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ON MAJORANTS FOR SOLUTIONS OF ALGEBRAIC
DIFFERENTIAL EQUATIONS IN REGIONS

OF THE COMPLEX PLANE

STEVEN BANK

In this paper, we investigate the rate of growth of func-
tions which are analytic in an arbitrary simplyconnected re-
gion of the complex plane and which are solutions of first
order algebraic differential equations (i.e., equations of the
form Ω(z9 y, dy/dz) = 0, where Ω is a polynomial in z, y and
dyldz).

In the course of constructing an example for second order equa-
tions, Vijayaraghavan in [5] showed that for any realvalued increas-
ing function Φ(x) on the interval (0, +oo), it is possible to find a
complex function h(z), which is analytic in a simply-connected region
R of the plane containing (0, + °°), and satisfies a first order algebraic
differential equation, and which has the property that | h(x) | > Φ(x)
at a sequence of real x tending to +001. For a given Φ(x), the
function h(z) constructed was of the form P(az) where P(u) is the
Weierstrass P-f unction with primitive periods w and iw' (w, wf real),
and where the constant a was of the form a = w + ib, where b de-
pends on Φ and b/w' is irrational. Since P(az) has poles at all points
(mw/a) + (nίw'/a) where m and n are integers, clearly the region R
associated with the solution h(z) = P(az) depends on a and hence on
Φ(x). A natural question is thus raised, namely, can such examples
be constructed where, for all Φ(x), the simply-connected region R re-
mains the same. That is, does there exist a simply-connected region
R containing (0, +00) with the property that for any real-valued in-
creasing function Φ(x) on (0, +00), there is a solution h(z), analytic
on R, of a first order algebraic differential equation, such that
I h(x) I > Φ(x) at a sequence of real x tending to + 00 ? In this paper
we answer this question in the negative by proving the following
more general result (§2 below): If R is any simply-connected region,
then there exists a real-valued continuous function Ψ(z) on R with
the property that for any function h(z), analytic on R, which satisfies
a first order algebraic differential equation, there is a compact set K
contained in R such that | h(z) \ < Ψ(z) on R-K. In the case where R
is not the whole plane, we show that Ψ{z) may be taken to be

1 None of the solutions h(z) constructed by Vijayaraghavan are real-valued on
any interval (xo, +00). Of course this is in accord with the well-known result of
Lindelof [2; p. 213] that a real-valued solution on an interval (#0, +°°) is majorized,
on some interval (xι, +00), by exp(exp#).
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exp(exp((l — ]f(z) I)""1)), where / is a univalent analytic mapping of
R onto the unit disk (which exists by the Riemann Mapping Theorem).
In the case where R is the whole plane, a wellknown result of Valiron
[3; p. 41] states that any entire function satisfying a first order algebraic
differential equation is of finite order, so Ψ(z) can be taken to be
exp (exp \z\) in this case.

To prove our main result (assuming R is not the whole plane),
the equation is transformed to the unit disk using f~\ The resulting
equation no longer has polynomial coefficients, but careful estimates
on the growth of the coefficients can be made using certain standard
estimates on the growth of the univalent analytic function f~~ι on the
unit disk. Then by using results of Valiron [4 p. 299] concerning
certain analytic functions in the unit disk, we obtain (Lemma C below)
the same growth condition on solutions in the unit disk as was ob-
tained in [4; p. 294] in the case where the coefficients were polynomials.
Our main result then follows by retransforming back to R.

2. We now state our main result:

THEOREM. Let R be a simply-connected region of the complex
plane which is not the whole plane. Let f be a univalent analytic
mapping of R onto the unit disk. (Such a mapping exists by the
Riemann Mapping Theorem.) Then, if h(z) is any analytic function
on R which is a solution of a first order algebraic differential equa-
tion, then there exist a constant A ^> 0 and a compact set X contained
in R, such that the inequality \ h(z) | <̂  exp ((1 — \f(z) \)~A) holds for all
zeR — X. (Thus clearly, for each such h(z), there is a compact set
K contained in R such that the inequality

i h(z) I < exp (exp ((1 - \f(z) \)~1)) holds on R - K.)

