PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 2, 1970

SETS WHICH CAN BE MISSED BY SIDE
APPROXIMATIONS TO SPHERES

J. W. CANNON

In this paper it is proved that a 2-sphere S in E® can be
side approximated from Int S so as to miss a closed subset X
of S if and only if (SuU IntS) — X is 1-ULC,

If X = {p} is a singleton, then the 1-ULC property described in
the first paragraph reduces to a property studied by McMillan [22]
in connection with piercing points p of a crumpled cube (see (0.2)
below). Our work was motivated by his paper although our methods
bear little relationship to his.

Our result has as immediate corollaries a number of important,
well-known theorems, four of which we now mention:

(0.1) ([2. Th. 2]). A 2-sphere S in E® is tame if E° — S is 1-ULC.

0.2) ([22, Th. 1]). If C is a crumpled cube in E® and peBdC,
then p is a piercing point of C if and only if C — p is 1-ULC.

(0.3) (J19, Th. 3]). If S and S’ are 2-spheres in E*and XCc UC
SN S’ where X is compact and U is openin S and S’. Then (x, X, S')
is satisfied if and only if (x, X, S) is satisfied.

(0.4) ([8] and [10]). If S is a 2-sphere in E® X is a compact
subset of S, and X = U=, X;, where each X, is compact and satisfies
(*, X;, S), then (x, X, S) is satisfied.

Properties similar to the 1-ULC property described in the first
paragraph have been studied previously (e.g., properties (4, F, S) and
(B, F', S) in [19]). However, the properties studied have, in general,
had only restricted application to the question of determining which
subsets of a 2-sphere can be missed by side approximations to that
sphere and thus have been inapplicable in results such as (0.2), (0.3),
and (0.4).

Precise definitions appear in §1. Our main result, mentioned in
the first paragraph, is proved in § 2. We also present in §2 a slightly
strengthened version of our main result for use in another paper
(Lemma 2.5 and Theorem 2.6). The four corollaries mentioned above
are proved in §3. In §3 we also remark on ways in which our main
result can be used to sharpen other results which have appeared in
the literature.

The part of this paper actually necessary for the proof of Theorem
(0.1) appears in five short paragraphs. This proof is considerably shorter
and conceptually easier to follow than the original proof. Our proof
of Theorem (0.3) is likewise much shorter than the original. The
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great simplifying factor is the use of Lister’s form [18, Th. 3] of
Bing’s Side Approximation Theorem; Lister’s theorem can be used to
simplify the proof of many other results on the embeddings of sur-
faces in 3-manifolds (cf. [12]). Except for Lister’s theorem, the tools
we have chosen to use are essentially those which were used in the
original proofs of Theorems (0.1)-(0.4). Lemma 2.5 and Theorem 2.6
are slightly more complex than the other results.

We had not originally planned to restrict curselves in this paper
to the applications of our main theorem which appear in §3 (cf. [9,
Ths. 2 and 3]), but we have found that our other applications fit
nicely into more general settings which we shall study elsewhere (cf.
[10] and [11]).

We thank the referee for useful comments and C. E. Burgess for
discussions.

1. Property (x, X, S), definitions, and notation. Suppose that
X is a closed subset of a 2-sphere S in E°. We say that S can be
side approximated so as to miss X if the following property is satisfied:

Property (x, X, S). ([15, p. 467]). If U is a component of E? — S
and ¢ is a positive number, then there are a polyhedral 2-sphere S’, a
finite collection D,, D,, ---, D, of mutually exclusive e-disks lying in
S’, and a finite collection E,, E,, ---, E, of mutually exclusive e-digks
lying in S, such that

(1) There is an e-homeomorphism from S onto S,

(2) 8 —-UL.D;,cU,

(8) SNS cyUr, E; and

(4) XnWUL E) = 2.

If (x, X, S) is satisfied, then X is tame (i.e., X lies on a tame
2-sphere in E®) [19, Th. 6]. If X has no degenerate components, then
X is tame if and only if (x, X, S) is satisfied [8, Ths. 1.1 and 5.1].

If the property defined above holds for one component U of
E* — S though perhaps not for the other, we say that (x, X, U) is
satisfied. If (x, X, IntS) is satisfied, then X lies on the surface of a
3-cell in E?® [21, Th. 1]. Our goal is to characterize sets satisfying
(*, X, Int S) as those compact sets X for which (SUIntS) — X is 1-
ULC. A similar result will obviously hold for U = Ext S.

