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LINEAR EIGENVALUES AND A NONLINEAR
BOUNDARY VALUE PROBLEM

E. M. LANDESMAN AND A. C. LAZER

In this paper a nonlinear boundary value problem for
elliptic partial differential equations is considered. The princi-
pal result generalizes a previous result on a two point bound-
ary value problem for a nonlinear second order ordinary
differential equation. The solvability condition obtained for the
nonlinear problem is related to the eigenvalues of an associated
linear problem.

In [5] the second author and D. E. Leach considered the two point
boundary value problem

u" + p(x, u, u')u = h(x, u, vf)
(1.1)

u(0) = α, u(π) = b .

It was shown that, if for some integer N there exist numbers 7^
and yN+1 such that

N2 < yN ^ p(x, s, r) ^ yN+1 < (N + I)2 ,

if p(x, s, r) and h(x, s, r) are continuous on [0, π] x (— oo, oo) x (— oo, oo),
and h is bounded, then the problem (1.1) has at least one solution.

In this paper we consider the ^-dimensional analogue of the
problem (1.1) which is

(1.2) An + p(x, u,—,-- , - ^ - V = λ ί α , %,—,•••,—
V dx1 3xn / \ dXi 3xn

u(x) — g(x) on 3D ,

where D is a domain in Rn and A is the ^-dimensional Laplacian.
The corresponding result is that if D is a Dirichlet domain, if there
exist numbers yN and yN+1 such that

aN < yN ^ p(x, t,s19 , sn) ^ ΎN+1 < aN+1 ,

for (x, t, sly , sn) e D x Rn+1 where

a, ^ a2 ^ . ^ aκ ^ aκ+1 ^ ,

are the eigenvalues of the problem

(1.3) Δu + an = 0, u = 0 on 3D ,

if p(x, t, s19 , sΛ), /̂ (α;, ί, slf , sΛ) are continuous and h bounded on

311



312 E. M. LANDESMAN AND A. C. LAZER

D x Rn, then for any continuous g(x) there exists a function v con-
tinuously differentiable on D with v(x) = g(x) on dD which satisfies
(1.2) in the distribution sense.

With the exception of the Schauder fixed point theorem the
methods used in [5] were very elementary. The methods in this paper
are similar to those of [5] but rely strongly on the spectral theory of
symmetric completely continuous operators and variational properties
of eigenvalues.

In the second section we consider the linear homogeneous problem

(1.4) Lu + p(x)u = h(x), u = 0 on dD

where L is a strongly elliptic self adjoint operator and D c Rn is an
arbitrary domain. Under suitable conditions on p and h we obtain
an a priori bound for solutions of (1.4).

Using this result and Schauder's method we obtain an existence
theorem for the problem

(1.5) Lu + p(x, « * . . . , J H . V = h(x, u, * • • , - !
\ uX^ OXn / \ uXi OXn

u — 0 on dD .

The aforementioned result follows quickly from this theorem.
A special case of our principal result follows in a straight-forward

way from a result on Hammer stein integral equations due to C. L.
Dolph [4]. Namely, if F(x, t) is continuously differentiable in t and
x and continuous for (x, t) 6 D x R, if h(x) is continuously differentiable
on D, and

aN < ΊN ^ —(x, t) ^ 7iV+i < aN+ι
ot

then the problem

(1.6) Δu + F(x, u) = h(x), u = g on 3D ,

g continuous, has a unique solution in the classical sense.
To see that this problem is included in the problem (1.2) we note

that the differential equation can be written

Δu + p(x, u)u = h(x), where

S
1 3W ^

(x, su)ds, h(x) = h(x) — F{x, 0) .
o at

Clearly ΎN £ p{x, t) ^ 7^+1.

2* Preliminaries* In this section we recall briefly results con-
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cerning elliptic differential equations, completely continuous operators,
and variational properties of eigenvalues in forms applicable to our
problem. We also give an auxiliary lemma which is applied in the
next section.

Let D be a bounded domain in Rn. In the following L will denote
a second-order, self adjoint, strongly elliptic differential operator in-
volving only principal part. That is, a formal expression

where for ί, j = 1, •••,%, aij = aji is a real valued function bounded
and measurable on D and there exists a constant c > 0 such that for
all xeD

(2.1) Σ Σ

for arbi trary real numbers fx, •••, fn.

