PROJECTIVE DISTRIBUTIVE LATTICES

RAYMOND BALBES AND ALFRED HORN

It will be shown that a countable distributive lattice is projective if and only if the product of any two join irreducible elements is join irreducible, and every element of the lattice is both a finite sum of join irreducible elements and a finite product of meet irreducible elements. For an arbitrary distributive lattice, necessary and sufficient conditions for projectivity are obtained by adding to these conditions a further condition on the set of join irreducible elements.

- 1. Definitions. We use sum and product notation for least upper bounds and greatest lower bounds. If A and B are meet semilattices, then a meet homomorphism $f:A\to B$ is a function such that f(xy)=f(x)f(y). An element x of a lattice is called join irreducible if x=y+z implies x=y or x=z. x is called sub join irreducible if $x\le y+z$ implies $x\le y$ or $x\le z$. In a distributive lattice these two notions coincide. We define meet irreducible and super meet irreducible in a dual manner. A lattice is called conditionally implicative if whenever $x\not\le y$ there exists a largest z such that $xz\le y$. The smallest and largest element of a lattice are denoted by 0 and 1 respectively. The cardinal of a set S is denoted by |S|. For definitions of projective distributive lattice and retract, see [1]. Note that epimorphisms are understood to be homomorphisms which are onto. If the term epimorphism is used as in the general theory of categories, there are no projective distributive lattices.
- 2. Projective distributive lattices. Consider the following properties of a lattice.
- (P1) Every element is a sum of finitely many sub join irreducible elements.
- (P2) Every element is a product of finitely many super meet irreducible elements.
- (P3) The product of any two sub join irreducible elements is sub join irreducible.
- (P4) The sum of any two super meet irreducible elements is super meet irreducible.
 - (P5) The lattice is conditionally implicative.
 - (P6) The lattice is dually conditionally implicative.

THEOREM 1. Suppose A and B are lattices and A is a retract of B. Then we have:

- (i) If B satisfies (P1), then A satisfies (P1).
- (ii) If B satisfies (P1) and (P3), then A satisfies (P4).
- (iii) If B satisfies (P5), then A satisfies (P5).

Proof. By hypothesis, there exist homomorphisms $f: B \to A$ and $g: A \to B$ such that $fg = I_A$. Suppose B satisfies (P1). Let x be any element of A. Then $g(x) = \sum (S)$, where S is a finite nonempty set of sub join irreducible elements of B. Let T be the set of maximal elements of the set f(S). Then $x = \sum (T)$, and we claim that every element a of T is sub join irreducible. Suppose $a \le u + v$ but $a \le u$ and $a \le v$. We have a = f(b) for some $b \in S$. Then

$$b \le g(x) \le g(u) + g(v) + \sum (g(T - \{a\}))$$
.

Hence $b \leq g(u)$, or $b \leq g(v)$, or $b \leq g(c)$ for some $c \in T - \{a\}$. Applying f, we find $a \leq u$, or $a \leq v$, or $a \leq c$. This contradicts the maximality of a.

Suppose B satisfies (P1) and (P3). Let a_1 and a_2 be super meet irreducible in A. Suppose $a_1+a_2\geq a_3a_4$ but $a_1+a_2\not\geq a_3$ and $a_1+a_2\not\geq a_4$. We have $g(a_3)=\sum (S)$ and $g(a_4)=\sum (T)$, where S and T are finite sets of sub join irreducible elements of B. Hence $a_3=\sum (f(S))$ and $a_4=\sum (f(T))$. There exists $x\in S$ and $y\in T$ such that $f(x)\not\leq a_1+a_2$ and $f(y)\not\leq a_1+a_2$. Now $xy\leq g(a_3)g(a_4)\leq g(a_1)+g(a_2)$. By (P3), either $xy\leq g(a_1)$ or $xy\leq g(a_2)$. Therefore $f(x)f(y)\leq a_1$ or $f(x)f(y)\leq a_2$. Since a_1 and a_2 are super meet irreducible, we have $f(x)\leq a_1+a_2$ or $f(y)\leq a_1+a_2$, which is a contradiction.

The proof of (iii) is given in [2, Th. 2.9].

THEOREM 2. For any lattice A, we have:

- (i) If (P1) and (P3), then (P4).
- (ii) If (P2) then (P5).
- (iii) If (P1), (P2) and (P3), then (P4), (P5) and (P6).
- (iv) If A is a retract of B, and B satisfies (P1), (P2) and (P3), then A satisfies all six properties (P1)-(P6).