REMARK. If R is the whole plane, then by a result of Valiron
[3; p. 41], any analytic function on R (i.e., any entire function) which
is a solution of a first order algebraic differential equation is of finite
order.

3* Proof of the theorem. Let h(z) be analytic on the simply-
connected region R and be a solution of a first order algebraic dif-
ferential equation Ω(z, y, yf) = 0. We may write Ω(z, y, y') in the
form,

(1) Ω(z, y, yf) = Σ Hkj(z)yk(Vy

where the functions Hkj(z) are polynomials in z. Thus,

(2) Σ Hkj(z)(h(z))k(h'(z)y = 0 on R .
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Let g be the inverse of /. Thus g is a univalent analytic mapping
of the unit disk onto R. Since h(z) is analytic on R, clearly the
function

( 3 ) φ(ζ) = h(g(ζ)) is analytic on | ζ | < 1 .

Since φ'{ζ) = h'(g(ζ))gr(ζ), we have by (2) that φ{ζ) satisfies the re-
lation,

( 4 ) Σ Fkj(ζ){φ(ζ))\φ\ζ)y = 0 on I ζ | < 1, where

( 5 ) Fkj(ζ) = Hkj(g(0)/(9\Q)j for each (fc, j) .

For each (&, j) such that Hkj Ξ£ 0, let d(k, j) be the degree of
the polynomial Hkj. Define

( 6 ) q = 1 + max {j + 2d(k, j): Hkj ^ 0}

Thus clearly,

(7) g > 0 .

We now prove,

LEMMA A. There exists a constant K* > 0 such that on any
circle | ζ | = r, where r e [0, 1), we have | Fkj(ζ) | ^ K*(l — r)~q for
all (k,j).

Proof. Since g(ζ) is univalent on | ζ | < 1, the function G(ζ) =
(g(ζ) - g(0))/g'(0) is also univalent on | ζ | < 1 and G(0) = 0 while
G'(0) = 1. Thus by [1; Th. 17. 4. 7, p. 353], | G(ζ) | ^ r(l - r)"2 on any
circle | ζ | = r < 1. Since r < 1 and (1 — r)2 <̂  1, we clearly obtain

( 8 ) I g(ζ) \£L(1- r)-2 on | ζ | = r < 1

where L = | flf'(0) | + | g(0) \ > 0 (since g'(0) Φ 0). Again, since G(ζ)
is univalent on | ζ | < 1 and G(0) = 0 while G'(0) = 1 we have by
[1; Th. 17. 4. 6, p. 351] that (1 - r)(l + r)~3 ^ | G'(ζ) | ^ (1 + r)(l - r)~3

on any circle | ζ | = r < 1. Setting iξ = 2 | ̂ '(0) | and K2 = \ g'(0) |/8,
we have

( 9 ) K\ > 0 and ϋΓ2 > 0 (since g'(0) Φ 0), and

(10) K2(l - r) ^ I flr'(ζ) | ^ ^ ( 1 - r)~3 on | ζ | = r < 1 .

Now consider any (k, j). If Hkj = 0 clearly F f c i Ξ 0 by (5), so
we may assume Hkj -φ 0. Since HkJ is of degree d = d(&, i), we may
write, Hkj(z) = β0 + ^i^ + + Sd^

d where the I?,, are constants.
Thus by (8), we have on any circle | ζ | = r < 1,
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(11) I Hkj(g(O) I ^ I Bo 1 + I B,

Thus clearly there is a constant α(fc, j) > 0 such that,

(12) I Hkj(g(O) I ^ «(fc, i)(l - r ) - " on | ζ | = r < 1 .

By (10), we have | g%) \j ^ K{(1 - r)>' on | ζ | = r < 1, so by (12) and

(5),

(13) I Fkj(ζ) I ^ (a(k, j)/K{)(l - r)-<>+M> on | ζ | = r < 1 .