REMARK. The definition that we have given of (+, X, S) is the
original formulation and not always the easiest to apply. If we wish
to prove that (x, X, Int S) is satisfied, we shall use the definition we
have stated. If we already know that (x, X, IntS) is satisfied and
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wish to apply that fact, we shall use the following formulation due
to Lister. Lister proves [18, Th. 2] that the two definitions are

equivalent.

Property (x, X, Int S) (alternative definition). If & > 0, then there
are digjoint e-disks D,, D,, -+-, D, in S — X and an e-homeomorphism
h from S onto a polyhedral sphere A(S) in E® such that

(1) &(S) — Ur,Int »(D;) cInt S,

(2) S — Uzr,Int D; c Ext h(S), and

(3) SnNaS) = U, [Int D; N Int h(D,)].

REMARK. Property (x, @, IntS) is always satisfied ([4, Th. 16']
(original formulation) and [18, Th. 2] (alternative definition)).

We shall use the symbol p for the Euclidean metric. If A and
A’ are subsets of E® and ¢ is a positive number, then we define

(1) Diam A = sup p(z, y) (x, y € A),

(2) p(A, A) =infp(a,a’) (e A, a’ € A’), and

(3) B(A4,A¢e)={a'cd|pla, A) <¢g. (If A =E° we write

B(A, A"; ¢) = B(4;¢).)

The set A is an e-set if Diam A <e. A mapf: 4A— E® is called an
&-map if f moves no point as far as e. Let 4 and I denote a standard
disk or 2-simplex and a standard interval or 1-simplex, respectively.
We say that A is 1-LC(0-LC) in A’ at z e E® if for each ¢ > 0 there
isa & > 0 such that any map f: Bd 4 — B(x, 4; ) (f: Bd I — B(zx, A; 9))
has a continuous extension f*:4— B(x, A’;¢) (f*: I— B(x, A ¢)).
Speaking loosely, A is 1-LC in A’ at x < E® if loops near ¢ in A can
be shrunk to a point near = in A’. We say that 4 is 1-ULC (0-ULC)
in A’ if A is 1-LC (0-LC) in A’ at each point  of Cl A and if for
each ¢ > 0 the corresponding & may be chosen independently of = ¢
ClA. If A is 1-ULC in A, then we simply say that 4 is 1-ULC.
We say that A is weakly 1-ULC in A’ if (speaking loosely again) small
unkmnotted simple closed curves in A bound small singular disks in A4’.
(A simple closed curve in E*® is said to be unknotted if it bounds a
disk in £°.) We leave it to the reader to formalize the definition of
“weakly 1-ULC”.

A crumpled cube C is the union of a 2-sphere in E® and its interior
in E®. The 2-sphere is called the boundary of C, denoted Bd C; and
C — Bd C is called the interior of C, denoted Int C. Any homeomorphie
image of C is called a crumpled cube. A point peBd C is said to
be a piercing point of C if there is an embedding h: C — E*® such that
h(Bd C) can be pierced by a tame arc at h(p).

Most of our terminology not defined explicitly in this section is
fairly standard and can be found in most of the references listed.
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See, for example, [2], [7], and [19].

2. A 1-ULC characterization of sets satisfying (x, X, IntS).

Our characterization will appear in two parts which we prove separately
(Ths. 2.1 and 2.4).

THEOREM 2.1. If S is a 2-sphere in E° X is a closed subset of
S, and (x, X, Int S) s satisfied, then (S U IntS) — X s 1-ULC.

Proof. Let ¢ be a positive number. There is a d in the range
0 < 0 < ¢/6 having the following property: if S’ is a 2-sphere in E*®
such that there is a d-homeomorphism from S onto §’, then any J-set
on S’ lies on an ¢/6-disk on S’. Let fiBd4—(SUIntS) — X be a
map into a d-set in (S UIntS) — X. In order to show that (S U Int
S) — X is 1-ULC it suffices to show that f is nullhomotopic (f ~ 0)
in an e-subset of (S U IntS) — X.

Because IntS is 0-ULC [24, p. 66] and S is an absolute neigh-
borhood retract, there is a map F:Bd4 x I—(SUIntS) — X such
that F, = f, F;:Bd4—1Int S, and Diam F(Bd 4 x I) < (where F\,:
Bd 4 — E? is defined by F,(x) = F(x,t)). The map F, can be extended
to a map G: 4 — E* such that Diam G(4) < d.