Let Ho denote real L2(D) and if /, g e Ho let

</, >̂o = ί fgdx .
JD

More generally if p is a real measurable function defined on D
such that there are numbers δ > 0 and z/ with

(2.2) 0 < 3 ^

for all xeD, let

Clearly <( )>0,p defines an inner product on Ho which induces the
same topology on Ho as < , >0.

Let Cx denote the inner product space of real continuously dif-
ferentiable functions defined on Rn and having compact support con-
tained in D with real inner product given by

for u, veCx. Let B be the symmetric bilinear form defined on Cx by

JD i = ί i = l \ dXi / \ OTy /

The boundedness of the αί:f, the strong ellipticity condition (2.1), and
Poincare's inequality [1, p. 73] imply the existence of positive constants
K19 K2, and Kz such that for all ueCι
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(2.3) K^u, u>0 ^ B(u, u) ,

(2.4) K2<(u, u\ ^ B(u, u) ^

o

Let Hx denote the real Hubert space obtained by completing CΊ with
o

respect to < , X It is known that the underlying space of HL may

be assumed to be a subset of Ho ([1, p. 2]). The quadratic form B

may be extended by continuity to Ht and as a consequence of (2.4)

defines an inner product on H1 which induces the same topology on
JBΊ as < , >lβ

The following definition connects the operator L and the quadratic
form B: Let feHQ. A weak solution of the boundary value problem
(2.5) Lu= - / , u = 0 on 3D

o

is a member v of i/Ί such that

(2.6) B(φ, V) = ζφ, /> 0

o

for all φeHλ. This definition is motivated by multiplying (2.5) by a
member φ of Cγ and formally integrating by parts. The additional
condition v — 0 on 3D "in a weak sense," is interpreted simply to

o o

mean v e i?!. Since the linear functional Lf defined on Hι by Lf(φ) =

<9?, /X is continuous, by (2.3), it follows by the Riesz-Frechet theorem

that there exists a unique v e Hι such that l?(<p, v) — Lf(φ) = ζcp, /X
o

for all φeH^ Hence there exists a unique weak solution of (2.5).
More generally if p is a function which satisfies a condition of

o o

the form (2.2) and f^H^ then the linear functional LPff defined on H^
o

by LPtf(φ) = <(<p, /X,p is continuous so there exists a unique Γ p / e fi^
such that
(2.7) B(φ, TJ) - L p > / M = <?>, />O f P

for all 9?G JHΊ. This defines a linear map Tp: HQ—»Ht but since H^HQ
we may consider Tp as a linear map from Ho into Jϊo As a conse-
quence of (2.2) and (2.3) it follows that Tp is continuous and maps

o

bounded subsets of Ho into bounded subsets of H^ Thus, by Rellich's
selection principle [1, p. 30], Tp: Ho-+Ho is completely continuous.
Moreover Tp is symmetric and positive with respect to the < , \ p

inner product. Indeed, if /, g e HQ, then by taking φ to be Tpf and
Tpg in (2.7) we obtain

rXfP - B(Tpf, Tpg) - E ( T ^ , Tpf)

= <Tpg, />O i P = </, Γpflr>OfP .

If for some fe Ho, Tpf = 0 then <cp, />0,p = 0 for all φeC, and since
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Cx is dense in Ho, f = 0. Thus if feH0 it follows from (2.7) by tak-

ing φ = TJeH, that <Γp/,/>O f P - B(Tpf, TJ) so

(2.8) <JJ, />OfP > 0 if fΦO.

Applying the results of §93 and §94 of [7] to Γ^ we infer the
existence of a sequence of real numbers {λ/c}Γ and a sequence {φk}? in
HQ such that:

(2.9) φk = XkTpφk

(2.10) <pk, φs\p = δkj =

(2.11) TJ =

for all feHOί and it μ Φ Xk for all A = 1, 2 the mapping [7—
iJ0 —> Ho is bijective and has a continuous inverse defined by

(2.12) [I - μTp\-ιg = g jt <M^h
χk — μ

Moreover, the sequence {λk} has no finite cluster point so we may
assume by (2.8) that

(2.13) 0 < λx ^ λ2 ^ . . g λfc ^ λ,+1 ^ . .