Proof. (i) follows immediately from Theorem 1 (ii). Suppose A satisfies (P2). Let $x, y \in A$ and $x \not \leq y$. We have $y = \pi(S)$, where S is a finite set of super meet irreducible elements. Let

$$T = \{a \in S : x \leq a\}$$
,

and let $z = \pi(T)$. If $a \in S - T$, then $a \ge x \ge xz$. If $a \in T$, then $a \ge z \ge xz$. Hence $xz \le \pi(S) = y$. Now suppose $xw \le y$. Then for each $a \in T$, we have $a \ge xw$, hence $a \ge w$. Therefore $w \le \pi(T) = z$. This proves (ii). (iii) follows from (i), (ii), and the dual of (ii).

Suppose B satisfies (P1), (P2), (P3) and A is a retract of B. Then by Theorem 1 (i) and its dual and by Theorem 1 (ii), A satisfies (P1), (P2) and (P4). (iv) now follows from the dual of (iii).

Theorem 3. Let A be a projective distributive lattice. Then A satisfies all six properties (P1)-(P6).

Proof. A is a retract of a free distributive lattice F. It is well known that F satisfies (P1), (P2) and (P3), the sub join irreducible elements being the products of free generators. The result now follows from Theorem 2 (iv).

THEOREM 4. Let A be a distributive lattice satisfying (P1), and let J be the set of join irreducible elements of A. Then any order preserving map $h: J \rightarrow B$, where B is a distributive lattice, can be extended uniquely to a join homomorphism $\hat{h}: A \rightarrow B$. If in addition, A satisfies (P3) and h is a meet homomorphism, then \hat{h} is a homomorphism.

Proof. If
$$x=x_1+\cdots+x_n$$
, where $x_i\in J$ for all i , let $\hat{h}(x)=h(x_1)+\cdots+h(x_n)$.

 \hat{h} is well defined because $x_1 + \cdots + x_n \leq y_1 + \cdots + y_m$ implies each x_i is \leq some y_j . It is obvious that \hat{h} is a join homomorphism and is unique. If h is a meet homomorphism, then it is easy to see that \hat{h} also preserves products.

THEOREM 5. Let J be any meet semi-lattice. There exists a unique distributive lattice \hat{J} such that \hat{J} satisfies (P1) and (P3), and J is the set of join irreducible elements of \hat{J} . \hat{J} is unique up to isomorphism over J.

Proof. Let \hat{J} be the set of all finite unions of principal ideals of J. \hat{J} is a ring of sets and the map $f: J \to \hat{J}$ such that $f(x) = \{y \in J: \ y \leq x\}$ is a meet-monomorphism. It is clear that f(J) is the set of all join irreducible elements of \hat{J} . The uniqueness of \hat{J} follows easily from Theorem 4.

In view of Theorems 3, 4 and 5, the study of projective distributive lattices can be reduced to the question: for which meet semilattices J is \hat{J} projective? An obvious condition is the following.

THEOREM 6. Let A be a distributive lattice which satisfies (P1) (P3), and let J be the set of join irreducible elements of A. Then

A is projective if and only if there exists a free distributive lattice F, a homomorphism $f: F \to A$ and a meet homomorphism $h: J \to F$ such that fh(x) = x for all $x \in J$.

Proof. If A is projective, it is a retract of a free distributive lattice F. The necessity of the condition follows immediately. Conversely, given f and h, by Theorem 4, h can be extended to a homomorphism $\hat{h}: A \to F$. It is easy to see that $f\hat{h} = I_A$, and therefore A is projective.

Consider the following weakening of the condition of Theorem 6: (P7) There exists a free distributive lattice F, a homomorphism $f: F \to A$ and an order preserving map $h: J \to F$ such that fh(x) = x for all $x \in J$.

THEOREM 7. Let A be a distributive lattice and let J be the set of join irreducible elements of A. Then A is projective if and only if A satisfies (P1), (P2), (P3) and (P7).

