space I1.

(2) E* is separable in the strong topology.
(3) E* is weakly (w(E*9 E**)) sequentially complete.

The primary purpose of this paper is to show that in certain
spaces which are more general than Frechet spaces and hence
than Banach spaces, each of the above three conditions is
necessary and sufficient for

(0) {fk} is a strong basis for E*.

Specifically if E is a complete barrelled space, each of (1) and
(2) is sufficient for (0). In any locally convex space (2) implies (1)
(even if E has no basis) and so each of (1) and (2) is necessary for
(0). If E is a space having the property that weak* bounded sub-
sets of JE* are strongly bounded (complete locally convex spaces and
barrelled spaces have this property) then (3) is sufficient for (0). (3)
is necessary for (0) if E is both barrelled and metrizable.

Besides the papers of James [8] and Karlin [9], related matter
of importance is contained in the works of M. M. Day [2, Ch. 4]
and C. Bessaga and A. Pelczynski [1]. E. L. Dubinsky and J. R.
Retherford [5] using Kothe sequence space techniques have proved
the (1) -> (2) 'part of Theorem 2.12.

1Φ Prelimiharie and fundamental theorems* Since the main
results of this paper depend upon many theorems which are not
widely known in their more general settings, the author thought it
wise to include this section which introduces, in addition to basic
theorems, some difinitions, terminology, and notation. No proofs are
given for known results.

If E is a locally convex space, then π will be used for the
canonical mapping from E to E**, the space of strongly continuous
functions on E*. For convenience, a subscript 2 will be added to
the word " space " to designate that the Hausdorff axiom is satisfied.
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A sequence {xk} in a linear topological space2 is called a basis if
for each element x in the space there is a unique sequence of scalars

oo

{/*(<&)} such that x = Σ/*(#)#*• The resulting linear functionals {fk}
are called the coefficient functionals. If the coefficient functionals are
continuous, then {xk} (or {xk,fk}) is called a Schauder basis. The

n

n-t\ι partial sum operator sn is defined by sn(x) = Σ fk(x)xk the n-th
remainder is defined by Rn(x) = Σ fk(%)%k We shall use Φ for the
collection of all nonempty finite subsets of the positive integers ω.
If σeΦ, then the cr-partial sum operator Sσ is defined by Sσ(x) =
Σ/jk(Φt; the (7-remainder is defined by Rσ(x) = x — Sσ(x). Note
that Rp o Rσ(χ) = R9Πa(x), and if p D # Φ 0 then S, o Sσ(a ) = S,nff(a);
if p π ^ = 0 , then S, o Sσ(sc) = θ for every x.

PROPOSITION 1.1. Let E be a linear topological space2. If
{%k>fk} is & Schauder basis or a weak Schauder basis for E, then
{fk>κ(%k)} is a weak* Schauder basis for E*. It follows that if {fk}
is also a strong basis then it is a strong Schauder basis with {π(xk)}
as the coefficient functionals. The σ-partial sum for {fk} is then
the adjoint of Sσ; i.e., Sί(f) = Σ πfe)(/)Λ - £/(%)/*. The

k e a k e a

σ-remainder is R* and of course R*f = f — S*f.

As a kind of converse we have the following.

PROPOSITION 1.2. Let E be a locally convex space2. If {fkFk} is
a weak* Schauder basis for E*, then {xk,fk} is a weak Schauder
basis for E, where for each k, xk is that unique element of E such
that π(xk) = Fk.

The next two propositions require the Barrel Theorem for their
proofs.

PROPOSITION 1.3. Let E be a barrelled space2. If {xk,fk} is a
Schauder basis for E then {fk} is a strong basis for the closed linear
span, [77], of {/,}.

Actually, in Proposition 1.3, "Schauder basis" may be replaced
by "weak Schauder basis" as the following reveals.

PROPOSITION 1.4. In a barrelled space a weak Schauder basis is
a Schauder basis.

A Schauder basis {xk,fk} is called a shrinking basis if {fk} is a
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basis for E* (in the strong topology). A basis {xk} is boundedly

complete if for each sequence {tk} of scalars such that {Σ tkxk}n=i is
oo k=ί

bounded, the series Σ **#* is convergent. The next proposition due

to J. Dieudonne [3, Prop. 6] strengthens Proposition 1.1 in the case

where E is barrelled.

PROPOSITION 1.5. If {xk,fk} is a Schauder basis in a barrelled
space2E, then {/J is a weak* boundedly complete basis for E*. Hence,
if {%k,fk} is a shrinking basis then {fk} is a boundedly complete
basis for E*.

The next proposition was proved for Banach spaces by R. C.
James [8] and generalized by J. R. Retherford [13].

PROPOSITION 1.6. Let {xk,fk} be a Schauder basis for a barrelled
space2 E. Then E is reflexive if and only if {xk} is both shrinking
and boundedly complete.

If (E, || ||) is a Banach space with basis {xk}, then a new norm
related to the basis can be formed: || x | | ' = sup{|| Sn(x) ||}. Both

n

norms have the same topology but the new norm is more useful. A
more general device has been developed by C. W. McArthur [14].
In the fundamental lemma which follows a part of this device is
abstracted even further in order that the result may be applied to
Theorem 1.18.

