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MAPPINGS AND REALCOMPACT SPACES

NANCY DYKES

The problem of preserving realcompactness under perfect
and closed maps is studied. The main result is that realcom-
pactness is preserved under closed maps if the range is a
normal, weak cb, A;-space. Generalizing a result of Frollk, we
show that realcompactness is preserved under perfect maps
if the range is weak cb. Moreover, the problem of preserving
realcompactness under perfect maps may be reduced to the
following: When does the absolute of X being realcompact
imply that X is realcompact? Likewise the problem of pre-
serving topological completeness under perfect maps may be
reduced to an analogous question. The following special case
is also proved. If φ is a closed map from X onto a weak cb,
g-space Y, then X is realcompact implies that Y is realcompact.

A function is a fc-covering map if any compact set in the image
space is contained in the image of a compact set in the domain. We
show that all closed maps whose domain X is topologically complete
are λ -covering maps. Next a representation is obtained for a closed
image Y of a topologically complete, G^-space. Namely Y= Ya U (U Yd
where φ~\y) is compact for all yeYa and each Y{ is discrete in Y.
This generalizes a theorem of K. Morita and is similar to a theorem
of ArhangePskiί which replaces topologically complete with point-para-
compact.

If φ is an open-closed mapping from a realcompact space X onto
a A>space Y, then dφ-^y) is compact for every yeY. It then follows
from a result of Isiwata's that Y is also realcompact. Now let φ be
a WZ-m&p of X onto a realcompact space Y. We show that X is
realcompact if and only if cl^x Φ~\y) — Φ~\y) This generalizes Isiwata's
result that X is realcompact if Φ~ι{y) is a C*-embedded, realcompact
subset of X.

The reader is referred to [6] for the basic ideas of rings of con-
tinuous functions. The following characterization of realcompactness
will be used in this paper. A completely regular, Hausdorff space X
is realcompact if and only if for each p in βX — X there exists an
/ in C{βX) such that f(p) = 0 and f(x) > 0 if x is in X. A map
will be used to designate a continuous onto function. A map is said
to be closed (open) if the image of each closed (open) subset of the
domain is closed (open) in the range. A map is called a Z-map if
the image of each zero-set in X is closed in Y. If the inverse image
of each compact set in the range is compact, then the map is said to
be compact. Perfect maps are those which are closed and compact.
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A map is minimal if the image of every proper closed subset of the
domain is a proper subset of the range. It is well known [17, 5] that
if / is a compact mapping of X onto Y, then there exists a closed
subspace Xo of X such that fo = f\XQ is a minimal map onto Y. Let
Φ map X onto Y and let Φ denote the continuous extension of φ from
βX onto βY. A map is a WZ-map if c\βxφ~ι(y) = 0~ιO/) for every
y in Y". It is shown in [10] that all Z-maps are W^-maps. A sub-
space S is said to be regular closed if S = cl int S. Similarly, a sub-
space S is said to be regular open if S = int cl S. A space X is a
Grspace if it is a Gδ subset of βX.

1* Realcompactness and perfect mappings, Realcompactness is
not preserved under perfect maps. An example will be presented at
the end of this chapter. However, Prolίk has proved that realcom-
pactness is preserved under perfect maps if the range is normal and
countably paracompact. In this section it will be shown that this can
be weakened by only requiring that the range space is weak cb. A
space X is a weak cb-space [13] if each locally bounded, lower semi-
continuous function on X is bounded above by a continuous function.
The following theorem is proved in [13, 3.1, p. 237].

THEOREM 1.1. The following statements are equivalent for any
topological space X.

( a ) X is weak cb.
(b) Given a positive normal lower semicontinuous function g

on X, there exists f in C(X) such that 0 < f(x) ίg g(x) for each x in X.
( c ) Given a decreasing sequence {Fn} of regular closed sets with

empty intersection, there exists a sequence {Zn} of zero-sets with empty
intersection such that Zn z> Fn for each n.

A space X is called almost realcompact [5, p. 128] if for every
maximal open filter szf of X with f| j ^ " = 0, there exists a countable
subfamily {AJ of j y such that Π A-% = 0 Every realcompact space
is almost realcompact. The next theorem generalizes Frolίk's result
that every normal, countably paracompact, almost realcompact space
is realcompact.