Since (x, X, IntS) is satisfied, there are disjoint d-disks D,, D,,
<.+, D,in S — X and a 6-homeomorphism & from S onto a polyhedral
2-sphere h(S) in KE* such that (1), (2), and (3) of the alternative de-
finition for (x, X, IntS) are satisfied and such that A(S) separates
G(Bd 4) = F(Bd 4) from X.

The intersection of G(4) with A(S) is a d-set. Hence by our choice
of 4, there is an ¢/6-disk F on A(S) which contains G(4) N k(S). By
the Tietze extension theorem (see [7, Lemma 1] for details), there is
a map G,: 4 — E® which agrees with G on the component K of

4 — GG N h(S)]
which contains Bd 4 and takes 4 — K into E. Then

G(HnScUD;.

Again by the Tietze theorem there is a map G,: 4 — E® which agrees
with G, on the component K’ of 4 — G*[G,(4) N Uz, D;] which con-
tains Bd 4 and takes 4 — K’ into Uz, D..

Clearly f~ 0 in F(Bd4 x I) U Gy(4). Thus it suffices to show
that F(Bd 4 x I) U Gy(4) (S Int S) — X and that

Diam [F(Bd 4 x I) U Gy(4)] < ¢
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That these conditions are satisfied is easily checked. This completes
the proof of Theorem 2.1.

The second half of our characterization requires two lemmas. The
first, Lemma 2.2, is a special case of [22, Lemma 2], which in turn
is a special case of [14, Th. 2]. We indicate a proof for Lemma 2.2
gince it i3 a simple special case of the more difficult general results
of [14]. Lemma 2.3, a consequence of Lemma 2.2, could be gener-
alized considerably by appeal to these more general results. This is
interesting when one notes that Theorem (0.4), a conjecture by Lovel-
and, is simply the translation of Lemma 2.3, via Theorems 2.1 and
2.4, into a statement about side approximations of 2-spheres.

LEMMA 2.2. Let B denote a closed subset of a disk D, let S be
a 2-sphere in E°, and let X be a subset of S such that (SUIntS) — X
78 1-ULC. Let ¢ >0 and a map f:D—S UIntS be given. Then
there is a map f*:D— S UIntS such that

D —B)cSUIntsS) — X,
B = f|B, and
o(f*(@), f()) < & for each xe D.

Indication of proof. One triangulates D — B so that the mesh
of the triangulation approaches zero very rapidly near B. Then using
the facts that Cl(SUIntS) — X) =S UIntS), (SUIntS) — X is 0-
ULC [24, p. 66], and (S U IntS) — X is 1-ULC, one moves the image
of the 0-, 1-, and 2-skeletons of the triangulation away from X. Note
that we do not require that X be closed.

LEMMA 2.8. Let S be a 2-sphere in E°, and let {X;}7, be a family
of closed subsets of S such that, for each i, (SUIntS) — X, ¢s 1-
ULC. Then (SUIntS) — Uz, X; 4s 1-ULC.

Proof. Suppose ¢ >0 and xe S U IntS given, and let 4 denote
a disk. Since (SUIntS) — X, is 1-ULC, there is a 6 > 0 such that
each map f: Bd 4 — B(z, (S U Int S) — X|; ) extends to a map

f*24— B, (SUIntS) — X;;¢).
Let f:Bd 4 — Bz, (SU IntS) — Uz, X;; 9) be given, and let
fird— B, (S UIntS) — X; ¢)

be an extension of f. We now define positive numbers ¢, ¢,, --- and
maps f; fa, + -+ inductively as follows:
Let
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0 <e <1/20[fi(4), X, U((SUIntS) — Bz, (S U IntS); ¢))].
Let f,: 4— (S UIntS) — X, be such that f,|Bd 4 = f,| Bd 4 and

o(fu(p), f(p) < &

for each pc 4. Such a map exists by Lemma 2.2.

For ¢ > 1, let ¢; be in the range 0 < ¢; < 1/2 min {¢,_,, p[fi(4), X:]}.
Let fi.:4— (SUIntS) — X,., be such that f;.,|Bd 4 = f;| Bd 4 and
O(fi(p), fier(p)) < & for each pe . Again, at each stage such a map
exists by Lemma 2.2.