Setting

K* = 1 + max {α(fc, j)/K{: Hkj m 0}

and noting that q > j + 2d(k, j) by (6), we have by (13) that for any

(k,j)

(14) ( Fkj(ζ) I g JK"*(1 - r)- f f on any circle | ζ | = r < 1 ,

proving Lemma A.

Now set

(15) p = max [k + i : JH ĵ ^ 0} , and

(16) m = max {j: fl p^.,y =£ 0}.

We noiv prove,

LEMMA B. ΓAere βxisί constants K% > 0, <7 ̂  0 cmcί r0 G [0, 1>
circle | ζ | = ?% where rQ < r < 1, î β

Proof. If the degree eZ of Hp_m>m is zero, then Hp_m,m is a non-
zero constant function, say Hp__m,m(z) = Lx. Then by (5) and (10), we
have j Fp_m,m(ζ) I ^ (I L, \/K?)(l - rfm on | ζ | = r < 1 which proves
the lemma in this case.

Thus we may assume d > 0. Since Hp_m>m(z) is a polynomial of
degree d ^ 1, we may write,

(17) H ^ m , m { z ) = B(z - a,) ••- ( z - ad) w h e r e 5 ^ 0 ,

and hence

(18) Hp_m,m(g(ζ)) = B(g(ζ) - a,) (flr(ζ) - ad) for | ζ | < 1 .

We partition the set of roots {aL, β ,αrf} of Hp_m,m(z) into three
classes and arrange them as follows: αly

 β , α 6 lie in the complement
of the closure of R; ab+1> , ac lie in R and αc+1, * , α d lie on the
boundary of i?, for some b and c with 0 ^ δ ^ c ^ d.
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We first consider any root ak, 1 ^ k ^ 6. Since ak lies in the
complement of the closure of R, the distance εk from ak to R is
strictly positive. But if | ζ | < 1 then g(ζ) lies in R so we have,

(19) |flf(ζ) - ak\ ^εk > 0 for | ζ | < l and k e {1, . , b} .

We now consider any root aj9 b + 1 ^ j ^ c. Thus α̂  e iϋ so
there exists t3- in the unit disk | ζ | < 1 such that g(tj) = α̂  . Let
5 = max {| tj \:b + l^j ^c} and let r0 = (1 + δ)/2. Thus <? < r0 < 1.
Let N be the image under g of the annulus r0 <̂  | ζ | < 1. Then no
αy (for b + 1 ^ j <; c) can lie in the closure of ΛΓ, for otherwise there
would be a sequence {ζn} with r0 ^ | ζn | < 1 such that {g(ζn)} —»^ .
By the continuity of gr1 we would obtain {ζΛ} —• ίiβ Since | ζn \ ̂  r0

for all n, we would then have | td \ ̂  r0 which contradicts | ίy | ^ δ
(since δ < n) Thus the distance ed from αy to ΛΓ is strictly positive
for j = b 4- 1, , c Thus for j e {b + 1, , c] we have

(20) I g(ζ) - aά I ̂  ε, > 0 for r0 ^ [ ζ | < 1 .

Finally, we consider any root αs, c + 1 <Ξ s ^ d, and we consider
the function G8(ζ) — (g(ζ) — α s )

- 1 defined on | ζ | < 1. Since as lies on
the boundary of J?, the equation g(ζ) = αs has no roots in | ζ | < 1 by
definition of the map g(ζ). Thus Gs{ζ) is analytic on | ζ | < 1 and is
univalent on | ζ | < 1 since g(ζ) is. Thus the function

Ψs(O = (Gs(ζ) - Ga(0)Ws(0)

is univalent and analytic on | ζ | < 1 and ^ s(0) = 0 while ^ί(O) = 1.
Thus by [1; Th. 17. 4. 6, p. 351], we have | ψ'8(ζ) | £ (1 + r)(l - r ) " 3 on
any circle ! ζ | = r < 1. Hence | Gi(ζ) | ^ 2 | Gi(0) | (1 - r)- 3 on | ζ | =
r < 1. But Gi(ζ) = -flf'(ζ)(flf(ζ) - αs)-2, so we obtain,

(21) i flf(ζ) - αs |
2 ^ (1 - 7'031 g%) |/2 | Gί(0) | on | ζ | = r < 1 .

