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UNCONDITIONAL AND SHRINKING BASES
IN LOCALLY CONVEX SPACES

L. J. WEILL

Let E be a locally convex space with an unconditional
Schauder basis {x;} and let {f.} be the sequence of coefficient
functionals biorthogonal to {x;}. Owing to works of R, C.
James and S. Karlin it is known that if £ is a Banach space
then each of the three conditions which follow is necessary
and sufficient for {f.} to be a basis for E* in the strong
(norm) topology.

(1) E has no subspace topologically isomorphic to the
space !,

(2) FE* is separable in the strong topology.

(3) E* is weakly (w(E*, E**)) sequentially complete,
The primary purpose of this paper is to show that in certain
spaces which are more general than Frechet spaces and hence
than Banach spaces, each of the above three conditions is
necessary and sufficient for

(0) {f:} is a strong basis for E*,

Specifically if E is a complete barrelled space, each of (1) and
(2) is sufficient for (0). In any locally convex space (2) implies (1)
(even if E has no basis) and so each of (1) and (2) is necessary for
(0). If E is a space having the property that weak* bounded sub-
sets of E* are strongly bounded (complete locally convex spaces and
barrelled spaces have this property) then (3) is sufficient for (0). (3)
is necessary for (0) if E is both barrelled and metrizable.

Besides the papers of James [8] and Karlin [9], related matter
of importance is contained in the works of M. M. Day [2, Ch. 4]
and C. Bessaga and A. Pelezynski [1]. E. L. Dubinsky and J. R.
Retherford [5] using Kothe sequence space techmques have proved
the (1) — (2) part of Theorem 2.12.

1. Prelimi'narie and fundamental theorems. Since the main
results of this paper depend upon many theorems which are not
widely known in their more general settings, the author thought it
wise to include this section which introduces, in addition to basic
theorems, some difinitions, terminology, and notation. No proofs are
given for known results.

If E is a locally convex space, then w will be used for the
canonical mapping from E to E**, the space of strongly continuous
functions on E*. For convenience, a subscript 2 will be added to
the word “space” to designatg that the Hausdorff axiom is satisfied.
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A sequence {x,} in a linear topological space, is called a basis if
for each element x in the space there is a unique sequence of scalars
{fi(x)} such that x = Z fi(@)z,. The resulting linear functionals {f,}
are called the coeﬂ‘ic1ent functionals. If the coefficient functionals are
continuous, then {x,} (or {x,, f.}) is called a Schauder basis. The
n-th partial sum operator s, is deﬁned by s.(x) = Z fi{x)x,; the n-th
remainder is defined by R,.(x) = Z fk(x)x,, We shall use @ for the
collection of all nonempty ﬁmte subsets of the positive integers w.
If 0e€®, then the o-partial sum operator S, is defined by S,(z) =
Z fr(@®)x,; the o-remainder is defined by R,(x) =« — S,(x). Note
that R, o R,(x) = R,n.(%), and if pNo# @ then S,o S,(x) = S,n.(2);
if ono =g, then S, S,(x) = 6 for every .

ProprosiTiON 1.1. Let E be a linear topological space,. If
{xy, fi} ts a Schauder basis or a weak Schauder basis for E, then
{fe, m(x,)} s @ weak™ Schauder basis for E*. It follows that tf {f.}
is also a strong basis then it is a strong Schauder basis with {m(x,)}
as the coeffictent functionals. The o-partial sum for {f,} is then
the adjoint of S;; d.e., Si(f) = X m@)()fe = k};f(wk)fk- The

o-remainder is R} and of course R*f f— Skf.
As a kind of converse we have the following.

ProrosiTION 1.2. Let E be a locally convex space,. If {f,F,} is
a weak* Schauder basis for E*, then {x., fi} ts a weak Schauder
basis for K, where for each k, x, is that unique element of E such
that w(x,) = F,.

The next two propositions require the Barrel Theorem for their
proofs.

ProOPOSITION 1.3. Let E be a barrelled space,. If {x,f.} s a
Schauder basis for E then {f,} is a strong basis for the closed linear

span, [fi, of {fi}.

Actually, in Proposition 1.3, “Schauder basis” may be replaced
by ¢ weak Schauder basis” as the following reveals.

ProrosITION 1.4. In a barrelled space a weak Schauder basis is
a Schauder basis.

A Schauder basis {z,, f,} is called a shrinking basis if {f,} is a
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basis for E* (in the strong topology). A basis {x,} is boundedly

complete if for each _sequence {t;} of scalars such that {3 ¢.x,}5., is
k=1

bounded, the series Z t,x, is convergent. The next proposition due

to J. Dieudonné [3, Prop 6] strengthens Proposition 1.1 in the case
where E is barrelled.

ProPOSITION 1.5. If {x., fi} is a Schauder basis in a barrelled
space, B, then {f.} is a weak* boundedly complete basis for E*. Hence,
of {%, fiu} s a shrinking basis then {f,} ts a boundedly complete
basis for E*.