Using (2.7) and (2.9) we obtain

o

for all θ G Ή.γ Hence, for each k = 1, 2, ••-, ^ is a nontrivial weak
solution of the boundary value problem

Lu + Xkp(x)u = 0, % = 0 on 3D .

We therefore call Xk a weαfc eigenvalue corresponding to p.
In the following we will want to consider different functions

which satisfy a condition of the form (2.2) so henceforth we write
λfc = λaίp), k = 1, 2, .

A result in §93 of [7] and (2.8) implies that the sequence {φk}?
is complete in Ho so ParsevaΓs formula

(2.14) (/,/)O,P = Σ < / , 9 > * X P

holds for all feH0. We now derive a similar identity involving the

space fli. and the inner product U.
Using (2.7), (2.9), and (2.10) we have
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B(φh, φs) = B(Xk(p)Tpφk, φά) = Xk(p)<tpk, <ps\p = Xk(p)δki

________ o

which shows that the sequence {(l/VXk(p))φk}T in H1 is orthonormal

with respect to the inner product B. If for some θ e HXi B(φk, θ) = 0

for all k then by (2.7) and (2.9),

<<Pk, Θ\P = 0 for all k ,

so θ = 0. Thus the sequence {(l/\/Xk(p))φk} is complete in Hx and by
ParsevaΓs formula

B(θ, θ) = ±

Using (2.7) and (2.9) we may rewrite this in the more convenient form

(2.15) B(θ, θ) =

The identities (2.14) and (2.15) together with (2.13) now yield the
following variational characterization of the weak eigenvalues in terms
of the inner products B and <( >„,„:

\(p) = m i n { B ( θ , θ)\θeHu <θ, θ>OίP = 1}
(2.16)

W P ) = min j
\<Θ,<P\, = 0;j = l,

Indeed if θ e Hit <θ, (?>„,„ = 1 and <θ, φ3\p = 0 for all j = 1, , k
then by (2.13), (2.14) and (2.15)

B(θ, θ) = Σ

while B(φk+ι, φk+1) = λfc+1. The verification of the first identity in
(2.16) is similar.

The proofs of the following two lemmas are essentially the same
as the proofs given for similar results in [2, Chapter 6].

L E M M A 2.1 (Courant). If for v19 - *,vk in Ho one defines

.- . , vk) - inf
[<β> vJ>o,p = O i = 1, •••, k

then

= sup .
( j = 1, •••, k
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Proof. Since we have established above that Xk+1(p) = μk(p)(φlf

• , <pk) we need only show that for arbitrary v19 , vk e Ho

(2.17) μk(p)(vlf , vk) S \k+1(p) .

Given vlf , vk e Ho let cjy j — 1, , k + 1 be numbers such that
Σ*iϊ c/<p, vχ9 = 0 for i = 1, , k and Σ J ί ϊ cj = 1. If β = Σ J ί ί c^y
then <0, ^X,,, = 0; i = 1, - , A; and <β, ^>0>p = 1. Thus from (2.15),
μk(p)(vί9 , vh) ^ B(θ, θ) = Σ*ί ί cj λ^p) ^ λ fc+1(p)ΣJίί c) = \k+1(p).

This proves (2.17) and hence the lemma.

LEMMA 2.2. If p and q are two real measurable functions de-
fined on D each of which satisfies a condition of the form (2.2) and
if for all xe D

(2.18) p(x) ̂  q(x)

then

(2.19) \ (q) ^ λjiP); 3 = 1, 2,

Proof. If v e Ho let

(2.20) v(x) = (q(x)/p(x))v(x) .

Let v19 , vk e Ho be arbitrary, k ^ 1. We assert that

(2.21) μk(q)(v19 , v k ) ^ μ k ( p ) ( v 1 9 • • • , % ) .

To prove this inequality we note that if ε > 0 it follows from the

definition of μk(p)(vί9 , vk) that there exists θ e Ht such that

<0, θ\p = 1, <θ, vχp - 0; j = 1, . . . ,&, and

(2.22) J?(0, β) ̂  ^ ( p X ^ , , vk) + ε .