But by (10), I g'(ζ) \ ̂  K2(l - r) on | ζ | = r < 1, where iΓ2 > 0. Thus
clearly,

(22) I flf(ζ) - αs\
2 ^ (iΓ2/2 I Gί(0) |)(l - r)4 on | ζ | = r < 1 .

Setting Mβ = (i?2/2 | GI(0) |)1/2, we have Ms > 0 and

(23) | f l r Q - α β | ^ i l f β ( l - r ) 2 on | ζ | = ?• < 1 for se{c + 1 , - ,d} .

Thus in view of (18), (19), (20) and (23), we obtain

(24) I Hp_m,m(g(0) I S KQ(1 - rf^ on | ζ | = r ,

when

r0 ^ r < 1, where Ko = \ B \ e, ecMc+ι Md > 0 .
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Now by (10), I g\ζ) \w ^ K?(l - r)~3m on | ζ | = r < 1, so in view of
(5) and (24), we obtain

(25) I Fp_m,m(ζ) I ̂  K*(l -r)° on | ζ | = r, when r0 rg r < 1 ,

where if* = Xo/ίΓΓ > 0 and σ = 2(d - c) + 3m ^ 0. This proves Lem-
ma i?.

Now 9>(ζ) satisfies the relation (4) in | ζ | < 1. We introduce the
notation M(r, φ) = max,^1=r | φ(ζ) | for r e [0, 1). We now prove,

LEMMA C. There exist real numbers A ^ 0 and r* e [0, 1) such
that for any re [r*, 1), we have M(r, φ) ^ exp ((1 — r)~A).

Proof. If M(r, φ) is bounded on [0, 1), then clearly the result
holds. Hence we may assume M(r, φ) is unbounded so M(r, φ) —•* + ©o
as r —> 1.

We proceed by contradiction and assume the lemma is false.
Then in the terminology of [4; p. 294], φ(ζ) is of order co in | ζ | < 1.
Let ΣJU Cjζj be the power series expansion of φ(ζ). For each r e [0, 1),
Let N(r) = max^01 c3- \ rj and n(r) = max {j: \ c5 \ rj — N(r)}. Then
since φ(ζ) is of order oo, by [4;p. 299], for any b e (0, 1), there is in
(0, 1) a sequence of values of r (called remarkable) tending to one,
such that

(26) log M(r, φ) > Y(n(r))b and n(r) > τ"( l - r)~δ

where d — (1 — δ)" 1 and 7', 7 " are strictly positive constants inde-
pendent of r, and such t h a t a t every point of \ζ\ = r a t which
I φ(ζ) I = M(r, φ) we have

(27) φ%) = (1 + G (ζ))(rc(r)/ζ)9>(ζ)

where ε(ζ) tends uniformly to zero as r = \ ζ | tends to one.
Let q be as in (6), so q > 0 by (7). Let σ be as in Lemma B,

so <7^0. Thus q + σ > 0, so 6 = (q + σ)/(<? + σ + 1) belongs to
(0, 1). It is for this value of 6 that we apply the Valiron theory
(26), (27). Then the corresponding δ = q + σ + 1, so

(28) δ > q + σ > 0 .