Proof. The necessity of the conditions follows from Theorems 3 and 6. Suppose A satisfies the conditions. Let $f\colon F\to A$ and $h\colon J\to F$ be as in (P7). By Theorem 4, h can be extended to a join homomorphism $\hat{h}\colon A\to F$. It is clear that $f\hat{h}=I_A$. For each $x\in J$, there exists a finite set S(x) of meet irreducible elements of A such that $x=\pi(S(x))$. Define $g\colon J\to F$ as follows: $g(x)=\pi(\hat{h}(S(x)))$. For any $x\in J$, $fg(x)=\pi(f\hat{h}(S(x)))=\pi(S(x))=x$. If $x,y\in J$, $x\leqq y$ and $z\in S(y)$, then $\pi(S(x))\leqq z$. Since z is super meet irreducible, z must be k some member of k and k and we have shown that k preserves order. The proof will be complete by Theorem 6 if we show that k preserves products. Suppose k, k, k and k

$$g(z) = \pi(\hat{h}(S(z))) \ge \pi(\hat{h}(S(x) \cup S(y))) = g(x)g(y)$$
.

Since g preserves order, we have $g(z) \leq g(x)g(y)$, and the proof is complete.

THEOREM 8. Let A be a countable distributive lattice and let J be the set of join irreducible elements of A. If A satisfies (P1) and (P3) then A satisfies (P7).

Proof. There exists an epimorphism $f: F \to A$, where F is a free distributive lattice. For each $x \in J$, select an element g(x) such

that fg(x) = x. Arrange the members of J in sequence x_0, x_1, \cdots . Define $h: J \to F$ inductively as follows: $h(x_0) = g(x_0)$, and

$$h(x_n) = g(x_n) \prod \{h(x_i): i < n, x_i > x_n\} + \sum \{h(x_i): i < n, x_i < x_n\}$$
.

By induction, it is easy to see that $fh(x_n) = x_n$ and h preserves order on the set $\{x_0, \dots, x_n\}$. This proves (P7).

THEOREM 9. If A is a countable distributive lattice, then A is projective if and only if A satisfies (P1), (P2) and (P3).

Proof. This follows from Theorems 7 and 8.

COROLLARY ([1, Th. 7.1]). If A is finite, then A is projective if and only if A satisfies (P3).

Proof. Every finite distributive lattice satisfies (P1) and (P2).

Theorem 7 suggests the following question: for which semilattices J does $S = \hat{J}$ satisfy (P7)? Theorem 8 states that countability is a sufficient condition. Another sufficient condition is that J be projective in the category of semi-lattices. Condition (P7) may be replaced by a condition which refers more explicitly to J itself. First, if A is projective, every epimorphism $f: F \to A$ has a right inverse. Therefore in Theorem 7, we may replace (P7) by

(P8) There exists a free distributive lattice F whose set of free generators is T, a homomorphism $f \colon F \to A$ such that f(T) = J, and an order preserving map $h \colon J \to F$ such that fh(x) = x for all $x \in J$.

THEOREM 10. Let J be a meet semi-lattice. Then $A = \hat{J}$ satisfies (P8) if and only if for each $x \in J$ there exists a finite sequence $S_{x,0}, \dots, S_{x,p(x)}$ of nonempty finite subsets of J such that

- (i) $\pi(S_{x,0}) = x$.
- (ii) $\pi(S_{x,j}) \leq x \text{ for all } j.$
- (iii) if $x \leq y$, there for every j there is a k such that $S_{x,j} \supseteq S_{y,k}$.

Proof. Assume (P8) holds. Let $x \in J$. Then

$$h(x) = \pi(T_{x,0}) + \cdots + \pi(T_{x,n(x)})$$
,

where each $T_{x,j}$ is a finite subset of T. Let $S_{x,j} = f(T_{x,j})$. Then $x = \pi(S_{x,0}) + \cdots + \pi(S_{x,p(x)})$. Since x is join irreducible, we have (i) and (ii) after renumbering indices. If $x \leq y$, then $h(x) \leq h(y)$. From

this it follows that every $T_{x,j}$ contains some $T_{y,k}$ (see [1, Lemma 4.5]). This proves (iii).

Assume (i), (ii) and (iii). Let F be a free distributive lattice with a free generating set T with the same cardinal as J. There exists a homomorphism $f: F \to A$ which maps T onto J in a one-to-one way. For each $S_{x,j}$ let $T_{x,j}$ be the subset of T such that $f(T_{x,j}) = S_{x,j}$. Define $h: J \to F$ as follows:

$$h(x) = \pi(T_{x,0}) + \cdots + \pi(T_{x,p(x)})$$
.