The next proposition was proved for Banach spaces by R. C.
James [8] and generalized by J. R. Retherford [13].

PRrOPOSITION 1.6, Let {x,, fi} be a Schauder basis for a barrelled
space, E. Then E is reflexive if and only if {x,} ts both shrinking
and boundedly complete.

If (E, ||-]) is a Banach space with basis {,}, then a new norm
related to the basis can be formed: ||z]||" = sup{||S.(z)|]}. Both

norms have the same topology but the new norm is more useful. A
more general device has been developed by C. W. McArthur [14].
In the fundamental lemma which follows a part of this device is
abstracted even further in order that the result may be applied to
Theorem 1.18.

LemmA 1.7. Let (E,7) be a locally convex space and {g,: o € A}
a net [10, p. 28] of wpointwise bounded linear operators on E. Let
7~ be the local base comsisting of all barrelled neighborhoods of E.
For Ve &, define V' to be {xcFK:g,(x)eV for all acA}. Then
we have the following.

1) 7" ={V":VeZ}isalocal base for a locally convex topology
7’ on E.

(2) If there ts a subnet {g.;:08¢€B} such that, for each
e K, {g.5(x):08¢e B} is convergent to x then T’ is stronger than t.

3) If in addition to (2) each g, ts continuous and E s
barrelled, then ' = 7.

Proof. By the criterion 6.5 of [10, p. 47], ¥’ forms a local
base for a locally convex topology if the three conditions below are
met.

(i) Each V’e” is convex, circled, and radial at zero.

(ii) For each U’ and V’ of "' there is a W’'e "' such that
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wcu' nv.

(iii) ¢V’ belongs to ™" for each V’'e ™" and each scalar ¢.

Proof of (i). Let s and ¢ be nonnegative scalars such that
s+t=1. If z,ye V; then g,(x), 9.(y) €V for all «¢c A. Since V
is convex, sg.(x) + tg.(y) = g.(sx + ty)e V for all «c A and hence
st +tyeV’ so V' is convex. Let |[t|<1 xzeV'. g x)eV for all
« and since V is circled, tg,(x) = g.(tx) e V for all «; hence txe V'.
Therefore V' is circled. Let x e E. Since g, is pointwise bounded,
there is a positive scalar s such that if 0 < ¢ < s then tg,(x)e V for
all «. Hence txe V' so V'’ is radial at zero.

Proof of (ii). There exists a We >~ such that WU Un V.

Hence W c(UNV)Y=U'nVvV'.

Proof of (iii). For each scalar ¢, tVe»". Hence tV) =tV'e ¥ .

To prove (2) we show that V' V for each Ve . If eV’
then g¢.(x)e V for all a« and in particular g,,(x)e V for all BeB.
Thus since V is closed V is closed z¢ V.

To prove (3) we show that V'’ is z-closed and hence a c-barrel.
Let {y;: B€B} be a net in V'’ converging to y. Let acA; then
since g, is continuous, g¢.(y;) converges with A to g.(y). Since
9.(ys) € V for each BeB, g.(y)e V; a was arbitrary, so ye V.

Part (1) and (2) of the next proposition follow from the lemma.

ProprosiTiON 1.8. Let (E,7) be a locally convexr space, with a
basts {x,} and let " be as in Lemma 1.7. For Ve, define
V' ={z:S.(x) e V for each nc w}.

1)y " ={V':VeV} is a local base for a locally convex
topology T which is stronger than <.

(2) If E 1is barrelled and {x.} s a Schauder basis then t = 7’.

) If (E,7) is complete, then so is (E, T').

The last propositions of this section are slight modifications of
results due to Retherford and McArthur [14],

PROPOSITION 1.9. Let E be a complete locally convex space, and
{x,} a sequence of nonzero elements of K. If for each continuous
seminorm P on E there is a continuous seminorm Q such that
PCioawx,) = QCI—ax,) for p = q and arbitrary scalars a,, «--, a,,
then {x,} s a Schauder basic sequence (t.e., {x,} 1s a Schauder basis
for its closed linear span [x,]).

ProrosITION 1.10. Let E be a barrelled space, with a Schauder
basis {x;}. Then for each continuous seminorm P there is a con-
tinuous seminorm Q such that for p <q and arbitrary scalars
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Qg oo, @y, we have P30 a,x,) = Q(L1-.a,).

Let 3\o.y, be a (formal) series in a linear topological space E.
The series is called unordered bounded if the set of unordered partial
sums {dieo¥s: 0 € ¢} is bounded. The series is called unconditionally
(or unordered) convergent if the net of unordered partial sums (with
inclusion as the order relation in ¢) is convergent to an element of
E. It is well known that a series 37y, in a linear topological
space, is unconditionally convergent if and only if for each permuta-
tion p of w, the set of positive integers, the series 3.7 ,y,(k) is con-
vergent (each series converges to the same element regardless of the
permutation).