THEOREM 1.2. Let X be a completely regular, Hausdorff space.
If X is almost realcompact and weak cb, then X is realcompact.

Proof. Let . ^ be a free zero-ultrafilter. Set s/ = {U: U is
open and there exists a Z in & such that Z (Z U). Let Sf" be an
open ultrafilter containing <%f. By regularity f| *$&" = 0 There
exists a countable subcollection {AJ of jy" such that Π A% = 0 Set
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Nn — Πf=i AΛ* Then {Nn} is a decreasing sequence of open sets and
pj jV"Λ = 0 . Since X is weak cδ, there exists a sequence of zero sets
{Zn} such that Zn^Nn and Γ\Zn = 0 . Now ΛΓ% meets all elements
of ^?, so Zn meets all elements of B. Thus, for each positive integer
n, Zne&, and, hence, X is realcompact.

Frolίk has proved the following theorem [5, 8, p. 134].

THEOREM 1.3. Let f be a perfect map of X onto Y. If X is
almost realcompact, then Y is almost realcompact. If Y is almost
realcompact and X is regular, then X is almost realcompact.

The next corollary follows from Theorems 1.2 and 1.3.

COROLLARY 1.4. Let f be a perfect map of a realcompact space
X onto a completely regular, Hausdorff space Y. If Y is weak cb,
then Y is realcompact.

Associated with each regular Hausdorff space X is a completely-
regular Hausdorff space X, called the absolute of X, with the following
properties. The absolute X is extremally disconnected and there exists
a minimal perfect map of X onto X. Further, if Y is extremally
disconnected and is the preimage of a perfect minimal map onto X,
then Y is homeomorphic to X. The next theorem is proved in [17,
p. 308].

THEOREM 1.5. If f is a perfect map from a regular Hausdorff
space X onto a regular Hausdorff space Y and g is a perfect map
from an extremally disconnected space E onto a closed subset of Y,
then there exists a perfect map h from E onto a closed subset of X
such that g — fh.

THEOREM 1.6. Let f be a perfect map of X onto a regular
Hausdorff space Y. Then if X is realcompact, the absolute of Y is
also realcompact.

Proof. This follows from 1.5 and the fact [6, 10.16, p. 148] that
the perfect preimages of realcompact spaces are realcompact.

Thus the problem of preserving realcompactness under perfect maps
may be reduced to the following: Under what conditions does X
realcompact imply X is realcompact? Every extremally disconnected
space is weak cb, so by Theorems 1.2 and 1.3, we have the following:

THEOREM 1.7. Let X be a regular Hausdorff space. Then X is
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almost realcompact if and only if X is realcompact.

There exists a nonrealcompact space Y such that Y is the union
of two closed realcompact subsets Yγ and Y2 [16]. Let X be the
topological sum of Yx and Y2. Clearly, X is realcompact. Let / be
the canonical map of X onto Y. Then / is a perfect map of a real-
compact space onto a space that is not realcompact. This example is
due to R. L. Blair. Note also that X is almost realcompact and not
realcompact.

2* Realcompactness and closed mappings* Throughout the
remainder of this paper, X and Y will denote completely regular,
Hausdorff spaces. As we have seen in the preceding section, real-
compactness is not preserved under closed mappings. The following
special case has been proved by Isiwata [10, 7.5, p. 477]. If φ is a
closed mapping from a locally compact, countably paracompact, normal
space X onto Y, then Y is realcompact when X is realcompact. This
theorem will be generalized in this section.

A space X is a k-space if a set is closed when its intersection
with any compact set is closed. Locally compact spaces, first countable
spaces, p-spaces in the sense of ArhangeFskii [1] and Gδ-spaces [2,
12, p. 563] are fc-spaces.

If φ: X-> Y and fe C(X), let

f\y) = mί{f{x):xeφ-\y)}

and

fs(y) = swp{f(x):xeφ~1(y)}.

It has been shown [13, 11, p. 235] that if φ is a minimal perfect map,
then fs is normal upper semicontinuous. In an analogous manner, it
can be shown that fι is normal lower semicontinuous if φ is a minimal
perfect map. If φ is a continuous function of X onto Y, Φ will denote
the continuous extension of φ from βX onto βY.