LEMMA 1.7. Let (E,τ) be a locally convex space and {ga:aeA}
a net [10, p. 28] of pointwise bounded linear operators on E. Let
^~ be the local base consisting of all barrelled neighborhoods of E.
For F G ^ define V to be {xeE:ga(x)eV for all aeA}. Then
we have the following.

(1) 3^~' ΞΞ {VΊ Ve 2̂ *} is a local base for a locally convex topology
τ' on E.

(2) If there is a subnet {gn{β):βeB} such that, for each
xeE, {gniβ)(x):β e B} is convergent to x then τf is stronger than τ.

(3) // in addition to (2) each ga is continuous and E is
barrelled, then τ' — τ.

Proof. By the criterion 6.5 of [10, p. 47], 3^' forms a local
base for a locally convex topology if the three conditions below are
met.

( i ) Each V e 3^"' is convex, circled, and radial at zero.
(ii) For each Uf and V of 3^' there is a We 3^' such that
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w c w n v.
(iii) tV belongs to 5^' for each F ' e ^ " ' and each scalar t.
Proof of (i). Let s and t be nonnegative scalars such that

s + t = 1. If &, 2/e F; then #«(#)> ga(y)e V for all α e A. Since V
is convex, s#«(x) + tga(y) = ga(sx + ty)eV for all α e A and hence
s# + ty e V so F ' is convex. Let 11 | ^ 1 a? e F \ #„(#) e F for all
a and since F is circled, tga(x) = #α(£#) e F for all α hence tx e V.
Therefore V is circled. Let x e E. Since ga is pointwise bounded,
there is a positive scalar s such that if 0 < t < s then £#«(£) e F for
all #. Hence tx e V so F ' is radial at zero.

Proof of (ii). There exists a We^" such that W U U Π F.
Hence r c ( ί / Π F)' = 17' n F ' .

Proof of (iii). For each scalar tftVe^\ Hence (£F)' = tV e ψ\
To prove (2) we show that V'czV for each F e 5 ^ . If α e V,

then flrα(a;) e F for all a and in particular gn{β)(x) e V for all β e B.
Thus since F is closed F is closed xe V.

To prove (3) we show that V is r-closed and hence a τ-barrel.
Let {yβ:βeB} be a net in V converging to y. Let aeA; then
since ga is continuous, ^ ( ^ converges with β to #«(#). Since
ga(Vβ) e F for each / 3 G S , flrα(y) G F; α: was arbitrary, so ye V.

Part (1) and (2) of the next proposition follow from the lemma.

PROPOSITION 1.8. Let (E, τ) be a locally convex space2 with a
basis {xk} and let y be as in Lemma 1.7. For F e ^ , define
V = {x: Sn(x) G V for each n e ω}.

(1) ^~' = {V: Ve V} is a local base for a locally convex
topology τf which is stronger than τ.

(2) // E is barrelled and {xk} is a Schauder basis then τ — τ'.
(3) // (E, τ) is complete, then so is (E, τ')%

The last propositions of this section are slight modifications of
results due to Retherford and Me Arthur [14],

PROPOSITION 1.9. Let E be a complete locally convex space2 and
{xk} a sequence of nonzero elements of E. If for each continuous
seminorm P on E there is a continuous seminorm Q such that
P(ΈΛ=ιak%k) ^ Q ( Σ L A ^ ) for p <ί q and arbitrary scalars aly , aq,
then {xk} is a Schauder basic sequence (i.e., {xk} is a Schauder basis
for its closed linear span [xk]).

PROPOSITION 1.10. Let E be a barrelled space2 with a Schauder
basis {xk}. Then for each continuous seminorm P there is a con-
tinuous seminorm Q such that for p ^ q and arbitrary scalars
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aly * ,ag,we have P(Σϊ = iα Λ α f c ) S

Let ΣΓ=î fc be a (formal) series in a linear topological space E.
The series is called unordered bounded if the set of unordered partial
sums {ΣkooσVk'- G € φ] is bounded. The series is called unconditionally
(or unordered) convergent if the net of unordered partial sums (with
inclusion as the order relation in φ) is convergent to an element of
E. It is well known that a series Σ~=I2/A; in a linear topological
space2 is unconditionally convergent if and only if for each permuta-
tion p of ω, the set of positive integers, the series ΣT=iVp(k) is con-
vergent (each series converges to the same element regardless of the
permutation).

The series Σ?=i2/* i s subseries convergent if for every subsequence
{Vnk} of {yk} the series Σΐ=iVnk is convergent. ΣΓ=i2/* is bounded-
multiplier convergent if for each bounded sequences of scalars {tk}
the series Σ?=it*2/* is convergent. Σ~=i2/* * s absolutely convergent
in a locally convex space E if the series is convergent and for each
continuous seminorm P on E, the series Σΐ=ιP(Vk) is convergent. In
any locally convex space, absolute convergence implies unconditional
convergence.