The series >y, is subseries convergent if for every subsequence
{y,,} of {y.} the series > .y, is convergent. 37 .y, is bounded-
multiplier convergent if for each bounded sequences of scalars {t,}
the series >7..t.y, is convergent. >,7 .y, is absolutely convergent
in a locally convex space E if the series is convergent and for each
continuous seminorm P on FE, the series >\7,P(y,) is convergent. In
any locally convex space, absolute convergence implies unconditional
convergence.

ProrosiTiON 1.11. In a locally convex space a series is weakly
absolutely convergent if and only if it is weakly unconditionally
convergent.

Define a to be the set of sequences {«,} such that «, = + 1 for
each m; define b to be the set of sequences {8,} such that 8, =0
or 1 for each m; and define ¢ to be the set of all complex sequences
{e.} such that |¢,| <1 for each m.

ProrosiTiON 1.12. If 3%y, s a series in a locally convex space
E, then the statements below are equivalent.

1) >y, is unordered bounded.

2) >y, 1s weakly unordered Cauchy.

() The set {3r- awyy: {a} ea and ne w} is bounded.

(4) The set {3r-, Biyr: {Br}eb and n e w} ts bounded.

(B) The set Do eyifes €e and n e w} 1s bounded.

COROLLARY 1.13. In a weakly sequentially complete locally con-
vex space a series is unordered bounded if and only if it is weakly
unconditionally convergent (weakly absolutely convergent).

The Orlicz-Pettis theorem for Banach spaces on subseries con-
vergence has been shown valid for locally convex spaces by Grothendieck
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and McArthur. For a proof of the theorem, which follows, see [12].

THEOREM 1.14. In a locally convex space, a series is subseries
convergent if and only if it 1s weakly subseries convergent.

It is well known that in a sequentially complete locally convex
space, bounded-multiplier convergence and subseries convergence are
each equivalent to unconditional convergence [2]. The next theorem
adds three other conditions which are equivalent to unconditional
convergence. A proof of the equivalence of (1), (2), (3), and (4) can
be found in [15]. (1) is proved equivalent to (2) in [11] by use of a
certain convergence criterion.

THEOREM 1.15. Let {y,} be a sequence in a sequentially complete
locally convex space E. The following six statements are equivalent.

(1) The series >.,7_.y, converges unconditionally.

(2) For any equicontinuous subset A of E*, the series >\7-. | f(Y:) |
converges uniformly for fe A.

(8) The series >y, converges uniformly for {a.}ea.

(4) The series > o8y, converges uniformly for {e,}€e.

(5) The series >,7-.Y, s bounded-multiplier convergent.

(6) The series D7 .y, is subseries convergent.

Since a weakly (sequentially) complete locally convex space is
(sequentially) complete, Theorem 1.14 and 1.15 imply that in a weakly
sequentially complete locally convex space a series is unconditionally
convergent if and only if it is weakly unconditionally convergent.
Thus similarly to Corollary 1.13 we have the following.

COROLLARY 1.16. In a weakly sequentially complete locally
convexr space,, o series is unordered bounded tf and only if it s
unconditionally convergent.

A Dbasis {x,, fi} in a linear topological space, is called an uncondi-
tional basis if for each x in the space the series >\, fiu(x)x, is un-
conditionally convergent to x. Hence, {x,, f,} is an unconditional
Schauder basis if and only if for each permutation p of w, {2,u), fow}
is a Schauder basis. It follows that each of Propositions 1.1 and
1.5 has an analog for unconditional bases. For instance we have the
following.

THEOREM 1.17. If {x., fi} ts an wunconditional Schauder basis
for a linear topological space, E, then {f., m(x,)} is a weak™ un-
conditional Schauder basis for E*.
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If {x,, f.} is a basis and « = {«,} is a sequence of scalars, define
S,.(®) = S fu(®)x,. Let (F,7) be a locally convex space, with
an unconditional Schauder basis {x, f,}. Let 2~ be the local base
consisting of all barrelled neighborhoods in E. If Ve<% ", define
Vi={xeE:S,(x)eV for all 0e®}, V,={xcE:S,.(x)eV for all
new and all aca}, and V, ={xecE: S, .(x)e V for all necw and all
ece}. Let ¥, ={V,: Ve¥}, ¥ ,={V,: Vex}, and ¥, =
{V..Vezl

THEOREM 1.18. Le (E,7) be as above. The families ¥ ,, 7",
and 7°, form local bases for locally convex Hausdorff topologies on
E, say t,,7,, and t,. FEach of these topologies is stronger than T
and if E is barrelled then t =7, =7, = 7,.