LEMMA 2.1. Let X be a topologically complete space and φ a
closed map of X onto the space Y. If C is a compact subset of
βX - X and Φ(C) c Γ, then Φ(C) is finite.

Proof. Let C c βX - X and Φ(C) c Y. Suppose that Φ(C) is not
finite. Then Φ(C) contains an infinite set I such that I is discrete in

the relative topology. For each ye I, pick xy e Φ~\y) Π C. The set S =
{Xy'.ye 1} is infinite, hence it must have an accumulation point in C,
say p. The space X is topologically complete, so there exists a locally
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finite cozero cover ^ of J such that if Ϊ 7 e ^ then pίclβx U [18,
2.6, p. 172].

Select x1 e Φ~\I) and UΊe^ such that xι e U^ Suppose that
x19 , #»_! and Σ7i, , 27%_! have been selected such that x{ e Ui e ^/
and if i Φ j , then φ(Xi) Φ φ(x5) and Ui Φ U3 . Set y(i) = ^(^). Now
p e cl̂ - (S\{xy{i): i ^ n — 1}) and p g cl ^ U S 1 ί7<. Thus there exists an
open set N containing p such that NO (\Ji=ι ίΛ ) = 0 Pick

xy{n)
eNf] S\{xy{i): i ^ n - 1} .

Next select a?Λ e ^~1(̂ /(̂ )) Π N, and Une^S such that a?n e Z7n. Note
that if i <n, then ^ Φ yn and 27̂  ̂  Un. Now {{»<}}< is a locally finite
collection, so {#*}* is a closed subset of X. Since ^ is a closed map
{2/ }S=i must be a closed subset of F. But {τ/J is an infinite discrete
subset of the compact set Φ(C). Thus we have reached a contradiction.

LEMMA 2.2. Let X be a topologίcally complete space and φ a
closed map of X onto the space Y. If C is a compact subset of
βX — X, then all compact subsets of Φ(C) Π Y are finite.

Proof. This follows from 2.1.

LEMMA 2.3. Let X be a topologically complete space and φ a
closed map of X onto a k-space Y. If C is a compact subset of
βX — X, then Φ(C) ΓΊ Y is closed and discrete in the relative topology.

Proof. Φ(C) is a compact subset of βY, so Φ(C)O Y is a closed
subspace of Y, and hence is a &-space. Let FaΦ(C) Π Y and K be
any compact subset of Φ(C)f] Y. By 2.2 K is finite and so F Π K is
closed. Since Φ(C) Π Y is a &-space, F must be closed. Hence Φ(C) Π Y
is discrete.

THEOREM 2.4. Let φ be a closed map of X onto a normal, weak
cb, k-space Y. Then X realcompact implies that Y is realcompact.

Proof. There exists a closed subspace Xo of βX such that Φo =
Φ I Xo is a minimal perfect map onto βY. Pick q e βY — F and
p G Φ^ι(q). Since p is not in X there exists a nonnegative function /
in C(βX) such that /(p) = 0 and f(x) > 0 if xeX. Define / % ) =
inf {f(x): x e Φ Γ 1^)}. Then f* is a normal lower semicontinuous function
on βY and Z(f*) = Φ(Z(f)). Set Fo - Φ(Z(f)) Π F. Since Z(/) is
a compact subset of βX — X, Fo is discrete and closed in Y. Pick
Xyβφ-^y). Then F = f e | / G 7 0 ) is a closed and discrete subset of
X. Hence φ \ F is a homeomorphism and so Fo is realcompact. If
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qgclβy Yo, then there exists a geC(βY) such that g(y) = 1 if ye Yί

and g(q) = 0. Now suppose q e c\βγ Γo. Since Y is normal, Γo is C*-
embedded in 3f and hence βY0 — cl^ Fo# By the realcompactness of
Yo, there exists a nonnegative #0 e C*(c\βv Yo) such that gQ is positive
on Γo and go(q) = 0. Let g e C(βY) such that g I cl^ Fo = 9o and # ̂  0.
The function fl + g is a normal lower semicontinuous function on βY
that is positive on Y and fι + #(g) = 0. Since Y is weak cδ, there
exists a. he C*(Y) such that 0 < h <^ fι + g. Let &* be the continuous
extension of h from βY into the reals. Since normal lower semicon-
tinuous functions are determined on dense subsets, we have that 0 ^
h*(q) ̂  /* + g(q) = 0. Thus Γ is realcompact.