PROPOSITION 1.11. In a locally convex space a series is weakly
absolutely convergent if and only if it is weakly unconditionally
convergent.

Define a to be the set of sequences {am} such that am = ± 1 for
each m; define b to be the set of sequences {βm} such that βm = 0
or 1 for each m and define e to be the set of all complex sequences
{εw} such that | εm | <g 1 for each m.

PROPOSITION 1.12. // Σiΐ=1yk is a series in a locally convex space
E, then the statements below are equivalent.

(1) Σ Vk ^ unordered bounded.
(2) Σ Vk is weakly unordered Cauchy.
(3) The set {Σ*=i ockyk\ {ak} e a and neω} is bounded.
(4) The set {Σ£=i β ^ : {βk} e b and neω} is bounded.
(5) The set {Σ*=i ekVk'-{^k} € e and neω} is bounded.

COROLLARY 1.13. In a weakly sequentially complete locally con-
vex space a series is unordered bounded if and only if it is weakly
unconditionally convergent (weakly absolutely convergent).

The Orlicz-Pettis theorem for Banach spaces on subseries con-
vergence has been shown valid for locally convex spaces by Grothendieck
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and McArthur. For a proof of the theorem, which follows, see [12].

THEOREM 1.14. In a locally convex space2 a series is subseries
convergent if and only if it is weakly subseries convergent.

It is well known that in a sequentially complete locally convex
space, bounded-multiplier convergence and subseries convergence are
each equivalent to unconditional convergence [2]. The next theorem
adds three other conditions which are equivalent to unconditional
convergence. A proof of the equivalence of (1), (2), (3), and (4) can
be found in [15]. (1) is proved equivalent to (2) in [11] by use of a
certain convergence criterion.

THEOREM 1.15. Let {yk} be a sequence in a sequentially complete
locally convex space E. The following six statements are equivalent.

(1) The series ΣΓ=i2/& converges unconditionally.
(2) For any equicontίnuous subset A of E*, the series Σ~=i I f(Vk) I

converges uniformly for feA.
(3) The series ΣΓ=iα*2/* converges uniformly for {ak} e a.
(4) The series Σ£=1skyk converges uniformly for {εk} e e.
(5) The series Σ~=i2/fc ^s bounded-multiplier convergent.
(6) The series Σ?=i2/* ^s subseries convergent.

Since a weakly (sequentially) complete locally convex space is
(sequentially) complete, Theorem 1.14 and 1.15 imply that in a weakly
sequentially complete locally convex space a series is unconditionally
convergent if and only if it is weakly unconditionally convergent.
Thus similarly to Corollary 1.13 we have the following.

COROLLARY 1.16. In a weakly sequentially complete locally
convex space2, a series is unordered bounded if and only if it is
unconditionally convergent.

A basis {xk1fk} in a linear topological space2 is called an uncondi-
tional basis if for each x in the space the series Σ^=ιfk(x)xk is un-
conditionally convergent to x. Hence, {xk, fk} is an unconditional
Schauder basis if and only if for each permutation p of o),{xp{k),fp(kk)}
is a Schauder basis. It follows that each of Propositions 1.1 and
1.5 has an analog for unconditional bases. For instance we have the
following.

THEOREM 1.17. // {xk,fk} is an unconditional Schauder basis
for a linear topological space2 E, then {fk, π(xk)} is a weak* un-
conditional Schauder basis for E*.
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If {xk,fk} is a basis and a = {ak} is a sequence of scalars, define
Sn,a(χ) — ΣλUi^Λ(#)%. Let {E, τ) be a locally convex space2 with
an unconditional Schauder basis {xk,fk}. Let 5^ be the local base
consisting of all barrelled neighborhoods in E. If F e 5 ^ , define
Vb = {xe E: Sσ(x) e V for all σ e Φ}, Va = {x e #: £»,«(&) G F for all
neω and all ae a}, and F e = {xeE: Sn,ε(x) e V for all neω and all
ε e e}. Let <?\ = {Vb: Ve 5Π, y>\ = {Va: Ve 5Π, and 5^. =

THEOREM 1.18. Le (E, τ) be as above. The families 5^6, ^" β ,
^\ form local bases for locally convex Hausdorff topologies on

E, say τbJτa, and τe. Each of these topologies is stronger than τ
and if E is barrelled then τ — τh = τa — τe.

Proof. According to Lemma 1.7, ψ\, ^\, and y\ form local
bases if the families of operators {Sσ:σeΦ}, {Sn,a: (n, a) e ω x α},
and {Sn>ε: (n, ε) e ω x e} are pointwise bounded. Since {xk,fk} is an
unconditional Schauder basis it is a weak unconditional Schauder
basis. Thus ΣΓ=iΛ(#)^ is weakly unordered Cauchy for each x and
hence by Proposition 1.12 the three families above are pointwise
bounded.

Let d be either the family of sequences a or e. The set ω x d
is a directed set under the order relation < defined by: (n, a) < (m, β)
if and only if n ^ m. Thus {Sn,a: (n, a)eω x d) is a net. Let a1

be the sequence (1,1,1, •••) and not that the subnet {Sn,ai(x): ne ώ)
converges to x for each xe E. Thus by part (2) of 1.7. τb9 τaJ and
τe are stronger than τ.