Proof. According to Lemma 1.7, 7, #7,, and 2", form local
bases if the families of operators {S,:0e€®}, {S,..(n,a)ew X a},
and {S,,. (n,&)e® X e} are pointwise bounded. Since {x,, f} is an
unconditional Schauder basis it is a weak unconditional Schauder
basis. Thus X7, fi(®)x, is weakly unordered Cauchy for each z and
hence by Proposition 1.12 the three families above are pointwise
bounded.

Let d be either the family of sequences a or e¢. The set w X d
is a directed set under the order relation < defined by: (n, @) < (m, B)
if and only if » <m. Thus {S,. (n,a)c® x d} is a net. Let o'
be the sequence (1,1,1, ---) and not that the subnet {S, .(x): nec w}
converges to x for each xe¢ E. Thus by part (2) of 1.7. 7,, 7,, and
T, are stronger than z.

Let 7 be 7, ¥, or 77, then MNycor V' CNyver V. Since 7
is a Hausdorff topology, the latter intersection is empty and hence
the other topologies are also Hausdorft.

For each new and « in b, a, or e, the operator S, . is continuous
so if E is barrelled then z =7, = 7, = 7,.

The next result, its variations, and its corollary shall be referred
to as the Generalized Gurevic Theorem (see [7]). We use d to mean
either of the family of sequences b, a, or ¢ (actually the theorem is
valid if d satisfies acdcCe or bcd Ce).

THEOREM 1.19. Let {x,} be a sequence of monzero elements in a
locally convex space, E. Call the following condition*: given a
netghborhood of zero U there is a meighborhood of zero V such that
for an arbitrary sequence {a,} of scalars arbitrary p and q in
{k:k 1s a positive integer or k = o} with q = p, and arbitrary
sequence {0,}€d, we have 3\%_a,2,€V implies >2_0,a,2, € U.
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1) If E s sequentially complete, then = implies {x,} is un-
conditionally Schauder basic.

(2) If E is barrelled and {x,} ts an wunconditional Schauder
basis for E, then * holds.

VARIATION 1.20. In the theorem, condition * can be replaced by
condition #*,: given an equicontinuous set A C E*, there is an equi-
continuous set B C E* such that for an arbitrary positive number M
and arbitrary sequence {a,} of scalars arbitrary p and ¢ in {k: % is a
positive interger or £ = o} with ¢ = p, and arbitrary sequence {d,} € d,
we have |>7_a,9(x,)| < M for all ge B implies |>2_0,a,f(x,) | = M
for all fe A.

VARIATION 1.21. In the theorem condition * can be replaced by
condition *,: given a continuous seminorm P there is a continuous
seminorm @ such that for arbitrary sequence {a,} of scarlars arbitrary
p and ¢ in {k:k is a positive integer or K = -} with ¢ = p, and
arbitrary sequence {0,} €d we have P(32_,0,a,.%,) < QC1-.a,2,).

Proof. First we show that x and =x, are equivalent. Since
{A,: A equicontinuous} forms a local base in F, % is easily seen to
be equivalent to the following. Given an equicontinuous A there is
an equicontinuous B such that for ... we have >?_,a,x, € B, implies
S _10.0,%, € A, But this is equivalent to x,.

Now we show that % and %, are equivalent. Suppose that x,
holds. Let U be a barrelled neighborhood of zero and let P be the
Minkowski functional of U (U equals U,, the closed unit ball of P).
In accordance with x, corresponding to P there is a continuous
seminorm @ such that P < Q%Y. If >7?eU, then Q9 =1
and hence P(3)) < 1; that is, >?e€ Up,. To show that x implies x,
let P be a continuous seminorm and U, its unit ball. There exists
a U, (i.e., a barrelled neighborhood of zero with Minkowski func-
tional @) such that e U, implies >?e U;; or Q> < ¢ implies
pPYr <e If QX =Q>%..a,2,, iszerothen P>? < ¢ foreverye>0
so that P>»=0. Hence Q3=P>>=0. If @37+ 0 then let
t=1/Q>°. QX)) =1; hence P(t>") £1. Upon substitution for ¢
we get P(X7) = Q(X)9).

To prove part (1) of the theorem, observe that x, is a stronger
condition than that in Proposition 1.9 and hence {x,} is a Schauder
basic sequence. To show that {x,} is unconditional, let U be a
neighborhood of zero in E. In accordance with x let V be the
neighborhood corresponding to U. Let {f,} <[x.]* be the family of
coefficient functionals for {x,}. Let x¢[x,]; then for » and m large
enough >, fu(@)x, e V. Hence if {4} is any element of d,
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SiremOnfe@)x, € U, It follows from Theorem 1.15 and the complete-
ness of K that 37, fi(x)x, is unconditionally convergent.

Part (2) is an immediate consequence of Theorem 1.18. Given a
barrelled neighborhood of zero U, then U, = {x € E: S, ;(x) € U for all
new and 0ed} is also a neighborhood of zero, and U, satisfies the
requirements for V in .