Let p and m be as in (15) and (16). Then clearly by (5),

(29) p = max {k + j : Fkj =£ 0} and m = max {i: JV-^ ^ °)

Now let r e (0,1) and let ζ be a point on | ζ | = r at which
= M(r, φ). Then φ(ζ) Φ 0 and so by dividing (4) through by
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(φ(ζ))p (and using (29)), we can write (4) as

(30) ±Fp_UQ(φ\Qlφ(QY = - Σ Fkj(ζ)(φ\ζ)/φ(ζ)y(φ(ζ))k+^ .
i=o k+j<P

We will denote the left side of (30) by Λ(ζ), and the right side by

We now assert that there exist real numbers L* > 0 and r* e (1/2, 1)
such that if r e (r*, 1) is a remarkable value, then

(31) I Γ(ζ) I ̂  L* (1 - r)-'(M(r, φ))~112

for any point on | ζ | = r at which | <£>(ζ) | = M(r, φ).
To prove (31), we note first that for remarkable r —> 1, we have

w(r) —̂  + oo by (26). Thus since M(r, φ) —> + c>o and ε(ζ) —• 0 for
remarkable r = | ζ | —> 1, we can choose r* e (1/2, 1) such that for
remarkable r e(r*, 1), we have M(r, φ) > 1, n(r) > 1 and | e(ζ) | < 1/2
whenever | ζ | = r and | φ(ζ) | = ikf(r, <p). Now let r e(r*, 1) be a
remarkable value and let ζ be a point on | ζ | = r at which | ̂ >(ζ) | =
Λί(r, φ). We refer to the right side of (30). If k + j < p, then
P ™ (k + j) ^ 1, so

(32)

Since | ε(ζ) | < 1/2 and | ζ | = r > 1/2, we have by (27) that

(33) \φ'(Q/φ(Q\£4n(r).

By Lemma A, there is a constant K* > 0 such that
E : * ( l - r ) - 5 for all (k,j). Thus by (32), (33) and the definition of
Γ(ζ), it follows that

(34) I Γ(ζ) I ̂  iΓ3(l - r)-'(n(r))'(M(r, φ))~ι

where K3 > 0 and 6> ̂  0 are constants (independent of r) . But by
(26), Y(n(r))b < log M(r, φ), so by (34),

(35) I Γ(ζ) I ̂  L*(l - r)-«(log M(r, ^))^δ(M(r, ^ ) ) ^

where L* > 0 is a constant (independent of r) . But since M(r, 9?) —> + 00
as r —> 1, clearly there exists r ' e (0, 1) such that if r e (r', 1), then
(logΛf(r, φ))θlb < (M(r, φ))ι>\ Setting r* = max {r*, r'}, we see that
(31) follows from (35).

We now consider Λ(ζ) =

Case I. m = 0. Then Λ(ζ) - ^ ^ ^ ( ζ ) . By Lemma B there
exist constants JKΓ* > 0 and r0 e (r*, 1), such that on any circle | ζ | = r
where r e (r0,1), we have
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(36) I Λ(ζ) I - I FP_M(O I ̂  K\l - ry .

Since Λ(ζ) = Γ(ζ) (by (30)), we have by (31) and (36) that for all
remarkable r e (r0,1), K\l - r)σ ^ L*(l - r)-q(M(r, φYι{1 and hence

(37) (1 - τ)^+σ)M(τ, φ) ^ (L*/iΓ*)2 .

But by (26), there exist constants 7' > 0, 7" > 0, independent of r,
such that log Λί(r, 9?) > 7'(7")δ(l - r)~bδ. Hence with (37), we see
that for all remarkable r e (r0,1),

(38) (1 - r)2 (*+ σ ) exp (7(1 - r)~M) ^ (L*/K*)2

where 7 = 7'(7")6 > 0. Since 6δ = q + σ > 0 (by (28)), it is clear that
(38) is impossible since the left side of (38) tends to + co as r —• 1.
This contradiction proves Lemma C in the case m — 0.

Case II. m > 0. Since s(ζ) (in (27)) tends to zero as r = | ζ | —• 1,
we can choose τγ e (0, 1) such that for any remarkable r e (r19 1), we
have I ε(ζ) | < 1/2 for those points ζ on | ζ | = r at which | φ(ζ) \ —
M(r, φ). Hence for those ζ, v/e have by (27),

I ζφ%)ln(r)φ{ζ) I έ 1 - I e(ζ) | > 1/2 .