Let y' be 3^6, 3^β, or 5^e then Γ\v,er>V c f l r e ^ . Since τ
is a Hausdorίf topology, the latter intersection is empty and hence
the other topologies are also Hausdorίf.

For each neω and a in 6, α, or β, the operator Sn,a is continuous
so if E is barrelled then τ = τh — τa = τe.

The next result, its variations, and its corollary shall be referred
to as the Generalized Gurevic Theorem (see [7]). We use d to mean
either of the family of sequences 6, α, or e (actually the theorem is
valid if d satisfies aczdcze or badae).

THEOREM 1.19. Let {xk} be a sequence of nonzero elements in a
locally convex space2 E. Call the following condition*: given a
neighborhood of zero U there is a neighborhood of zero V such that
for an arbitrary sequence {an} of scalars arbitrary p and q in
{k: k is a positive integer or k = °o} with q i> p, and arbitrary
sequence {δn} e d, we have ^l^anxn e V implies ^p

n=18nanxn e U.
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(1) // E is sequentially complete, then * implies {xk} is un-
conditionally Schauder basic.

(2) // E is barrelled and {xk} is an unconditional Schauder
basis for E, then * holds.

VARIATION 1.20. In the theorem, condition * can be replaced by
condition *x: given an equicontinuous set AaE*, there is an equi-
continuous set BaE* such that for an arbitrary positive number M
and arbitrary sequence {an} of scalars arbitrary p and q in {k: k is a
positive interger or k = oo} with q ^ p, and arbitrary sequence {dn} e d,
we have | Σ U α ^ ί B j | g M for all g e B implies | ΣίU A^n/fr.) I ̂  -M"
for all feA.

VARIATION 1.21. In the theorem condition * can be replaced by
condition *2: given a continuous seminorm P there is a continuous
seminorm Q such that for arbitrary sequence {an} of scarlars arbitrary
p and q in {k: k is a positive integer or K= °°} with q^p, and
arbitrary sequence {<?„} ed we have P(Σϊ=AαΛa?«) ^

Proof. First we show that * and *x are equivalent. Since
{Ao: A equicontinuous} forms a local base in E, * is easily seen to
be equivalent to the following. Given an equicontinuous A there is
an equicontinuous B such that for we have Σ*=iα A e Bo implies
Σ ϊ = A α ^ « e Λ> But this is equivalent to *lβ

Now we show that * and *2 are equivalent. Suppose that *2

holds. Let U be a barrelled neighborhood of zero and let P be the
Minkowski functional of U (U equals UP, the closed unit ball of P).
In accordance with *2 corresponding to P there is a continuous
seminorm Q such that P(ΣP) ^ Q(Σ*). I f Σ " e UQ then Q(Σff) ^ 1
and hence P(ΣP) ^ 1 t h a t is, Σ^ e UP. To show that * implies *2

let P be a continuous seminorm and UP its unit ball. There exists
a C/ρ (i.e., a barrelled neighborhood of zero with Minkowski func-
tional Q) such that Σ ? e UQ implies Y/ eUP) or QΣ* ^ ε implies
P Σ P ^ e. If QΣα ΞQΣί=iα fc» 4 is zero then P Σ P ^ e for every ε > 0
so that PY/ = 0. Hence QΣ g = P Σ * = 0. If QΣ* ^ 0 then let
t = l/QΣg Q(*Σff) = 1; hence P(ίΣp) ^ 1- Upon substitution for ί
we get P(ΣP) ^ Q(Σg)

To prove part (1) of the theorem, observe that *2 is a stronger
condition than that in Proposition 1.9 and hence {xk} is a Schauder
basic sequence. To show that {xk} is unconditional, let U be a
neighborhood of zero in E. In accordance with * let V be the
neighborhood corresponding to U. Let {fk} c [%]* be the family of
coefficient functionals for {xk}. Let x e [%] then for w and m large
enough Σ*=m/*0φ;* e F. Hence if {δj is any element of d,
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U. It follows from Theorem 1.15 and the complete-
ness of E that Σ?=iΛ(̂ )̂ /fc is unconditionally convergent.

Part (2) is an immediate consequence of Theorem 1.18. Given a
barrelled neighborhood of zero U, then Ud Ξ {X e E: Sn,δ(x) e U for all
neω and δed} is also a neighborhood of zero, and Ud satisfies the
requirements for V in *.

COROLLARY 1.22. Let E be a barrelled space2 with unconditional
Schauder basis {xk,fk}

 and let {yk} be any sequence in E and {σk} a
sequence in Φ such that σn f) σm = 0 if m Φ n. Define wk to be the
σk-partial sum of yk; i.e., wk = Σjeσkfj(yk)Xj. Then given a neigh-
borhood of zero U there is a neighborhood of zero V such that for
arbitrary scalars tk, arbitrary {δk}ed, and arbitrary n and m in
{k:keω or k = 00} with n^ m we have Σ*«i**w*G V implies
Σk=iδktkwk e U. Thus if E is also sequentially complete and for each
k, wk Φ 0 then the sequence {wk} is unconditionally basic in E.