COROLLARY 1.22. Let E be a barrelled space, with unconditional
Schauder basis {x,, i} and let {y,} be any sequence in E and {0,} a
sequence in @ such that o,N o, = @ if m #* n. Define w, to be the
oi-partial sum of yYi; t.e., Wi = Xijeo, [i(¥)2;. Then given a neigh-
borhood of zero U there is a meighborhood of zero V such that for
arbitrary scalars t,, arbitrary {0,}€d, and arbitrary n and m in
{k:kew or k= o} with n=m we have > t,w.€V implies
S oityw, e U, Thus t+f E is also sequentially complete and for each
k, w, # 0 then the sequence {w,} is unconditionally basic in E.

Proof. Simply observe that if a;, = t,f;(y.), then > t,w, =
Sicopketnem@ix®; and in the expansion the j’s are all distinct by
the null intersection requirement of the hypothesis. Then apply
Theorem 1.19.

The Generalized Gurevic Theorem, which we have just proved,
is of fundamental importance. We shall apply it often in the next
section.

2. Unconditional and shrinking bases. As pointed out in
the introductory remarks, we shall show that most of the results
of James and Karlin are valid for complete barrelled spaces, barrelled
spaces, or complete locally convex spaces. Even unqualified locally
convex spaces are sufficient for a few of the more simple results.
The first theorem follows easily from the remarks made after the
definition of unconditional basis, page 12, and Proposition 1.3.

THEOREM 2.1. Let E be a barrelled space with an unconditional
basis {x;, fi}. If {x, fi} is shrinking, then {f.mw(x,)} is an wncondi-
tional Schauder bastis for E*.

Hereafter we shall use “w-complete” for “sequentially complete”.

LEMMA 2.2. Let E be a locally convex space, and {y,} a bounded
sequence in E.

1) If E is w-complete, then the series S v—it,Y, 1S convergent
for each t = {t,} el
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(2) If F is a subspace of I' such that for each tc F the series
Siooitiye s convergent, them the limear mapping T:F — E defined
by T@) = Dty ts continuous.

Proof. To see that > v .t,y, is convergent if E is w-complete,
let A, be a neighborhood of zero (where A is an equicontinuous
subset of E*). Since {y,} is bounded there is a positive scalar s such
that y, €sA4, for each k. For n and m large enough >7_, |t,]| < 1/s.
Since | f(y:) | < s for each fe A and k € w it follows that >2_.t.v, € A,.
Hence the series is convergent.

Let A be equicontinuous and define M = sup {| f(y,) |: f€ A, ke w}.
If teF and ||t]| <1/M + 1 then for fe A, |fT@t)| = Dritef W) | =
Sl te] o 1 f(ye) | < 1. Therefore T(t)€ A, so T is continuous.

LEMMA 2.3. Let T be a linear transformation of a mormed
space E into a locally convex space F. If there exists a continuous
functional f on F such that f(8) = 0 and a positive number m such
that |fT(x)| = m||x|| for each xecKE, then T ts one-to-one and re-
latively open.

Proof. If T(x) is zero then sois f(T(x)) and hence by the given
inequality, * = #; so T is one-to-one. To prove that T is relatively
open we show that the inverse map T*: T(E) — E is bounded on a
neighborhood of zero, vis. f~[— 1,1]N T(E). Letxze T (f[—1,1))
then T(x)ef[—1,1] so that |fT(x)| < 1. Using the given
inequality we get m||z|| < |fT(x)| £1. Thus [|[z|| < 1/m for all
xe T(f[—1,1]); i.e., T'(f[—1,1]) is bounded and hence
T-: T(F) — E is continuous.

LEMMA 2.4. Let E be a locally convex space and F a subspace
of E. If E* is separable, then so ts F* (in the s(F™*, F') topology).

Proof. Let F' = {fecE*: f(x) =0 for each xz¢ F'}. The continu-
ous image of a separable topological space is separable. Thus each
quotient space (with quotient topology) of a separable space is
separable. Hence E*/F" is separable. The canonical map [f]— f/F
is an isomorphism mapping E*/F* onto F'* (see [10, p. 120]). Further-
more this mapping is continuous (where E*/F'' has the quotient
topology and F'* the s(F'*, F') topology) as we now show. It suffices
to show that the mapping ¢: E* — F'* defined by &(f) = f/F is con-
tinuous since this map is the composition of the quotient map f— [f]
and the mapping [f]— f/F (see [10, Th. 5.7, p. 39]). If AC F then
denote by A°7" the polar of A in F'* and use A°* for the polar of
A in E*. Let B be a bounded subset of F. Then it is not hard to
see that ¢~'[B°™] = B°*" and hence ¢ is continuous. Thus the canonical
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mapping from E*/F' onto F* is continuous and therefore F* is
separable.

Define a non-l' space (non-c, space) to be a locally convex space
which has no subspace topologically isomorphic to I* (c,).

COROLLARY 2.5. If E 1s a locally convexr space and E* 1s
separable, then E is a non-l' space.