If θ* = (l/l/<<?, 0>o,ff)0 then using (2.20) we obtain

<^% î>o,ff = <<?*, vXP = 0; i = 1, . . , ft .

Consequently, since ^ * , #*X? = 1, we have the inequality

(2.23) μk(q)(v» ~, vk) ^ B(θ*, θ*) .

Since B(θ*, θ*) = (1/<Θ, θ>OfQ)B(θ, θ), and

1 ^ <θ, θ>0,p - ί p^ 2 dτ ^ ί ^^ 2 ώ; - <β, θ\q ,

θ*) £ B{θ, θ) .

Combining this inequality with (2.22) and (2.23) we obtain
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t*k(Q)(Vi, •> *»*) ̂  μk(p)(vlf , vfc) + ε ,

and since ε > 0 is arbitrary (2.21) follows.
Now as v ranges over all elements of HQ, v ranges over all ele-

ments of Ho and conversely. Hence for k ^ 1, Lemma 2.1 implies

Xk+1(q) = sup .

b = l, •••, A

= S U P 1

b = 1,
sup I .

and this proves (2.19) for j ^ 2. The proof for j = 1 follows from
the first identity of (2.16) and an argument similar to that given
above.

In the following lemma the sequence {ak}T will be defined by

(2.24) ak = λΛ(l) fe = 1, 2,

so that each ak is a weak eigenvalue for the problem

Lu + Xu — 0, 16 = 0 on 3Z> .

We let ΊN and 7̂ +1 denote fixed numbers such that for a fixed integer N,

(2.25) aN <ΎN< ΎN+1 < aN+1 .

will denote the set of functions p, measurable on D,
such that

(2.26) yN ^ p(x) ^ 7N+1 for all x e D .

LEMMA 2.3. If heHQ and pe^(yN, yN+1) there exists a unique
weak solution of the boundary value problem

(2.27) Lu + pu = h, u = 0 on 3D .

Moreover there exists a number M, independent of p e
if v denotes this weak solution then

(2.28) B(v, v) ^

Proof. The condition that v be a weak solution of (2.27) is

equivalent to the condition that for all φ e fli.

β(9>, v) = <^, pv - h\ = (φ,v - h/p>0>p

or by (2.7) that
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(2.29) [I - T,]v = Tp[-h/p] .

By (2.12) this equation can be solved uniquely for v provided that

(2.30) Xh(p) Φ 1 for all k = 1, 2, . .

From the inequality (2.26) and Lemma 2.2 we have

(2.31) λ*(7*+ι) ^ λ*(?>) ^ λ*(7w), k = 1, 2, .

Clearly, for all k = 1, 2, ,

M 7 ) λ ( l ) ^

and hence from (2.25),

(2.32) \(p) ^ λ2(p) ^ ^ \N(p) ^ λiV(7iV) - -^-

< K - ^ ^ = λ^+1(7lV+1) ^ λlV+1(|?) ^ λjV+2(p) ^ -

Thus, if

δ = min Γl - ^- , - ^ ± L - l l ,

then for all pε^(μN, μN+1),

(2.33) |λfc(p) - 11 ^ 5 for all ft = 1, 2, .

Consequently, (2.29) has a unique solution which by (2.11) and
(2.12) is given by

v = u- τj- ιτ,[-A] = τP[i~ ΓJ

Hence, from (2.15) and (2.33) we have
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MP) - l
Σ <-

Since the function t/(t — 1) is increasing for t < 1 and decreasing
for t > 1, the inequalities (2.32) together with the last inequality and
ParsevaFs identity (2.14) yield

where

L = max α * ' y * , a 7 l / 7 i y + 1 .
L I - a /̂7tf aN+1/7N+1 - 1 J

Thus if M = L/7Nδ, then Af is independent of p e ^ ( τ f , T f + λ and
since

^ g ( h*dx
P )

we obtain (2.28). This proves the lemma.