Note that the full strength of 2.3 was not used in the proof of
the theorem. All that was needed was that if Z is a zero set and
Zα βX — X, then Φ(Z) Γ) Y is discrete. This particular result follows
from a lemma of ArhangeFskiί [3, 1.2, p. 202],

Let Y be α k-spαce, v α point-finite covering of X, and let ψ:
X—*Y be a closed mapping of X onto Y. Then N — {y e Y: no finite
vr c v covers φ~ι(y)} is discrete in Y.

If ZaβX - X, let / be a nonnegative element of C*(βX) such
that Z is the zero set of / and / ^ 1/2. Set

Un = {x eX:l/n + 2< f(x) < 1/n} .

Clearly v = {Un) is a point-inίite covering of X and Y Π Φ(Z) = N.
However, Corollary 2.3 does not follow from this, since X is Lindelof
if and only if for every compact subset of βX — X there is a zero-set
Z such that C c Z and Z Π X is empty.

By a usual method found in [10] and [14] we obtain the following
lemma.

LEMMA 2.5. If φ is a map of a space X onto Y and dφ~1(y) is
compact for every y e Y, then there exists a closed subspace Xo such
that φ0 = φ I Xo has the property that inverses of points are compact
and φo(Xo) = Yo.

COROLLARY 2.6. If φ is a closed map of a realcompact space X
onto a weak cb-space Y, and the dφ~\y) is compact for each y e Y,
then Y is realcompact.

Another special case of realcompactness being preserved under
closed maps will be proved in the next section (3.5).

3* Topologically complete spaces* The following is a problem
in [6, 8E.1, p. 128]. For any subset S of a realcompact space X, if
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f\ S is bounded for all / in C(X), then cl S is compact. As a gener-
alization of this, we have the following.

LEMMA 3.1. If S is a subset of a topologically complete space
X, and f\S is bounded for all f in C(X), then cl S is compact.

Proof. Suppose clx S is not compact. Then there exists a point
p in cl^ S\X and locally finite partition of unity Φ such that p £ c\βx

(cozero (φ)) for each φeΦ. Let Φr = {φ e Φ: there exists a xe S such
that φ(x) Φ 0}. Let φβ denote the Stone extension of φ. If φ e Φ,
then φβ(p) — 0, since φβ(p) > 0 implies that p€e\βx cozero (φ). Now
if Φ' is finite, then / = Σ * ^ e C(/SX), /(a?) = 1 if x e S, and /(p) = 0.
Since x e clβx S, this is impossible and so Φf must be infinite. Let
{φn}αΦf such that nΦm implies that φnφ φm. Let xn be an element
of S such that φn(xn) Φ 0 and set fn = nφjφn(xn). Now Σ Λ e C ( X )
since the cozero sets of {/„} are locally finite, but Σ Λ is not bounded
on S. This concludes the proof.

Michael has defined a point y e Y to be a q-point if it has a
sequence of neighborhoods {NJ such that if yt e Ni and the yt are all
distinct, then y19 y2, has an accumulation point in Y. If every 7/
in Y is a g-point, then Y is called a g-space. The g-spaces include
the first countable spaces, the locally compact spaces and the p-spaces
in the sense of ArhangePskiί [1]. Michael has proved the next theorem
[14, 2.1, p. 173].

THEOREM 3.2. Let f: X—+Y be continuous, closed and onto, where
X is TΊ. If y e Y is a q-point, then every continuous, real-valued
function on X is bounded on df~ι(y).

The next corollary follows from 3.1 and 3.2.

COROLLARY 3.3. If f is a continuous, closed map of a topologically
complete space X onto a q-space Y, then df~ι(y) is compact for each
yeY.

A function / is a k-covering map if any compact set in the image
space is contained in the image of a compact set in the domain. Note
that /: X —> Y is a ά-covering mapping if and only if the induced
mapping fβ* from C( Y) to C(X) endowed with their respective compact-
open topologies is a homeomorphism into [1, p. 154]. As a generalization
of Corollary 1.2 of [14], we have the following:

THEOREM 3.4. Let X be topologically complete and f: X—+ Y con-
tinuous, closed and onto. Then f is a k-covering map.
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Proof. Let C be a compact subset of Fand consider fo=f\f~1(C).
Since f0 is a closed continuous map onto C, by 3.3, 3/0~

1(t/) is compact
for each y in C. It is well known that if / has the property that
inverses of points are compact and / is closed, then / is a compact
map. So from 2.5, there exists a closed set F in f~\C) such that
/o| F is a closed and compact map from F onto C. Thus i*7 is compact
and f(F) = C.