Because S U Int S is a complete space, it follows that f* = lim f;
exists, is continuocus, extends f, and takes 4 into

B(:c, (S U IntS) — (j X, s) .

Since 2 is arbitrary and 6 may be chosen independently of x, (S U Int S) —
Uz, X; is 1-ULC.

THEOREM 2.4. If S is a 2-sphere imn E* X is a closed subset of
S, and (S UIntS) — X s 1-ULC, then (x, X, Int S) s satisfied.

Proof. We first establish the theorem for the special case X = S
and then show how the proof can be altered to yield the general re-
sult. There are four steps in the special case.

1. There are disjoint disks D,, D,, ---, D, in S and an &-home-
omorphism % from S onto a polyhedral sphere 4(S) in E® such that
(1), (2), and (3) of the alternative definition of (x, @, Int S) are satisfied
and such that Diam [D, U h(D,)] < ¢ for each <. This is because (x,
@, Int S) is always satisfied.

2. By the Tietze Extension Theorem, there are maps f,, fs, =+, [fn
such that for each <, f: D, — h(D;) UInt D,, f; agrees with - on the
component K; of D; — h~'[h(D;) N D;] which contains Bd D;, and f;
takes D, — K, into Int D,.

3. By Lemma 2.2, since Int S is 1-ULC, if ¢ > 0, then there is
a map g,;: D, — f;(K;) U B(D;, Int S; 0) which agrees with f; on

K; — f7'[B(D;, fi(D); 0)] -

Thus we may assume that ¢,(D)), ¢.(D,), - - -, ¢.(D,) are disjoint singular
disks in Int S such that for each ¢, (1) g;(D;) has no singularities near
9:(Bd D), (2) Diam [g,(D;) UD;] <e, and (3) g«(D;) N A[S — Ui, Int D;] =
9:(Bd D,).

4. By Dehn’s Lemma [23], each singular disk ¢,(D;) may be
replaced by a polyhedral disk E; in Int S such that
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i[s-Ump|uUE

is a polyhedral 2-sphere S’ in Int S and for each 4, Diam [E; U D;] < e.
If »’ is any homeomorphism from S onto S’ which extends

1S —UInt D, ,

then 2’ is an e-homeomorphism from S into Int S. Since ¢ is arbitrary,
this shows that (x, S, Int S) is satisfied.

In the general case, we make the following changes:

3. Let {X;}i, be a family of tame finite graphs on S such that
S — Uz, X; is totally disconnected. That such a family exists follows
from [3, Th. 1]. If A is an arc in any X, then (x, A, IntS) is satis-
fied by [15, Th. 2]. Thus by Theorem 2.1, (S U Int S) — 4 is 1-ULC; and
by Lemma 2.3, (SUIntS) — (U2, X; U X) is 1-ULC since U, X; U X
is a countable union of closed sets A for which (SUIntS) — A is
1-ULC. Hence by Lemma 2.2, if 6 >0, there is a map g;: D, —
J{(K) U B(D;, (SUIntS) — (Uz, X; U X); 0) which agrees with f; on
K; — f7[B(D;, fi(D;); 0)]. Thus we may assume that

gl(Dl), gZ(Dz)) M) gn(D'n)

are disjoint singular disks in (S UIntS) — X which satisfy (1), (2),
and (3) of Step 3 above and such that for each 4, g;(D;)N S is a 0-
dimensional subset of Int D,.

4'. The set g¢,D;) NS, being a closed 0-dimensional subset of
Int D, — X, can be covered by a finite collection E,, E,,, ---, Eini of
disjoint disks in Int D; — X. Again by Dehn’s Lemma, each singular
disk g¢;(D;) may be replaced by a polyhedral disk E; such that

h[S ~nt D,.] VU E

is a polyhedral 2-sphere S’ in E® and for each 4, K; NS c U, E;;
and Diam [E; U D;] < . But since ¢ is arbitrary, S’ and the disks
{E;} and {E;;} are precisely what one needs in order to show that (x,
X, Int S) is satisfied, where in this case we apply the original definition.