Proof. Simply observe that if ajk = tkfά{yk), then 2 * = ^ * ^ =
Σie<7Λ,fte{i,2,...,»}#ifc#i Q-̂d i n the expansion the i's are all distinct by
the null intersection requirement of the hypothesis. Then apply
Theorem 1.19.

The Generalized Gurevic Theorem, which we have just proved,
is of fundamental importance. We shall apply it often in the next
section.

2* Unconditional and shrinking bases* As pointed out in
the introductory remarks, we shall show that most of the results
of James and Karlin are valid for complete barrelled spaces, barrelled
spaces, or complete locally convex spaces. Even unqualified locally
convex spaces are sufficient for a few of the more simple results.
The first theorem follows easily from the remarks made after the
definition of unconditional basis, page 12, and Proposition 1.3.

THEOREM 2.1. Let E be a barrelled space with an unconditional
basis {xkjfk}. If {%k,fk} is shrinking, then {fkπ(%k)} ίs a n uncondi-
tional Schauder basis for E*.

Hereafter we shall use "ω-complete" for "sequentially complete".

LEMMA 2.2. Let E be a locally convex space2 and {yk} a bounded
sequence in E.

(1) If E is ω-complete, then the series ^ΣS=1tkyk is convergent
for each t = {tk} e I1.
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(2) If F is a subspace of I1 such that for each teF the series
Σk=ihVk is convergent, then the linear mapping T:F-^E defined
by T{t) = Σ L i ί J i is continuous.

Proof. To see that Σ~=i£*2/* *s convergent if E is ω-complete,
let Ao be a neighborhood of zero (where A is an equicontinuous
subset of £7*). Since {yk} is bounded there is a positive scalar s such
that yk e sAQ for each k. For n and m large enough Σ £ = w | tk | < 1/s.
Since | f(yk) | ^ s for e a c h / e i and ke ω it follows that ^Σit=mtkyk e AQ.
Hence the series is convergent.

Let A be equicontinuous and define M = sup {\f(yk) \:feA,ke ω}.
If teF and || ί | | < 1/M + 1 then for fe A, \fT(t) | = ΣίU**/(2fc) I ^
Σ?=i I ί* I 1/(2/*) I < 1. Therefore T(t) e Ao so T is continuous.

LEMMA 2.3. Let T be a linear transformation of a normed
space E into a locally convex space F. If there exists a continuous
functional f on F such that f(θ) = 0 and a positive number m such
that I fT(x) I ̂  m 11 x \ \ for each x e E, then T is one-to-one and re-
latively open.

Proof. If T(x) is zero then so is f(T(x)) and hence by the given
inequality, x = θ so T is one-to-one. To prove that T is relatively
open we show that the inverse map T~ι: T(E) —> E is bounded on a
neighborhood of zero, vis. / - χ [ - 1,1] Π T(E). Let x e T'^f-'l- 1,1])
then T(x)ef-ι[-1, 1] so that | /Γ(a?) |^ l . Using the given
inequality we get m | | # | | ^ \fT(x)\ ^ 1. Thus | | # | | ^ 1/m for all
» e Π / 1 - U ] ) ; i.e., Γ - V ' Ί - l f l ] ) i s bounded and hence
Γ-1: T(E)-*E is continuous.

LEMMA 2.4. Let E be a locally convex space and F a subspace
of E. If E* is separable, then so is F* (in the s(F*, F) topology).

Proof. Let F1 = {feE*:f(x) = 0 for each xeF}. The continu-
ous image of a separable topological space is separable. Thus each
quotient space (with quotient topology) of a separable space is
separable. Hence E*/F1 is separable. The canonical map [f]—*f/F
is an isomorphism mapping E^/F1 onto ΐ7* (see [10, p. 120]). Further-
more this mapping is continuous (where E*/F1 has the quotient
topology and F* the s(F*, F) topology) as we now show. It suffices
to show that the mapping ψ: E* —> JP* defined by φ(f) — f/F is con-
tinuous since this map is the composition of the quotient map /—•[/]
and the mapping [f]-*f/F (see [10, Th. 5.7, p. 39]). If AaF then
denote by AOF* the polar of A in F* and use AOE* for the polar of
i in S*. Let B be a bounded subset of F. Then it is not hard to
see that φrι[BOF*\ — BOE* and hence φ is continuous. Thus the canonical
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mapping from E^/F1 onto i*7* is continuous and therefore i*7* is
separable.

Define a non-i1 space (non-c0 space) to be a locally convex space
which has no subspace topologically isomorphic to I1 (c0).

COROLLARY 2.5. If E is a locally convex space and E* is
separable, then E is a non-l1 space.

Proof. If E contains a subspace F topologically isomorphic to
I1, then F* is topologically isomorphic to m, the nonseparable space
of bounded sequences. Thus by Lemma 2.4, E* could not be
separable.

The following is an immediate consequence of the corollary.

THEOREM 2.6. Let E be a locally convex space2 with a basis
{%k,fjc}' If {%k, fk} is shrinking, then E is a non-l1 space.