Since all realcompact spaces are topologically complete, the next
corollary follows from 2.6 and 3.3.

COROLLARY 3.5. If ψ is a closed continuous map of a realcompact
space X onto a iveak cb, q-space, then Y is realcompact.

THEOREM 3.6. Let f be a perfect map of X onto Y. If Y is
topologically complete, then X is topologically complete.

Proof. This follows from [6, 15.11, p. 224] and [6, p. 147].

COROLLARY 3.7. Let f be a perfect map of X onto Y. If X is
topologically complete, then Ϋ is topologically complete.

Proof. This follows from 3.6 and 1.5.

Thus the problem of preserving topological completeness under
perfect maps reduces to finding conditions under which X topologically
complete implies that X is. The author has been unable to find any
such conditions. Note again that the example in § 1 is also an example
of a space that is not topologically complete and is the perfect image
of a realcompact space. Further any counterexample when the range
is weak cb would involve a space of measurable cardinal. As in the
case of realcompactness, if / is a closed map of a topologically complete
space X onto a g-space Y, there exists a topologically complete space
Xo such that Y is the perfect image of XQ.

The next theorem is similar to a theorem of ArhangePskiϊ [3,
1.1, p. 202] in that it replaces point-paracompact with topologically
complete.

THEOREM 3.8. If X is a topologically complete, Gδspace and φ
is a closed map of X onto Y, then Y — (JΓ=o Y%, where each Yt is
closed and discrete if i ^ 1 and Φ~ι{y) is compact for all y e YQ.

Proof. If X is a G.-space, then βX - X = \J Ci where each d
is compact. Set YQ — {y: φ~\y) is compact} and if i ^> 1, let Yi =
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€{Ci) Π Y. Since Gδ-spaces are &-spaces, it follows by 2.3 that Yt is
closed and discrete. If yeY\Y0, then yeΦ(βX\X)nY=\JT=oYi-
Thus Y = U~ o Yt.

The next theorem is a slight generalization of a theorem of
Isiwata's [10, 7.3, p. 476] in that it replaces realcompactness by
topologically complete.

THEOREM 3.9. Let φ be a closed mapping from a locally compact,
topologically complete space X onto Y. Then Y is locally compact
if and only if dφ~ι(y) is compact for every y e Y.

Proof. This follows from 2.5 and 3.3.

4* Realcompactness and WZ-maps. The following lemma is
due to Isiwata [10, 6.1, p. 467].

LEMMA 4.1. // φ:X —>Y is an open WZ-mapping, y is not
isolated, φ~ι(y) is not compact, and if there is a function f in C(βX)
such that 0^f^l,f>0onX and f(x) = 0 for some x in Φ~\y)\φ-\y),
then ZβY{fι) is a neighborhood in βY of y.

Using this lemma Isiwata proves the following theorem. Hence we
shall give a different proof that uses the technique employed in 2.4.

THEOREM 4.2. If φ is an open and closed mapping from a real-
compact space X onto a space Y such that dφ~1(y) is compact for every
y e Y, then Y is also realcompact.

Proof. Pick q in βY — Y and p in Φ~\q). Then there exists a
fe C(βX) such that f(x) > 0 if x e X and f(q) = 0. Since Φ is open and
closed, Φ is open [10, 4.4, p. 464] which implies that fιeC{βY) [10,
4.1, p. 463]. Now if f\y) = 0, then φ~\y) is not compact, int φ~\y) φ
0 , and hence y is isolated. Since Z(fι) is both open and closed, it
is C-embedded in Y. The subspace Z{fι) is realcompact since it is
discrete and homeomorphie to a closed subset of X. These last two
properties imply that there exists a nonnegative geC(βY) such that
g(q) = 0 and g(y) > 0 if y e Z{fι). Now the function g + /* is positive
on Y and g + fι{q) = 0. It follows that Y is realcompact.