We now show that the hypotheses of Theorem 2.4 can be weakened.
Our goal is Theorem 2.6. In the proof of Theorem 2.6 we need to
know that a polyhedral disk in E® whose boundary lies in the interior
of a particular 2-sphere in E® (possibly a wild 2-sphere in E?) can, in
a particularly nice way, almost be cut off inside the 2-sphere. This
fact, stated precisely in Lemma 2.5, will be apparent to those thoroughly
familiar with the methods of [5]. However, following the suggestion
of the referee, we give a proof which does not rely on the methods of
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[5] and depends only on Bing’s Side Approximation Theorem [4]. The
brief outline with which the proof of Lemma 2.5 begins is due to the
referee and had also been suggested to the author by C. E. Burgess.

LEmMMA 2.5. Suppose that

S is a 2-sphere in E3;

U is a component of E* — S;

D is a polyhedral disk in E* with Bd D c U;

R is a disk in S with DN S CR;

0<e<p@BdD,S); and

K 1is the the component of D — S which contains Bd D.
Then there is @ map h: D — (DN U) U B(R, Cl U; 0) such that

h|K — B(R; ) = identity
(D) N S is 0-dimensional; and
h|D — B(S) is a homeomorphism.

Proof. The plan is the following: Let S, be a side approximation
to S from U sufficiently close to S. Cut D, =D off on S, to get a
new Dpolyhedral disk D,. Again let S, be a side approximation to S
from U sufficiently close to S (much closer than S,). Cut D, off on
S, to obtain a new polyhedral disk D,. Repeat this procedure. If
proper care is taken in the process, then A(D) may be taken to be
lim D;,. In the next few paragraphs we explain in turn how each of
the conclusions of the lemma can be obtained by this procedure.

Associating a continuous fumnction h with lim D,. Cutting D,_,
off on S; can be realized as a process of removing from D, , finitely
many disjoint disks ‘4, ---,4, in Int D, , and replacing them by
disjoint disks °4i, ---, ‘4. near S;. Thus there is a natural, though
nonunique, way of defining a homeomorphism #;: D;_, — D;: h; differs
from the identity only in that it takes a disk ‘4; removed in the cut-
ting process to its replacement ‘4; near S;. A function

h =limh; «-« hh: D — lim D;

will therefore exist and be continuous provided the size of the disks
removed and the size of their replacements converge to 0 rapidly
enough with 7. Suppose that to this end we want the disks {*+'4;}
and {**'4}} to have diameter less than «. This can be accomplished
by using caution in the adjustments which change D, , to D,. The
procedure is tedious but straightforward. The reader may wish to
omit a reading of the details which follow:

Choose B, 0 < B < «, such that B-sets in a B-approximation S’
to S lie in a-disks in S'.
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Choose v, 0 < v < B/3, such that v-sets in a v-approximation S”
to S lie in B/3-disks in S”.

Choose 8, 0 < 6 < v, such that d-sets in a d-approximation Dj_,
to D,_, lie in v-disks in D._,.

Choose a d-side approximation S; to S from U with associated
do-disks E, .-+, E, on S; and F, ---, F,, on S containing the inter-
sections of S; with S.

Adjust D,_, slightly near S; (by a od-adjustment) so that the
adjusted D, , misses UZE,; and is in general position with respect to
S;. Call the adjusted D, , by the same name as the original.

Cut D,_, off on S; to form D,. This cutting removes disjoint
disks {¢4;} from Int D, , and replaces them by disks {4} near S;.

We now show that D; N S can be covered by a finite collection
of disjoint B-disks in Int D;. Since [D;_, (adjusted)] N (UE;) = @&,
the disk-with-holes K; = ¢l (D;_, — U?4;) intersects S only in Int K;
and if care has been taken, also only in UF;. From this latter fact,
each component of K;N S has diameter less than 6. Hence by our
choice of 6, K;N S can be covered by a finite collection of disjoint
v-disks in D,_,, each of which has boundary in Int K;. The image
of each such disk under %;: D,_, — D, has diameter less than

v+ 288 < B.

A disk ‘4 is either contained in one of these A-disks or intersects
none of them. In the latter case, note that ‘4 is very close home-
omorphically to some disk H in S; such that BA HN (UE,) = @. If
‘4 is close enough to H, then ‘4, S is covered in a natural way by
B-disks in Int ‘4 associated with the o-disks {E,|E, c Int H}. We thus
obtain finally a finite collection of disjoint B-disks in Int D; covering
D;n 8.