Since | ζ | < 1, we have \φ'(ζ)/φ(ζ)\ > n(r)/2 and so by (26), we have

(39) I φ%)lφ(Q I > (7"/2)(l - r)-δ where 7" > 0 .

We now assert that there exists a constant Ko > 0, such that
for all sufficiently large remarkable r, we have

(40) I Λ(ζ) I S X 0(l - r)°-">

at all points of (ζ | = r at which | ^(ζ) | = M(r, φ).
To prove (40), we consider the quotients,

Qs(ζ) = {F^j,j(ζ){φ\ζ)lφ{ζ)y)l{F^mAQ(ψ%)lψ(Q)m) ,

for j = 0, 1, , m — 1. By Lemma A, there is a constant K* > 0
such that I Fp_jtj(ζ) \ g K*(l - r)~9 on any circle | ζ | = r < 1, for all
i , while by Lemma B? there is a constant K% > 0 such that for all
sufficiently large r e (0, 1), we have

(41) I F^m,m(O I ̂  K\l - ry on | ζ | = r .

Thus, with (39), we see that for j = 0, 1, , m — 1, there is a con-
stant Lj > 0 such that

(42) I Q,.(ζ) I ^ L y(l - r ) ( w - J ) β- ( ί + β )
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for all sufficiently large remarkable r and all points ζ on | ζ | = r at
which I φ(ζ) I = M(r, φ). Since (ra - j)δ ^ δ > q + σ (by (28)), we see
that the right side of (42) tends to zero as r -> 1, so for all sufficiently
large remarkable r, we have

(43) I Qs(ζ) I ^ l/(m + 1) for i = 0, 1, - , m - 1,

at all points on | ζ | = r at which | <̂ >(ζ) | = M(r, φ). Now by definition
of Λ, we have

Λ(ζ) = Fp_m,m(Q(φ'(ζ)/φ(ζ)r(l + Σ'Q/ίC)) .

and so by (43), we have

(44) I Λ(ζ) I ^ (l/(m + 1)) | Fp_m,m(Q(φ'(Q/φ(Q)m !

for all sufficiently large remarkable r and all points ζ on | ζ | = r at
which I φ{Q I = M(r, φ). Now it is clear that (40) follows from (39),
(41) and (44).

Since F(ζ) = Λ(ζ) (by (30)), we have by (31) and (40) that for all
sufficiently large remarkable r, K0(l - r)°-m5 ^ L*(l - r)-ff(ilί(r, ^))~1/2,
and so

(45) (1 - r)2{q+σ-mδ)M(r, φ) ^ (L*/iΓ0)
2 .

But by (26), log M(r, φ) > 7'(τ")6(l ~ r)~bδ (where 7', 7" > 0), and
so for all sufficiently large remarkable r, we have

(46) (1 - r)2«+o-mδ) exp (7(1 - r)~hδ) ^ (L*/iΓ0)
2

where 7 = 7'(7';)& > 0. Since bd = q + σ > 0 (by (28)), it is clear that
(46) is impossible, since the left side of (46) tends to + °° as r —> 1.
This contradiction proves Lemma C in Case II, and thus the proof of
Lemma C is complete.

We now conclude the proof of the theorem. By Lemma C, there
exist constants A ^ 0 and r* e [0, 1), such that if r e [r*, 1), then

(47) I φ(ζ) ! ^ exp ((1 - r)~Λ) on | ζ | = r < 1 .

Let X be the image under g of the closed disk | ζ | <̂  ?̂ >::. Then X is
a compact set contained in R. If ^ e R — X, then we have
T* < i/(^) I < 1 (since / = g~ι), and so by (47), we have

(48) I φ(f(z)) I ^ exp ((1 -

But ω = h°g (by (3)) and so A(̂ ) = φ(f(z)). Thus
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^ exp ((1 - \f(z)\)-Λ)

if zeR — X, which concludes the proof of the theorem.
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