Proof. If E contains a subspace F' topologically isomorphic to
l', then F'* is topologically isomorphic to m, the nonseparable space
of bounded sequences. Thus by Lemma 2.4, E* could not be
separable.

The following is an immediate consequence of the corollary.

THEOREM 2.6. Let E be a locally convex space, with a basis
{xe, fu}.  If {x4, fu} ts shrinking, then E is a non-l' space.

To get a converse of Theorem 2.6, the space and basis must be
strengthened.

THEOREM 2.7. Let E be a w-complete barrelled space, with an
unconditional Schauder basis {x, fi}. If E is a mon-l' space, then
{x,, fr} is a shrinking basis.

Proof. Suppose that {z,, fi} is not a shrinking basis. Then for
some g€ E* the series D7 [7n(@)](9)f = Sieo9(xe)f is not strongly
convergent. Thus since the series is weak* convergent (Proposition
1.1) it can not be strongly Cauchy. Therefore there is a strong
neighborhood of zero B° (B is bounded in E) such that for each
positive integer j there are integers =; and m;, n; > m; > j, with
the property that 3}, g(x,)f, ¢ B’; furthermore, the sequence {n;}7.,
and {m;}7., can be chosen so that m;., > n; for each j. This
means that for each j there is a z;€ B with the property that
| Stlm, 9@ fu(2;) | > 1; or, if we let [m;, n;] denote just the integers
between m; and m; then |[gS(2)m;.,l>1. Since the family
{Stmnpl5=1 1s pointwise bounded (Proposition 1.12) it is equicontinuous
because FE is barrelled. Hence since {z2;} is bounded, the set
{S(zj)[mj,nﬂ};’-‘;l is bounded in E. If we let y, = S(zj)[mj,,,j] then we
have shown that for each j, |g(y;)| > 1 and the sequence {y;} is
bounded. Let ¢ = {t;}el' and ¢+ 0 and chooose the scalars e; so
that |¢;0(y,)| = e;t;9(y;). By Lemma 2.2 the series >.7..t.y, is con-
vergent and by the Generalized Gurevic Theorem (Corollary 1.22) the
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sequence {y;} is unconditionally basic. Therefore the series 3.7.¢,t;¥;
is convergent (Theorem 1.12). Now we have |g>7.tw;| =
St - lgtw) | > =l t;l. In accordance with Variation 1.20 let
A be the equicontinuous subset of E* which depends upon the given
equicontinuous set {g}. Then via Variation 1.20 the inequality just
shown implies that |f, > .ty > S5, |t;| for some f,e A. If we
define T(t) = >7..t;y; then we have

(i) for each tel' there is an f,€ A such that | f,T(®)| = || t]]n.

If @ is the Minkowski functional of A, then |f(z)| < Q(x) for
each xe€ £ and all fe A. Now from (i) it follows that |QT()| =
[|£]]n. T is continuous by Lemma 2.2 and relatively open and one-
to-one by Lemma 2.3. Thus the subspace T(I') of E is topologically
isomorphic to I'.

From Theorem 2.7 and Corollary 2.5 we get the following.

COROLLARY 2.8. Let E be a w-complete barrelled space, with an
unconditional Schauder basis. Then if E* 1is separable, the basis
is shrinking.

THEOREM 2.9. Let E be either a w-complete locally convex space,
or a barrelled space, (or any locally convexr space, with the property
that weak* bounded subsets of E* are strongly bounded) and let E
have an wunconditional Schauder basis {x,,f.}. If E* is weakly
w-complete (t.e., w(E*, E**)-w-complete) then {x,, f.} 1s a shrinking
basts.

Proof. {f.} is a weak* unconditional basis so for each feE*
the set of unordered partial sums {S}(f):o0e®} is weak* bounded
and consequently strongly bounded because of the conditions on F.
E* is weakly w-complete so by Corollary 1.16, >'v.,f(®,.)f: is strongly
unconditionally convergent; and since we know the series is weak*
convergent to f, it must be strongly unconditionally convergent to f.

To get a converse (Theorem 2.12 or 2.13) of Theorem 2.9 we
impose on E (or E*) more restrictions which are provided by Theorem
2.11, a generalization of Day’s Theorem 2 [2, p. T4].

LEMMA 2.10. Let E be a locally convex space,. If E is weakly
sequentially complete, then E is a non-c, space.

Proof. Suppose that E is weakly w-complete but that there is
a subspace F' which is topologically isomorphic to ¢, As a complete
subset of the Hausdorff space E, F is closed and, since it is convex,
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weakly closed. Thus F' is weakly w-complete which is impossible
since ¢, is not weakly w-complete.

THEOREM 2.11. Let E be a barrelled space, with an uncondi-
tional Schauder basis {x,,f.}. Then the statements below are
equivalent.

(1) The basis is boundedly complete.

(2) FE 1is weakly w-complete.

3) E 1s a w-complete non-c, space.