If S;,, is a B-approximation to S that intersects D, only in the
finite union of these disjoint B-disks, then the disks {'+'4;} will be of
diameter less than B(<a) and the disks {#*'4;} of diameter less than
a by our choice of 8.

These considerations show that the approximations S; and disks
D,; may be chosen so that » = lim &, - .- h;h, automatically exists and
is continuous.

Making h|K — B(R; ¢) the tdentity. One simply needs to keep
all the spheres S, away from some continuum in K which contains
K — B(R;¢).

Keeping h(D) in (DN U) U B(R, Cl U; ¢). Note that

h(D) = lim .D.;, Clim (S,, U U(S,)) = Cl U

(where U(S;) is the complementary domain of S; which “almost coin-
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cides” with U). Then if one keeps all of the disks {44} in B(R, ¢/2),
which one may clearly do, it follows immediately that

WD) (DN U)UBR;¢) .

Making k(D) NS 0-dimenstonal. As we showed in the first part
of this proof, by being careful at stage ¢ we can require at stage
1+ 1 that D; NS be covered by a collection of disjoint a-disks in S.
One may then require that all of the disks {¥*4;} (k=1 + 1) lie in an
arbitrary neighborhood of the union of these a-disks. It follows then
that n(D) N S also lies very close to the union of these a-disks, hence
has no component of diameter much larger than «. If our a’s converge
to 0, then A(D) N S will be 0-dimensional.

Making h|D — h=*(S) a homeomorphism. This is automatic since
each h; is a homeomorphism and each point mapped into U has a
neighborhood moved by only finitely many of the maps #h,.

THEOREM 2.6. If S is a 2-sphere in E°, X is a closed subset of S,
and IntS vs weakly 1-ULC in (SUIntS) — X, then (SUIntS) — X
is 1-ULC.

Proof. By Theorem 2.1, it suffices to show that (x, X, IntS) is
satisfied. The proof is like that of the general case of Theorem 2.4
except that Lemma 2.5 allows us to alter the second step so that our
weaker hypothesis is applicable in the third step. The first and fourth
steps remain unchanged.

2", There are subdisks K, E,, ---, E, of D,, D,, ---, D, respec-
tively such that for each ¢, A(D;) N D,C E,CInt D,. Choose a >0
such that a < 1/3p[E;, (S — D;) U &(S — D;)] and such that

Diam [k(D;) U B(D;; @)] < ¢

for each ©. By Lemma 2.5, there are maps f,, f5, - -+, f. such that for
each 1, f;: D, — h(D,) U B(E;, SU Int S; @), f; agrees with % on the com-
ponent of D,—h~'[B(D;, S U Int S; @)] which contains Bd D;, fi(D,)) N S
is a 0-dimensional subset of Int D, and f;|D; — f7(S) is a homeomor-
phism. Define f: S— E*® piecewise by f|S — U~.D; =h|S — Ur, D;
and f|D; = fi.

3. Choose S such that

0 < B <1/30(f(D;) N Dy, (S — D;) U f(S — Dy)

and such that Diam [f(D;) U B(D;; B)] < ¢ for each 7. Choose 7, using
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the hypothesis that IntS is weakly 1-ULC in (S U IntS) — X,
such that each unknotted ~v-simple closed curve in IntS bounds a
singular B/2-disk in (SUIntS) — X. We require that 0 < v < B/2.
Let K, denote the component of D, — f~*(S) which contains Bd D,.
Since f(D;) N S is 0-dimensional, there is a finite collection J,, J,, =+ +, J}
of disjoint simple closed curves in K; such that %, J; separates
Bd D; from f~*(S) in D, and such that each f(J;) is a v-loop in a ~-
neighborhood of the set f(D;) N D;,. We assume that no proper sub-
collection of J,, J,, -« -, J, separates Bd D; from f~(S) in D;. Because
f1D; — f~(S) is a homeomorphism and K;c D; — f(S), it follows
from Dehn’s Lemma [23] that each f(J;) is an unknotted ~v-simple
closed curve in IntS. Hence by the way v was chosen, there is a
map g¢;: D; — (S U Int S) — X such that g; agrees with f on that com-
ponent of K; — UJ%.,J; which contains Bd D; and such that g; takes
the disk in D; bounded by J; into a B/2-subset of (SUIntS) — X.
Define ¢:S— E? piecewise by ¢|S— U, D; = f|S— Uk D; and
g|lD; = g;.