To get a converse of Theorem 2.6, the space and basis must be
strengthened.

THEOREM 2.7. Let E be a ω-complete barrelled space2 with an
unconditional Schauder basis {xk,fk}. If E is a non-l1 space, then
{%kjfk} is a shrinking basis.

Proof. Suppose that {xk, fk) is not a shrinking basis. Then for
some g e E* the series Σ ^ I I T Φ * ) ] ^ ) / * = Σ~=i#(^)Λ is not strongly
convergent. Thus since the series is weak* convergent (Proposition
1.1) it can not be strongly Cauchy. Therefore there is a strong
neighborhood of zero B° (B is bounded in E) such that for each
positive integer j there are integers n3 and m3, n3- > m3 > j , with
the property that Y,lLmig{xk)fk £ B° furthermore, the sequence {%}~=i
and {m, }~=1 can be chosen so that m3+1 > nά for each j . This
means that for each j there is a z3e B with the property that
I ΣlLm3g{xk)fk{z3) I > 1 or, if we let \mά, %] denote just the integers
between md and n5 then | gS(zd)ίmjfnjl \ > 1. Since the family
{Sίmj>n ]}£=! is pointwise bounded (Proposition 1.12) it is equicontinuous
because E is barrelled. Hence since {zj} is bounded, the set
{S(^ )[«i,»i]}Γ=i i s bounded in E. If we let y3- = S(zs)ίmj,njl then we
have shown that for each j , \ g(y3) \ > 1 and the sequence {y3} is
bounded. Let t = {t3} e I1 and t Φ 0 and chooose the scalars e3- so
that I t3g{y3) \ = s3t3g{y3). By Lemma 2.2 the series Σ*U**2/fc i s c o n "
vergent and by the Generalized Gurevic Theorem (Corollary 1.22) the
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sequence {yd} is unconditionally basic. Therefore the series ΣΓ=iei*i2/i
is convergent (Theorem 1.12). Now we have | βj°=A'^Ί/i I =
ΣΓ=i I *i I ' I ffiVj) I > ΣΓ=i I tj I- I n accordance with Variation 1.20 let
A be the equicontinuous subset of E* which depends upon the given
equicontinuous set {g}. Then via Variation 1.20 the inequality just
shown implies that | ftΣi?=itjVj I > ΣΓ=i I *i I ^ o r some ft e A. If we
define T(t) = ΣΓ=i*i2/i t h e n w e h a v e

(i) for each t e I1 there is a n / ^ i such that \ftT(t) | ^ || t ||,i.
If ζ) is the Minkowski functional of AQ then | /(a?) | <̂  Q(x) for

each ^eJS7 and all feA. Now from (i) it follows that \QT(t)\^
\\t\\ιu T is continuous by Lemma 2.2 and relatively open and one-
to-one by Lemma 2.3. Thus the subspace Til1) of E is topologically
isomorphic to I1.

From Theorem 2.7 and Corollary 2.5 we get the following.

COROLLARY 2.8. Let E be a ω-complete barrelled space2 with an
unconditional Schauder basis. Then if E* is separable, the basis
is shrinking.

THEOREM 2.9. Let E be either a ω-complete locally convex spacez

or a barrelled space2 ior any locally convex space2 with the property
that weak* bounded subsets of E* are strongly bounded) and let E
have an unconditional Schauder basis {xk,fk}. If E* is weakly
ω-complete {i.e., w(E*:, E**)-ω-complete) then {xk,fk} is a shrinking
basis.

Proof. {fk} is a weak* unconditional basis so for each feE*
the set of unordered partial sums {£?(/): σe 0} is weak* bounded
and consequently strongly bounded because of the conditions on E.
E* is weakly α)-complete so by Corollary 1.16, ΣΓ=i/fe)Λ is strongly
unconditionally convergent; and since we know the series is weak*
convergent to /, it must be strongly unconditionally convergent to /.

To get a converse (Theorem 2.12 or 2.13) of Theorem 2.9 we
impose on E (or E*) more restrictions which are provided by Theorem
2.11, a generalization of Day's Theorem 2 [2, p. 74].

LEMMA 2.10. Let E be a locally convex space2. If E is weakly
sequentially complete, then E is a non-cQ space.

Proof. Suppose that E is weakly ω-complete but that there is
a subspace F which is topologically isomorphic to cQ. As a complete
subset of the Hausdorff space E, F is closed and, since it is convex,
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weakly closed. Thus F is weakly ω-complete which is impossible
since c0 is not weakly ω-complete.

THEOREM 2.11. Let E be a barrelled space2 with an uncondi-
tional Schauder basis {xk,fk}. Then the statements below are
equivalent.

(1) The basis is boundedly complete.
(2) E is weakly co-complete.
(3) E is a ω-complete non-c0 space.