3* A nonlinear problem. In this section 7N and τΛ +i will
have the same meaning as in Lemma 2.3. We will assume that
p(x, r, slf , sn) and h(x, r, sx, , sn) are real valued functions de-
fined and continuous on B x Rn+\

(3.1) j N ^ p(x, r, sίy , sn) ^ 7N+1

for all (x, r, sί9 , s%) e f l x i2%+1, and for some constant L

(3.2) Ifcfor,^, . . . , s n ) | ^ L

on 5 x i2Λ+1.

THEOREM 3.1. Under conditions (3.1) and (3.2) ίfeere e.τίsίs α
weak solution of the boundary value problem

(3.3) Lu + p(x, u,^L,. , J?L)u = h(x, u, d u

dxί dxn / V dxt dxn

u = 0 on 3D .

(Here (du/dxk), k = 1, •••, n denote the strong L2(D) derivatives of u,
i.e., there exists a sequence {um} in Cx such that

\u - um\0-+0,
du

dxk dxJc

0, k = 1, , n
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as m

To prove Theorem 3.1 we use the well-known Schauder method
and two auxiliary lemmas.

If weHu then by (3.1) and (3.2)

pίXf w , t o m 9 m t o \ e 0{ΎN9 )f hf
V dxx dxn / V

and

hlx, w, dw dw
dxι ' ' dxn

^ R = U meas D .

Therefore by Lemma 2.3 there exists a unique w* e Hι such that
is a weak solution of the problem

(3.5) Lu + pίx, w, ψ-t • -,-to-)u = h(x,
\ x ox / \ ox1 oxn

u = 0 on 3D .

Furthermore, we have by (2.28)

(3.6) B(w*, w*) ^ MR for all w e H, .
o o o

We define a mapping G: i?! —* H1 such that for w e Hly G{w) — w*
o o

is the unique H1 weak solution of (3.5). It S = {ue H^Biu, u) <̂  Mi2}
o

then since B is an inner product on Hx which induces the same to-
o

pology on Hι as < , X, S is a closed, bounded, and convex subset of
Hv Now according to (3.6), G(S) S S, so if it can be shown that G
is a compact mapping and that G is continuous then by Schauder's

o

theorem ([3, p. 131]) there exists a veHx such that G(v) = v. Con-
o

sequently v is a weak Hι solution of (3.5). Accordingly, Theorem
(3.1) will follow from the next two lemmas.

LEMMA 3.1. The mapping G is compact.

LEMMA 3.2. The mapping G is continuous.
o

To prove Lemma 3.1 we show that if {um} is any sequence in H^
then there exists a subsequence {G(umjc)} of {G(um)} which converges
in the Hλ norm defined by the B inner product. Suppose then that
{um} is such a sequence. For convenience we set

^mi — y ' ' i —

dx1 dxn

- v ι τ u dUm . . . dUm

OJuι OJUn
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Using (2.3), (3.1), (3.2) and (3.6) and setting r = Li/meas D +
7N+1VMR/Kί we obtain the inequality

(3.7) I / J o ^ r

valid for all m = 1, 2, . By the way fm is defined, uZ = G(um) is
the weak solution of the problem

Lu = —/m, u = 0 on 3D ,

and hence

(3.8) B(φ, u*) = <φ, / w > 0 for all

By (3.6), B(uί, u*) ^ MR so by (2.4) the sequence {ul} is bounded
in the H1 norm. Using Rellich's selection theorem ([1, p. 30]) we
infer the existence of a subsequence {uZk} of {u%} which converges in
the Ho norm.

From (3.8) it follows that for arbitrary integers p and q and

arbitrary φ e H19

tj\CP. UZ, — U™ ) = = \.CD* f — / ™ /n .
\ T ' ""nig "Mj,/ \ r ' J ™<q J »ip/u

Thus, taking φ = uZq — uZp in the above and using the Schwartz
inequality and (3.7)

Thus, since the sequence {uZk} is Cauchy with respect to the | |0
norm, it follows from (2.4) that {̂ * } is Cauchy with respect to the

o o

Hx norm and hence converges to a member of Hλ. This proves
Lemma 3.1.

The proof of the continuity of the mapping G is less straight-
forward. We will first show that regarded as a map from Hι —* Ho, G
is continuous and then apply an argument similar to that given above.