Now proceed as in Step 3’ to choose {X;}>,. Apply Lemma 2.3
only to the set (SUIntS) — Uz, X; to find this set to be 1-ULC.
Then relative to some fixed 6 > 0, choose &;: D; — (S U Int S) — U, X;
as g; was chosen in Step 3’. Require further that p(g(x), hi(x)) < o
for each xe D;. Now for 0 < ¢ < p(g(D;), X) and for & chosen other-
wise sufficiently small, it follows as in Step 3’ that

hl(Dl)y hZ(D2)7 ] h’n(Dn)

are disjoint singular disks in (S U Int S) — X which satisfy (1), (2) and
(8) of Step 3 (special case) and such that for each 7, 2, (D;)N S is a
0-dimensional subset of Int D,.

The proof can now be completed as in Step 4'.

3. Proofs of Theorems (0.1)-(0.4).

Proof of Theorem (0.1). This is essentially the content of the
special case of Theorem 2.4 which we proved first. Since FE® — S is
1-ULC, Theorem 2.4 and its counterpart for sets satisfying (x, X, Ext S)
imply that (x, S, S) is satisfied. That is, S can be homeomorphically
approximated from each of its complementary domains. Thus S is
tame [1, Th. 2.2].

Proof of Theorem (0.2). Suppose the point p is a piercing point
of C, and h: C— E® is an embedding so that Bd #(C) can be pierced
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by a tame arc at h(p). Then by (15, see Th. 11], (x, h(p), Int &(C))
is satisfied. By [18, Th. 7] (or from Theorems 2.1 and 2.4 of this
paper) (x, p, Int C) is satisfied. Thus by Theorem 2.1, C — p is 1-
ULC.

Conversely, if C — p is 1-ULC, let h:C — E® be an embedding
such that Bd #(C) is tame from E°® — h(C) ([16], [17], or [12]). Then
h(C) — h(p) is 1-ULC, and clearly (x, h(p), E® — h(C)) is satisfied.
Hence by Theorem 2.4, (x,h(p), h(BdC)) is satisfied. Therefore by
[15, see Th. 11], p is a piercing point of C.

Proof of Theorem (0.3). Since the statement of the theorem is
symmetric in S and S’, we assume that (x, X, S) is satisfied and prove
under this assumption that (x, X, S') is satisfied. By the compactness
of S, the uniform nature of E? and Theorems 2.1 and 2.4, it is suf-
ficient to show that the sets (S'UIntS) — X and (S UExtS) — X
are 1-LC at each point xeS'. If xeS — X, both sets are clearly 1-
LC at . If xe X, then since S and S’ share an open set containing
X, both spheres are locally the same at #. Thus clearly (S’UIntS") — X
and (S UExtS) — X are 1-LC at « if and only if (SUIntS) — X
and (SUExtS) — X are 1-LC at x. This completes the proof.

Proof of Theorem (0.4). The set (SUIntS) — X is 1-ULC by
Theorem 2.1 and Lemma 2.3. Thus since X is closed (x, X, Int S) is
satisfied by Theorem 2.4. Similarly (x, X, Ext S) is satisfied.

REMARK. [6, Th. 2.1] can be shown to be a special case of
Theorem (0.4). Theorems 8, 9, and 10 of [20] are stated for closed
subsets G of a 2-sphere S in E?® such that the diameters of the com-
ponents of G have a positive lower bound. It follows from Theorem
2.4 that the restriction that the diameters of G have a positive lower
bound is unnecessary. That is, slight modifications of Loveland’s
proofs yield the following theorem:

THEOREM. If G is a compact subset of a 2-sphere S in E° and
if any of the following conditions is satisfied, then G lies on a tame
2-sphere in E°.

(i) The set G can be locally spanned in each complementary
domain of S on tame simple closed curves.

(ii) The set G can be locally spamned in each component of
E?® — S maissing Cantor sets.

(iii) The sphere S can be locally spanned at each point of G from
each complementary domain of S.
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Similarly, a version of Eaton’s theorem on strongly locally spherical
spheres [13, Th. 3] can be stated and proved using Theorem 2.4 and
modifications of Eaton’s proof.

. THEOREM. If G is a compact subset of a 2-sphere S in E* such
that S is strongly locally spherical at each point of G, them G lies
on a tame 2-sphere.
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