Proof. (1) —• (2). Let {yn} be a weakly Cauchy sequence in E.
Then {yn} is bounded and {f(yn)}n=i is convergent for every feE*.
For each keω let ak = \imn^fh(yj. Since Sσ(yn) - Σkeoakxk =

Σ*eσ(/*(2/n) - «*)&*, s*0/J converges with n to Σ, f e e σ αA (given a
neighborhood of zero V choose the circled neighborhood W such that
yy _j_ . . . _|_ ΐ ^ c : V where there are as many W's as the cardinal
number of σ, and then pick ε > 0 so that exk e W for each keσ\ for
n large enough, \fk{yn) — ak \ < ε for all keσ and so for such n,
Σ*e J/*(ϊO - ak] xk e W + . . + We V). Thus if U is a neighbor-
hood of zero and V a barrel such that V + F c U we have for each
σ e Φ, an integer ΛΓσ such that ΣfceσαA — Sσ(yNσ) e V. F 6 is a neigh-
borhood of zero (see Theorem 1.18) and since {yn} is bounded there
is a scalar s > 1 such that ί/ π esF δ for all n. Hence Sa(yn)esV for
all σeΦ and w e ω . Then for each σeΦ we have Σjfceσ^^e
Sσ(yNσ) + VcisV + VczsU, proving that {ΣAkeσakxk}aeΦ is bounded.
Since {xk,fk} is boundedly complete there is a yeE such that ak =
fk(y) for each keω, and recalling the definition of ak we have
lim^^ fk(yn - y) = 0 for each k f t ) .

We will prove that # is the weak sequential limit of {yn}.
Suppose it is not. Then un = yn — y does not tend weakly to Θ and
so there is an heE*, an ε > 0, and a subsequence {zm} of {un} such
that

(i) h(zm) > e for each meω.
In accordance with Variation 1.20 let B be the equicontinuous

subset of E* corresponding to {h}. By the result of the first para-
graph of proof lim™^ Sσ(zm) = θ. Therefore for the neighborhood of
zero U = ε/5[B U {h}]Q there is a positive integer m0 such that
β ^ i ) e Z7 and then there is a % > m0 such that SmQ(zni) e U. By
induction there are increasing sequences {mj~=o and {W/jΓ̂ i such that

(ii) I g(Rmk(znic)) I ^ ε/5 and | g(Smk(znk+1)) \ ̂  ε/5 for all flr e B U W
and keω.

For each positive integer & define wfc = Σ Γ ί m ^ + i Λ O ^ ) ^ . Since
«nA ~ v>k = S^^iz^) + βWJfc(2njfc) we have, using (ii),

(iii) I g(wk) - g(znj) \ ̂ 2ε/5 for all g e B (J {/̂} and fc G ω.
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Now using (i) and (iii) we have | h(wk) | ^ \h(znj) | — | h(znj) —
h(wk) I > ε - 2ε/5. Thus

(iv) I h(wk) I > 3ε/5 for each keω.
Let F be the subspace of I1 of finitely nonzero sequences. If

t = {tk} e F then define T(t) = Σ?=i**w* F o r * φ ° P i c k t h e scalars ek so
that sktkh(wk) = I ί*^*) I then, | h(Σ^=ιektkwk) | = ΣΓ=i I** I I M^*) I >
3ε/5ΣΓ=i I ίjfel By the generalized Gurevic Theorem there must be a
gteB such that | gt(Σk=itkwk) | > 3ε/5 Σ~=i I ** |.

(v) For each ί e i*7 there is a ^ e £ such that | ^(T^)) | ^ 3ε/5 || ί | |.
Define i?(ί) = ΣΣU**^ for each t e ί 7 . From (iii) we get

I g(H(t) - T(t)) I ̂  2ε/5 || ί || for all g e 5 ; hence

Now using (v) we have
(vi) for teF there is a ^ e B such that \gt(H(t)) | ^ ε/5 p ||.
If Q is the Minkowski functional of Bo then | g(x) \ ̂  Q(a ) for

each x e E and all g e B. Thus in view of (vi) we have | Q(H(t)) \ ^
e/5| |ί | | for every teF. It now follows from Lemmas 2.2 and 2.3
that H is a topological isomorphism from F into E.

Let ^ ( ί 7 ) be the closure of H(F) in the completion E of i?.
Then H(F) is topologically isomorphic to l\ and hence is weakly
ω-complete. Since the weakly Cauchy sequence {znk} is contained in
H(F), it is weakly convergent to an element z of E. Therefore {un}
is weakly convergent to z and we have for each k e ω, fk(z) =
lim^^ fk(un) — 0 by the final result of the first paragraph of proof.
This implies that z — θ and hence {un} does converge weakly to θ,
contradicting the original assumption that it does not.