Proof. (1) —(2). Let {y,} be a weakly Cauchy sequence in E.
Then {y,} is bounded and {f(y.)};-. is convergent for every fe E*.
For each kew let a, =lim,..fi(y,). Since S,(¥,) — Dreoc@il; =
Seeod [e(¥a) — a)xy, S.(y,) converges with n to X,,..a,x, (given a
neighborhood of zero V choose the circled neighborhood W such that
W+ ««« + WcCV where there are as many W’s as the cardinal
number of ¢, and then pick ¢ > 0 so that ex,e W for each keco; for
n large enough, |f.(y,) — a,| <e for all keo and so for such =,
Swed fiy,) —ar] - x,e W+ -« + W V). Thus if U is a neighbor-
hood of zero and V a barrel such that V + V< U we have for each
oe®, an integer N, such that >.,0,x, — S.(yy,)€ V. V, is a neigh-
borhood of zero (see Theorem 1.18) and since {y,} is bounded there
is a scalar s > 1 such that y,esV, for all n. Hence S,(y,)esV for
all 0c® and ncw. Then for each ce® we have X,..0;%;¢€
S.(yy,) + VsV + VcsU, proving that {3),.,0:2:},co is bounded.
Since {z,, fi} is boundedly complete there is a ye £ such that a, =
fu(y) for each kew, and recalling the definition of a, we have
lim,_., fi(y, — ) = 0 for each ke w.

We will prove that y is the weak sequential limit of {y,}.
Suppose it is not. Then u, = y, — ¥ does not tend weakly to ¢ and
so there is an he E*, an ¢ > 0, and a subsequence {z,} of {u,} such
that

(i) A(z,) > ¢ for each me w.

In accordance with Variation 1.20 let B be the equicontinuous
subset of E* corresponding to {k}. By the result of the first para-
graph of proof lim,_. S,(z,) = 6. Therefore for the neighborhood of
zero U = ¢/5[B U {h}], there is a positive integer m, such that
R, (2)e U and then there is a m, > m, such that S, (z,)e U. By
induction there are increasing sequences {m,}r-, and {n,}7-, such that

() | O(Romy(20) | < &/5 and | 9(Soy(2a,.,,) | < ¢/5 for all ge B U {h)
and ke w.

For each positive integer %k define w, = 3%, .. fi(z, )%, Since
Zny — Wy = Sp,_(2,,) + R, (2,) we have, using (i),

(iii) | g(w,) — 9(z.,) | <2¢/5 for all ge BU {h} and ke w.
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Now using (i) and (iii) we have |h(w,)| = |h(z,,)] — [h(z,,) —
h(w,)| > ¢ — 2¢/56. Thus

(iv) |h(w,)| > 3¢/5 for each ke w.

Let F' be the subspace of ! of finitely nonzero sequences. If
t = {t,} € F then define T(t) = X,;.t,w,. For ¢ = 0 pick the scalars ¢, so
that et,h(w,) = [t.h(w,) |; then, [R(E&tiws) | = 35, (8] - [A(w,) [ >
3¢/53 . | t,|. By the generalized Gurevic Theorem there must be a
9. € B such that |g,(37.tiw,) | > 3¢/5 - S, |t .

(v) For each t e F there is a g, € B such that | g,(T(t)) | = 3¢/5 || t]].

Define H(t) = 37 ,tiz,, for each teF. From (iii) we get
| g(H(t) — T(t))| < 2¢/5]|t]| for all g B; hence

|g(H®) | = | g(T()) | — % I1t]l.

Now using (v) we have

(vi) for te F there is a g, € B such that |g,(H(t))| = ¢/5]|t]].

If Q@ is the Minkowski functional of B, then |g(x)| < Q(x) for
each x e F and all ge B. Thus in view of (vi) we have |Q(H(t))| =
e/5]|t|] for every te F. It now follows from Lemmas 2.2 and 2.3
that H is a topological isomorphism from F' into E.

Let H(F) be the closure of H(F') in the completion E of E.
Then H(F') is topologically isomorphic to I', and hence is weakly
w-complete. Since the weakly Cauchy sequence {z,,} is contained in
H(F), it is weakly convergent to an element z of K. Therefore {u,}
is weakly convergent to z and we have for each kecw, f.() =
lim,_., fi(u,) = 0 by the final result of the first paragraph of proof.
This implies that z = # and hence {u,} does converge weakly to 6,
contradicting the original assumption that it does not.

(2) — (3). Lemma 2.10.