By (i) and (ii), fh(x) = x for all $x \in J$, and by (iii) h is order preserving. This completes the proof.

If P is a partially ordered set, there exists a distributive lattice P^* containing P such that P generates P^* and every order preserving map from P to a distributive lattice B can be extended to a homomorphism from P^* to B. (See for example [2, Definition 1.10].) In Lemma 3.8 of [2] it was shown that P^* is projective if and only if for each $x \in P$ there exists a finite sequence $S_{x,0}, \dots, X_{x,p(x)}$ of nonempty finite subsets of P such that

- (i) $x \in S_{x,0}$ and every member of $S_{x,0}$ is $\geq x$.
- (ii) for each j, $S_{x,j}$ has a member $\leq x$
- (iii) if $x \leq y$, then for every j there is a k such that $S_{x,j} \supseteq S_{y,k}$. Comparing with the conditions of Theorem 9, we find the following.

THEOREM 11. If J is meet semi-lattice and J^* is projective, then \hat{J} satisfies (P8).

A sufficient condition for the projectivity of J^* is given in [2, Th. 3.12].

3. Direct products.

LEMMA 1. Let A_1 and A_2 be projective distributive lattices. If A_1 and A_2 have a 0 and 1, then $A_1 \times A_2$ is projective.

Proof. We may assume $|A_i| > 1$ for i = 1, 2. Let F be a free distributive lattice with the free generating set $T_1 \cup T_2$, where T_1 and T_2 are disjoint and $|T_i| = |A_i|$, i = 1, 2. There exists an epimorphism $f \colon F \to A_1 \times A_2$ such that $f(T_1) = A_1 \times \{0\}$ and $f(T_2) = \{0\} \times A_2$. Let F_i be the sublattice of F generated by T_i . Then $f(F_1) = A_1 \times \{0\}$ and $f(F_2) = \{0\} \times A_2$. Define $f_i \colon F_i \to A_i$ by $f_i = \pi_i \cdot (f \mid F_i)$, where $\pi_i \colon A_1 \times A_2 \to A_i$ is the natural projection. Since A_i is projective, there exists a homomorphism $g_i \colon A_i \to F_i$ such that $f_i g_i = I_{A_i}$. Define $g \colon A_1 \times A_2 \to F$ by

$$g(x, y) = g_1(x) + g_2(y) + g_1(1)g_2(1)$$
.

Then $fg(x, y) = (x, 0) + (0, y) + (1, 0) \cdot (0, 1) = (x, y)$, and g is a homomorphism. Therefore $A_1 \times A_2$ is a retract of F, and the proof is complete.

LEMMA 2. An element x of a direct product $\prod_{i \in I} A_i$ of distributive lattices is join irreducible if and only if for some $i \in I$, we have:

- (i) x(j) = 0 for all $j \neq i$.
- (ii) x(i) is join irreducible.

Proof. The proof is easy and will be omitted.

Theorem 12. Let $\langle A_i : i \in I \rangle$ be a family of distributive lattices. Suppose |I| > 1 and $|A_i| > 1$ for all i. Then $\prod_{i \in I} A_i$ is projective if and only if

- (i) A_i is projective for each i
- (ii) I is finite, and
- (iii) each A_i has a 0 and 1.

Proof. The sufficiency follows from Lemma 1. Suppose A is projective. By hypothesis there exists $x \in A$ and $i_1, i_2 \in I$ such that $i_1 \neq i_2, \ x(i_1) \neq 0$ and $x(i_2) \neq 0$. Since x is a sum of join irreducible elements, it follows from Lemma 2 that A_i has a 0 for all $i \in I$. By duality, each A_i has a 1, which proves (iii). Finally if I is infinite, then the 1 element of A cannot be a finite sum of join irreducible elements by Lemma 2, since $|A_i| > 1$ for all i.

REFERENCES

- R. Balbes, Projective and injective distributive lattices, Pacific J. Math. 21 (1967), 405-420.
- 2. R. Balbes and A. Horn, Order sums of distributive lattices, Pacific J. Math. 21 (1967), 421-435.

Received October 1, 1969. This research was supported in part by National Science Foundation grants GP-11893 and GP-9044.

UNIVERSITY OF MISSOURI, ST. LOUIS UNIVERSITY OF CALIFORNIA, LOS ANGELES