(2) — (3). Lemma 2.10.
(3) —> (1). If {xk} is not boundedly complete then there is a

sequence {ak} such that D = {Σ~=iαA}Γ=i is bounded but the series
does not converge and hence is not Cauchy since E is ω-complete.
Thus there is an equicontinuous subset A of E* and increasing
sequences {mk} and {nk} with mk+ί > nk such that yk = Σ J i ^ α ^ g Ao

for all keω. Hence, for each positive integer k there is a ^ e i
such that

(i) I gk(yk) I > 1.
Let .F be the subspace of c0 of finitely nonzero sequences. Define

T:F—*[yk] as follows: T(t) = ΣjceσtkVk where α is the set of sub-
scripts on which t is not 0. We shall show that T is continuous.
Since {xk} is unconditional and D is bounded, the set of unordered
partial sums {Σ*e*αJbα;A.:0 eΦ} is bounded (if V is a barrel then Vb is
also a neighborhood of zero and hence there is a scalar s such that

sF 6 for all neω; it follows that ^AkeaakxkesV for all
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σeΦ). Hence if Bo is a neighborhood of zero (B is equicontinuous)
there is a number M such that |/Σ*e*α*ί&*| < M for all feB and
σ e Φ. Let p = UfceΛi: mfc ^ i ^ w*} then |Σ*e*/(V*) I - |/Σ*βσ2/t I =
| / Σ i β ^ i « i l < Λ Γ . Therefore Σ*e, l/(lfc)l ^ 4Λf for all / e ΰ and
o G Φ. Now suppose ί e F and || ί || < 1/AM. If / e B then |/(Γ(ί)) | =
\Σikeatkf(yk) I ̂  Σ , 6 σ I tk I . |/(y4) I rg II ί || Σ*e, \f(yk) I < 1. Therefore
T(t) e Bo, and we have proved that T is continuous.

Let ί be a nonzero member of F and pick j so that 115 \ = \\t\\.
Now choose {ak} so that aktkgά{yk) = | tkgά{yk) |. Then | gj^keo^ktkyk \ =
I Σ t β ^ ί ^ - ί ^ ) I = Σ . β . I ί* I I £,(!/*) I ̂  I «i I I -̂(1/i) I > I h \ = \\t | |. If
B is the equicontinuous set corresponding to A then by the Gener-
alized Gurevic Theorem there must be an hteB such that

(ii) | ^ r ( i ) | > II ί||.
If Q is the Minkowski functional of BQ then | h(x) \ ̂  Q(x) for all

xeE and heB. Therefore, | Q(T(t)) \ ̂  || t \\ for each teF. By
Lemma 2.3 T is one-to-one and open and so T is a topological iso-
morphism of F onto [yk]m Thus their completions, c0 and [^Λ], are
topologically isomorphic.

A converse to 2.9 can now be proved. If {xk,fk} is an uncondi-
tional shrinking basis in a barrelled space E, then {fk} is a strongly
unconditional, boundedly complete basis for 2?* (2.1 and 1.5). There-
fore if E* is a barrelled space (in the strong topology) then by
Theorem 2.11, E* is weakly ω-complete. Thus we have proved the
following.

THEOREM 2.12. Let E be a barrelled space2 with an adjoint E*
which is also barrelled, and suppose that E has an unconditional
basis {xk,fk} If {%>/&} is shrinking, then E* is weakly ω-complete.

If the adjoint of a locally convex metrizable space is separable
(in the strong topology) then E* is a bound space and hence barrelled
[10, p. 217, 22.17]. Thus as a corollary to 2.12 we have the following.

THEOREM 2.13. Let E be a barrelled metrizable space with an
unconditional basis {xk,fk}. If {xk9fk} is shrinking, then E* is
weakly ω-complete.

We include a summary of the results on shrinking bases.

COROLLARY 2.14. Let E be a locally convex space2 with an un-
conditional Schauder basis {xk,fk}. Consider the following six
conditions.

(1) {fk, π(xk)} is a Schauder basis for the dual space E*.
(2) {fk, π(xk)} is a boundedly complete Schauder basis for 1?*.
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(3) {Λ, π(xk)} is an unconditional Schauder basis for E*.
(4) E is a non-lι space.
(5) 2?* is separable.
(6) E* is weakly co-complete.
Then (5) implies (4) (even if E has no basis) and so each of

(4) and (5) is a necessary condition for (1). (1), (2), and (3) are
equivalent if E is barrelled ((1) and (2) are equivalent even if the
basis {xk} is conditional). Each of (4) and (5) is sufficient for (1)
if E is a ω-complete barrelled space. (6) implies (1) if E is a
locally convex space such that weak* bounded sets are strongly
bounded; and (1) implies (6) if E is both barrelled and metrizable.
Thus all six statements are eqvivalent if E is a Frechet space.

Recall (Proposition 1.6) that a barrelled space2 with a Schauder
basis is reflexive if and only if the basis is both boundedly complete
and shrinking. Also recall that a reflexive space is barrelled and its
adjoint is reflexive and barrelled. Thus in view of 2.11 and 2.14 we
have the following.

THEOREM 2.15. Let E be a ω-complete barrelled space2 with an
unconditional Schauder basis. Consider the following conditions on
E and E*.

(1) E is weakly ω-complete.
(2) E is a non-c0 space.
(3) E is a non-V space.
(4) E* is weakly ω-complete.
(5) E* is a non-c0 space.
(6) E* is a non-l1 space.
If E is reflexive then (1), (2), and (3) hold. If in addition E*

is ω-complete (as it will be if E is a bound space) then all six
statements hold. Then conjunction of (1) and (3) imply that E is
reflexive as does also the conjunction of (2) and (3).
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