3) — (). If {x,} is not boundedly complete then there is a
sequence {a,} such that D = {3\7.a.x.)5-, is bounded but the series
does not converge and hence is not Cauchy since E is w-complete.
Thus there is an equicontinuous subset A of E* and increasing
sequences {m,} and {n,} with m,,, > n, such that y, = 37%, a;x; ¢ A,
for all ke w. Hence, for each positive integer %k there is a ¢g,c A4
such that

1) [gx(w) | > 1.
Let F' be the subspace of ¢, of finitely nonzero sequences. Define

T: F —[y,] as follows: T(t) = Jl;c.try, where o is the set of sub-
scripts on which ¢ is not 0. We shall show that T is continuous.
Since {x,} is unconditional and D is bounded, the set of unordered
partial sums {3;..,a.%,:0 € @} is bounded (if V is a barrel then V, is
also a neighborhood of zero and hence there is a scalar s such that
S, esV, for all new; it follows that 3,..a,2,€sV for all
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o€ ®). Hence if B, is a neighborhood of zero (B is equicontinuous)
there is a number M such that |f>,..a.x.| < M for all fe B and
ged. Let p= Uneljime <5 =m); then [Suerfa)| = | fSuerti| =
[ e | < M. Therefore >, |f(y)| =< 4M for all feB and
oce®, Now supposete Fand ||[t|| <1/4M. If feB then |f(T(t)] =
[Dkeotecf (W) | = Do [ 8|+ [ W) [ S 1T+ Do [ (i) | < 1. Therefore
T(t) e B,, and we have proved that T is continuous.

Let t be a nonzero member of F' and pick j so that |¢;| = [|¢]].
Now choose {a,} so that a,t,g:(y.) = | t:9:(¥:)|. Then | g;3 .ty | =
12okeoitegi(¥i) | = ke[ Gl 195w | = 18] - [ 95(y) | > (¢ = | ¢]l. If
B is the equicontinuous set corresponding to A then by the Gener-
alized Gurevie Theorem there must be an h,e B such that

i) [RT@)| >[I E]l.

If @ is the Minkowski functional of B, then |Ai(x)| < Q(x) for all
xekl and heB. Therefore, |Q(T(t))| = ||t|| for each te F. By
Lemma 2.3 T is one-to-one and open and so T is a topological iso-
morphism of F onto [y,]. Thus their completions, ¢, and [y,], are
topologically isomorphic.

A converse to 2.9 can now be proved. If {z,,f.} is an uncondi-
tional shrinking basis in a barrelled space E, then {f,} is a strongly
unconditional, boundedly complete basis for E* (2.1 and 1.5). There-
fore if E* is a barrelled space (in the strong topology) then by
Theorem 2.11, E* is weakly w-complete. Thus we have proved the
following.

THEOREM 2.12. Let E be a barrelled space, with an adjoint E*
which ts also barrelled, and suppose that E has an wunconditional
basis {x;, fi}. If {x, fi} is shrinking, then E* is weakly w-complete.

If the adjoint of a locally convex metrizable space is separable
(in the strong topology) then E* is a bound space and hence barrelled
[10, p. 217, 22.17]. Thus as a corollary to 2.12 we have the following.

THEOREM 2.13. Let E be a barrelled metrizable space with an
unconditional basis {x., fi}. If {x, fi} s shrinking, them E* is
weakly w-complete.

We include a summary of the results on shrinking bases.

COROLLARY 2.14. Let E be a locally convex space, with an un-
conditional Schauder basis {x,f.}. Consider the following six
conditions.

Q) A{fw, m(x.)} is a Schauder basis for the dual space E*.

2) {fi 7(x,)} 18 a boundedly complete Schauder basis for E*.
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3) {fi m(x)} is an unconditional Schauder basis for E*.

(4) E 1s a mon-l' space.

(5) E* is separable.

(6) E* ts weakly w-complete.

Then (5) tmplies (4) (even if E has mo basis) and so each of
(4) and (5) is a mecessary condition for (1). (1), (2), and (3) are
equivalent if E is barrelled ((1) and (2) are equivalent even if the
basis {x,} is conditional). Each of (4) and (5) s sufficient for (1)
of E is a w-complete barrelled space. (6) tmplies (1) if E is a
locally convex space such that weak* bounded sets are strongly
bounded ; and (1) implies (6) ©f E is both barrelled and metrizable.
Thus all sixz statements are equivalent if E 1s a Fréchet space.

Recall (Proposition 1.6) that a barrelled space, with a Schauder
basis is reflexive if and only if the basis is both boundedly complete
and shrinking. Also recall that a reflexive space is barrelled and its
adjoint is reflexive and barrelled. Thus in view of 2.11 and 2.14 we
have the following.

THEOREM 2.15. Let E be a w-complete barrelled space, with an
unconditional Schauder basis. Consider the following conditions on
E and E*.

1) E s weakly w-complete.

(2) E is a mon-c, space.

(3) E 1s a non-l* space.

(4) E* is weakly w-complete.

(5) E* is a mon-c, space.

(6) E* is a non-l' space.

If E is reflexive then (1), (2), and (3) hold. If in addition E*
18 w-complete (as it will be if E is a bound space) then all six
statements hold. Then conjunction of (1) and (3) imply that E s
reflexive as does also the conjunction of (2) and (3).
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