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STRUCTURE OF SEMIPRIME (p, ) RADICALS

T. L. GOouLDING AND AucusTo H. ORTIZ

In this note, the structure of the semiprime (p, ¢) radicals
is investigated. Let p(x) and ¢(x) be polynomials over the
integers. An element a of an arbitrary associative ring R
is called (p, q)-regular if a € p(a)-R-q(a). A ring R is (p, q)-
regular if every element of R is (p, ¢)-regular. It is easy to
prove that (p, ¢)-regularity is a radical property and also that
it is a semiprime radical property (meaning that the radical
of a ring is a semiprime ideal of the ring) if and only if the
constant coefficients of p(x) and q(x) are +1, It is shown
that every (p, ¢)-semisimple ring is isomorphic to a subdirect
sum of rings which are either right primitive or left primitive.

Our results follow the ideas in [1]. However, a direct applica-
tion of the results of [1] is not possible here because condition P, [1,
p. 302] is not always satisfied in the present case.

Let R be an arbitrary associative ring. Let p(x) =1 + n2x + ---
+ n,x* be a polynomial over the integers. For each element ac R,
let Fp(a) = p{a)-R. In what follows we take ¢(z) = 1. Thus an ele-
ment a of R is called (p, 1)-regular if ae Fy(a). A ring R is called
(p, D-regular if every element in R is (p, 1)-regular. We shall denote
the (p, 1) radical property by F.

A right ideal I of R will be called (p, 1)-modular if there exists
an element ¢¢ I such that Fr(e) +elcI. In order to specify the
element ¢ we shall sometimes say that I is (p, 1).-modular. An ideal
P of R will be called (p, 1)-primitive if P is the largest two sided
ideal contained in some maximal (p, 1),-modular right ideal for some
e. For a right ideal M of R, let (M: R) = {ac R|RacC M} and let
p,(x) = p(x) — 1 throughout this paper.

LEMMA 1. An ideal P of R is (p, 1)-primitive if and only if
there exists ec R and a maximal (p, 1)-modular right tdeal M sush
that P = (M: R).

Proof. It is clear that (M: R) is a two sided ideal of R. More-
over if ae (M: R), then a = p(e)-a — p,e) - a € Fg{e) + Ra C M. Finally
if K is an ideal contained in M, then RKc K< M. Hence K C (M: R).
Thus (M: R) is the largest two sided ideal contained in M.

LemmA 2. If I is a (p, 1).-modular right ideal of R and if be I,

then
Fle +b)c I
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Proof. ple +b)-r = p(e)-r + br, + ebr, + -+ + €7'br, € Fyle) +
I+el+ o +e'ICI

THEOREM 3. If P is a (p,1)-primitive ideal of R, then R/P is
F-semisimple.

Proof. Let W/P be a nonzero (p, 1)-regular ideal of R/P, where
P is (p, 1),-primitive, say P = (M: R). Since P is the largest ideal
in M, W+ M contains M properly. But ¢(W + M)c W + M. Hence
e e W + M, since otherwise W + M would be (p, 1),-modular, violating
the maximality of M. Thus, say, ¢ = w + m. Since W/P is (p, 1)-
regular,

w+ Pe Fpp(w + P) =[Fgpw) + P]/P.

Now Fr(w) = Fple — m)c M, using Lemma 2. Thus we M + Pc M.
But then e = w + m e M, a contradiction. Therefore W/P must be 0.

THEOREM 4. Let F be any semiprime (p,1l) radical property.
Then for all rings R, F(R) 1is the intersection of all (p, 1)-primitive
ideals of R.

Proof. If P is a (p, 1)-primitive ideal of R, then R/P is F-
semisimple, thus P D F(R).

On the other hand suppose that the intersection K of all (p, 1)-
primitive ideals of R is not (p, 1)-regular. That is, there is ec K
such that e¢ Fg(e). Then e¢ Fr(e). But Fpi(e) is a (p, 1),-modular
right ideal of R. Let M be a maximal (p, 1),-modular right ideal of
R. Then e¢ M D (M: R) D K, a contradiction. Therefore K is (p, 1)-
regular and thus K c F(R).

COROLLARY 5. Ewery F-semisimple ring is isomorphic to a sub-
direct sum of (p, 1)-primitive rings.

This, together with the next theorem, give the structure of the
F-semisimple rings.

THEOREM 6. FEwvery (p, 1)-primitive ideal is primitive.

Proof. Let P be a (p, 1)-primitive ideal of R. Then P = (M: R)
for some maximal (p, 1),-modular right ideal M. Then M is a modular
(in the sense of [3]) right ideal. Thus M is contained in a modular
maximal right ideal N. Thus (M: R) < (N: R). Now if (N: R)Z (M: R),
then there exists ae R such that Rac N but Rag M. Thus M +
Ra + RaR is a right ideal which contains M properly. Since e(M +
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Ra + RaR)c M + Ra + RaR, and since M is a maximal (p,1).-
modular right ideal of R, M + Ra + RaR = R. But each term M,
Ra, and RaR is contained in N. Thus N = R, a contradiction. There-
fore P = (N: R) and P is primitive (in the Jacobson sense).

COROLLARY 7. Every (p, 1)-regular radical F contains the Jacob-
son radical.

THEOREM 8. A semiprime (p, 1)-regular radical coincides with
the Jacobson radical if the sum p(l) or the alternate sum p(—1) of
the coeffictents of p(x) is 0.

Proof. Let P be a primitive ideal of R, say P = (M: R), where
M is a modular [3] maximal right ideal of R. Suppose that F(R)Z P.
Then there exists »€ R such that »- F(R)Z M. Thus M + »- F(R) =
R. In particular, there exists ac F(R) such that » = ra mod M.
Since a is (p, 1)-regular, there is o’ € R such that a = p(a)-a’. Hence,
supposing that p(1) =0, ra = r-p(a)-a’ = p(1)-raa’ = 0. But then
re€ M, a contradiction. The case when p(—1) = 0 is analogous.

Since each (p, 1)-primitive ideal P of R is prime and R/P is F-
semisimple, F(R) is the intersection of all ideals I of R such that
R/I is prime and F-semisimple. Since F' is also hereditary, we have
[2, p. 149] that F' is a special radical.

The generalization of our results to all semiprime (p, q) radicals
is as follows: Define (1, q),-modular left ideals and left (1, q)-primitive
ideals in an analogous fashion. Next show that a (1, ¢)-semisimple
ring is isomorphic to a subdirect sum of left primitive [3] rings.
Finally, use Theorem 3 of [4] to prove, for p(0) = +1 and ¢(0) = +1,
the following:

THEOREM 9. For any semiprime (p,q) radical, every (p, q)-
semisimple ving 1s isomorphic to a subdirect sum of rings which
are either right primitive or left primitive.
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