PROPOSITION 3.1. The mappings

(3.9) u->

and

(3.10) u-+h(x,u, d u d u

dx1 dx
o

from H1 —* Ho are continuous.

Since the proofs of both assertions are similar, we only prove one.
o o

Let {um} be a sequence in Hι and u a member of Ht such that



LINEAR EIGENVALUES AND A NONLINEAR 323

J -DL k = ί \ (JXJ. OXh ' —*

a s m —•• co. Choose ε > 0 and define

R(ε) = Ux, t,βi, , 8 . ) e S x Λ"+11 £2 + Σ 4 ^ -VI
I *=i ε 2 J

By the compactness of i2(ε) there exists a number δ > 0 such that

1 Ύl(Ύ / Q # C ^ Ύ\(Ύ / ' θ ' • Q ' ^ I <Γ C

if (x, ί, sx, sw) e iϋ(ε) and

( ί - ί T + Σ ί β i b - s ί ) 2 ^ ^ .

Let

+ Σ

Λ=I dxk

and for each integer m define

5.(a) = \xeD\(u(x) - um(x)Y + ± (ψl - %^>V > A .
I A=I V dxk oxk / J

Since,

\ meas A(e) ^ ί \u{xf + Σ ^
εl jA(ε)[_ k = l O

meas A{ε) ^ ε2|^|? ,

and in a similar manner we obtain the estimate

meas Bm(δ) ^ (W)\um - u\l .

For convenience we set

(3.11)

) \
um{X), — , , — l .

3a;,. dxn J

If xeD - (A(e)uBm(δ)) then \p(x) - pm(x)\2 ^ ε2, so by the above

\p-pm\l^ \ \P-Pm\2dx+ \ \p~pm\2dx

^ ε2 meas [D - (A(e)\jBJδ)] + 4γ^+1 meas [A(e)uBm(δ)]

^ ε2 meas D + 4a*κ
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This shows that

lim \p — pm\l fg ε2[meas D + 47^+i|%i|2]

and since ε > 0 is arbitrary, limm^oo\p — pm[l = 0. This proves the
continuity of the mapping defined in (3.9) and the proof for (3.10) is

o

similar. In a similar manner one proves that the mapping from H1 —> HQ

defined by

du _ du

(3.13)
> ,

is continuous.

PROPOSITION 3.2. Let {pm} be a sequence in ^(ΎN, ΎN+1) and suppose
\pm - P\o~-+O as m-+ oo for some pe ^(jΔr, yN+ί). If {T$J and T$
are the operators defined by (2.7) then T$m converges strongly to T-py

i.e., I T*mw — Tpw\Q-+0 as m-^oo for each w e Ho.

Proof. According to (2.7) if we Ho and φeHι then

B(φ, TPW — Tp w) = \ (pm — p)wφdx .

Now lim^eol j3m — ^ |g = 0 implies that pm converges to p in measure.
Thus, since \(pm{x) — p(x))w(x)φ(x)\ ^ 2yN+1\w(x)φ(x)\ and wφeL1(D)f

by the strong form of Lebesgues' dominated convergence theorem [6,

p. 149], limm_*col (pm - p)wφdx = 0. This shows that T$w-+ T$w as
JD o

m —•> co weakly in Hι and hence by Rellich's theorem \imm_yooT^mw— T%w
strongly in HQ.

PROPOSITION 3.3. The mapping u—>G(u) is continuous from

Proof. If p e & \ Ί N , 7^+1) ^ \\TP\\Q and || TP\\O)P denote the norms
of Tp: HQ -+ Ho relative to the inner products < , X and < , >0,p re-
spectively. The identity (2.11) and Lemma 2.2 gives the inequality
II Tp\\OtP ^ l/XL(p) ^ 1/^(7^,). Similarly (2.12) and (2.33) give

in/- τPn,P^i + i/δ.