THEOREM 4.3. // φ is an open-closed mapping from a realcompact
space X onto a It-space Y, then Φ~x{y) is compact for all nonisolated
points yeY.
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Proof. Assume that Φ~\y) is not compact and y is not isolated.
Pick peΦ~\y)\X. Since X is realcompact there exists a feC(βX)
such that / is positive on X, 0 ̂ / ^ 1, and f(p) = 0. By 4.1, Zγ{fι)
is a neighborhood of y. But by 2.3 Zγ{f{) is discrete. Hence y is
isolated, which is a contradiction.

COROLLARY 4.4. If φ is an open-closed mapping from a real-
compact space X onto a kspace Y, then Y is also realcompact.

Proof. This follows from Theorems 4.2 and 4.3.

ArhangeFskii mentions in [1] that he has shown if X is a com-
pletely regular, Hausdorff, &-space which admits a complete uniform
structure and <j> is an open closed map of X onto Y, then either Φ~x{y)
is compact or y is isolated for each y in Y. The author does not
know if he uses the fact that X is a fc-space or only that 7 is a
Λ-space.

Next, we consider preimages of realcompact spaces. Perfect pre-
images of realcompact spaces are realcompact. In [10, 5.3, p. 466],
Isiwata proves the next theorem.

THEOREM 4.5. Let φ: X—> Y be a Z-mapping and let Φ~\y), yeY,
be a C*-embedded, realcompact subset of X. If Y is realcompact,
then so is X.

Unfortunately, the condition that Φ~ι(y) be C*-embedded is not a
necessary condition if X is realcompact. Indeed, all closed subsets will
be C*-embedded if and only if X is normal. The following theorem
generalizes 4.4.

THEOREM 4.6. Let φ be a WZ-map of X onto a realcompact space
Y. Then X is realcompact if and only if c\uX φ~ι{y) — Φ~\y) for each
yeY.

Proof. The sufficiency is clear. Assume that cl̂ - Φ~ι{y) — Φ~\y)
for each yeY and let φ0 — Φ\ vX. Note that φo(vX) — Y since Y is
realcompact [6, 8.7, p. 118] and Φ~\y) = o\βxφ-\y) implies that ΦVι{y) =
dxφ-'iy). Thus v X - U.er^O/) = \Jv*γφ-\v) = X and X is real-
compact.

LEMMA 4.7. If φ is a z-map of X onto Y and Φ~~\y) is ^-em-
bedded, then Φ~~ι(y) is C-embedded.

Proof. Let Z be a zero-set in X which is disjoint from Φ~x{y).



MAPPINGS AND REALCOMPACT SPACES 357

Then φ(Z) is closed in Y and y $ Φ(Z). So there exists a feC(Y) such
that f(y) = 0 and f(Φ(Z)) = {1}. Now fφ e C(X) and fφ is 0 on φ~\y)
and 1 on Z. It follows that φ~ι{y) is C-embedded [6, 1.18, p. 19].

LEMMA 4.8. Let φ map X onto Y and y e Y. If Φ~ι(y) is real-
compact and C-embedded, then clvX Φ~ι{y) — Φ~\y).

Proof. Since Φ~\y) is C-embedded in X, it is C-embedded in vX.
Hence,

clx Φ~\v) = v{Φ~\v)) = ΦΛy)

Thus we see that 4.5 is actually a generalization of 4.4.
If FaX, F is said to be Z-embedded in X if for every zero-set

Z in F, there exists a zero-set Zf in X such that Z' f) F = Z. If F
is Lindelof and FaX, then i*7 is Z-embedded in X [8]. Further, if
JP is Z-embedded and completely separated from every zero-set disjoint
from it, then it is C-embedded [7]. Thus we have the following.

COROLLARY 4.9. Let φ be a Z-mapping of X onto Y. If Φ~~ι{y) is
Lindelof for each y e Y, and Y is realcompact, then X is realcompact.

If X is locally compact, a Grspace, a p-space, or if every point
is a ft, then every element of X has a compact zero-set containing
it. We conclude this section with the following theorem.

THEOREM 4.10, Let φ be a compact mapping from X onto Y and
let every element of Y have a compact zero-set containing it. Then
Y realcompact implies that X is realcompact.
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