Therefore from the inequality ζw, wyi ^ lliNζw, wy0}P valid for any
w e Ho, we have the estimates

(3.14) II Tp Ho
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(3.15) || [I - T,]-11|0
o o

Let ueH1 and suppose {̂ m} is a sequence in iϊi such that
\u — ww|i~~>0 as m-+oo. Let p and j3m be defined as in (3.11),
(3.12) and set

ί -hίrv du™ . . . 3 * M h - h ( r u

Let u* = G(u) and uZ = G(um). For each m, ^* is the weak solution
of the boundary value problem

Lv = -(pmuZ - hm), v = 0 on 3D

so for arbitrary φeH19

B(φ, ut) = <cp, p m ^ : - /̂ m>o = <φ, nl - hjpm>o>£m

and hence

ut - Γ ίm[< - hjpj ,

From the equation

u*-u* = Ttju* -u*] + [Ti

+ Ttjhjpm - h/p]

we obtain

= [I- TtJ-\Ti - TiJ[u* - h/p] + [I - T^]-^JhJpm

Therefore by the estimates (3.14), (3.15) we have

\u*-u*\o^ A2\(Tt - Tim){u* - h/p)\0

+ A1Aγ\hm\pm - h/p\0 .

By Propositions 3.1 and 3.2,

- Tim)(u* -h/p)\0^0 as m — - ,

and by the remark following the proof of Proposition 3.1,

I hjpm - hip |O —> 0 as m -* oo .

This concludes the proof of Proposition 3.
Lemma 3.2 now follows easily. Let u and the sequence um be as

above. Define fm = hn- pmut, f = h - pu*. From (3.7) |/w |0 < r,
|/|0 ^ r. Referring to the proof of Lemma 3.1 we see that for any
φeH,

B(φ, U* - Ut) =ζφ,f- /m>0 ,
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so by taking φ — u* — w* we have

B(u* - u*, u* - ut) = <u* -u*,f- /m>0

£ 2\u* — um\or .

By Proposition 3.3, 2?(u* — u%, u* — uZ)-+0 as m —> oo. This proves

the continuity of G:Hι—>H1 and concludes the proof of Theorem 3.1.

4* Smooth solutions of an inhomogeneous problem* In this
section we will assume that D czRn is a Dirichlet domain and L = A
where A is the ^-dimensional Laplacian.

If / is continuous on D and has continuous partial derivatives on
D, then the weak solution of the problem

(4.1) An = -f(x), u = 0 on 3D

is actually a solution in the classical sense and can be represented
in the form

(4.2) u(y) = \ G ( x , y)f(x)dx, y e D ,

where G is the Green's function for the problem (4.1).

THEOREM 4.1. // p and h satisfy the conditions (3.1) and (3.2)
of Theorem 3.1 and g is continuous on 3D, then there exists a weak
solution v of

(4.3) An + pU * , - ! * . . . , - ^ > = h(x, tt| JJM-, ..., *

such that v has continuous derivatives on D and

(4.4) v(x) = g(x), xedD .

Proof. Since D is a Dirichlet domain there exists a function w
such that w is continuous on D, Aw = 0 on Z), and w(α ) = ^(^) on
32?. If

P(x, t, s19 , sn)

( 4 ' 5 ) = j»(«f t

ίf(α;, ί, sx, , sn)

= h(x, t + w(x), 8ι

(4.6)
— P(x, t, s19 , sn)w(x) ,
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then P and H will satisfy conditions of the form (3.1) and (3.2).
o

Consequently, by Theorem 3.1 there exists a weak Hί solution
V of

Δu

We assert that if y e D,

(4.7) F(τ/) - ( G(x, y)F(x)dx
JD

where as in (4.2), G is the Green's function and

o

Indeed, V is the weak Hι solution ot Au = —F so V = TJ? where
T1 is defined by (2.7). If / is continuously differentiate on D then
by (4.2) for yeD

(TJ)(y)= G(x, y)f(x)dx .
JD

o o

Now if / is merely in L2(D), the operator S: Hι —> Hι defined by

(Sf)(y) = G(x, y)f(χ)dx
JD

is continuous. Therefore, since S and T1 agree on a dense subspace
of L2(D), ϊ\ = S, whence (4.7) holds.

From the representation (4.7) and the fact that F is in L°*{D),
it follows by standard arguments of potential theory that V has con-
tinuous derivatives and vanishes on the boundary of D. Setting
v = V + w we see that v satisfies the assertion of Theorem 4.1.
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