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CO-ABSOLUTES OF REMAINDERS OF STONE-CECH
COMPACTIFICATIONS
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Let X be a completely regular Hausdorff space. Denote
the "absolute" (also called the "projective cover") ofXhγE(X),
the Boolean algebra of regular closed subsets of X by R(X),
and the Stone-Cech compactification of X by βX. In this
paper it is proved that the canonical map k: E(βX) -> βX
maps βE(X) - E(X) irreducibly onto βX — X if and only if
the map A —> clβXA — X is a Boolean algebra homomorphism
from R(X) into R{βX — X). This latter condition is shown
to hold for a wide class of spaces X. These results are used
to calculate absolutes and well-known co-absolutes of βX — X
under several different sets of hypotheses concerning the
topology of X.

Throughout this paper we use without further comment the nota-
tion and terminology of the Gillman-Jerison text [6]. In particular,
the cardinality of a set S is denoted by |S | . The countable discrete
space is denoted by N, and the set of nonnegative integers (used as
an index set) is denoted by N. The symbol [CH] appearing before
the statement of a theorem indicates that the continuum hypothesis
( ^ = 2*°) is used in the proof of the theorem. The cardinal 2*° will
be denoted by the letter c. All topological spaces considered in this
paper are assumed to be completely regular Hausdorff spaces. This
assumption is repeated for emphasis from time to time.

In § 1 we give a brief summary of known results and define some
notation and terminology. Some of the results in later sections are
generalizations of results appearing in [17]. Background material on
Boolean algebras appears in [15].

I* Preliminaries* The concept of the absolute of a topological
space has been considered by several authors, notably Gleason [7],
Iliadis [8], Flachsmeyer [5], Ponomarev [12], and Strauss [16]. In
the first part of this section we give a brief outline of this theory.
Although a theory of absolutes can be developed for a wider class of
topological spaces, we shall assume that all spaces considered are
completely regular and Hausdorff.

Recall that a subset A of a topological space X is said to be
regular closed if A = clx (intx A). Let R{X) denote the family of all
regular closed subsets of X. The following theorem is well-known;
see, for example, §1 and §20 of [15].
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THEOREM 1.1. The family R{X) is a complete Boolean algebra
under the following operations:

( i ) A^Bif and only if A S B.
(ii) VaAa=dz[]J*Aa]
(iii) A« Aa = clx int x [f|« Aa]
(iv) A' — clx{X — A) (Af denotes the Boolean-algebraic complement

of A).

LEMMA 1.2. Let X be a dense subspace of a space T. Then the
map A—»clτA is a Boolean algebra isomorphism from R(X) onto R(T).

The proof of 1.2 is straightforward and hence is not included.
The following result is a well-known theorem of Marshall Stone

(see 7.1 and 8.2 of [15]).

THEOREM 1.3. Let U be a Boolean algebra and let S(U) be the set
of all ultrafilters on U. For each xeU put X(x) = {aeS(U): xea}.
If a topology τ is assigned to S(U) by letting {X(x): xe U} be an open
base for τ, then (S(U),τ) is a compact Hausdorff totally disconnected
space [and the map x —> X(x) is a Boolean algebra isomorphism from
U onto the Boolean algebra of open-and-closed subsets of S(U).

The set S(U), topologized as above, is called the Stone space of U.
Recall that a continuous map k from a space X onto a space Y

is said to be irreducible if the image under k of each proper closed
subset of X is a proper closed subset of Y. The following result,
due to Gleason, comprises part of theorem 3.2 of [7].

THEOREM 1.4. Let Y be a compact Hausdorff space. Then the
map k: S(R(Y)) -> Y defined by

k(a) = Π {A e R( Y): a e \(A)}

is a well-defined irreducible continuous map from S(R(Y)) onto Y (λ
is as defined in 1.3).

Note that k[X(A)] = A for each AeR(Y).

PROPOSITION 1.5. If f: X—*Y is an irreducible map onto Y, and
if S is a dense subset of Y, then f*~[S] is dense in X.

Recall that a (completely regular Hausdorff) space X is said to
be extremally disconnected if the closure of every open subset of X
is open. The following properties of extremally disconnected spaces
are discussed in [7], [16] and 6M of [6].
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THEOREM 1.6. ( i ) If Y is any compact Hausdorff space then
S(R(Y)) is extremally disconnected.

(ii) If T is an extremally disconnected space, then every dense
subspace of T is extremally disconnected and C*-embedded in T. Hence
if Y is compact and W is dense in S{R{Y)), then S(R{Y)) — βW (see
6.5 of [6]).

THEOREM 1.7. Let Xbe a completely regular Hausdorff space and
let k: S(R(βX)) —* βX be as in 1.4. Then k*~[X] is a dense, extremally
disconnected subspace of S(R(βX)), and the restriction of k to kΓ[X\
is an irreducible perfect map from k"[X] onto X.

Proof. Since X is dense in βX and k is irreducible, by 1.5
is dense in S(R(βX)). Hence ΛΓ[X] is extremally disconnected by 1.6.
Since & is a perfect map, its restriction to a preimage of a subspace of
βX will also be perfect. If V is a nonempty open subset of S(R(βX)),
then as k is irreducible it follows that βX - k[S(R(βX)) - V] Φ 0 .
Hence

X - kψ-\X\ - V] = X - k[S(R(βX)) - V] Φ 0

since X is dense in βX. Hence k\k~[X] is irreducible.

Absolutes and Co-absolutes 1.8.
( i ) For each space X, there is a unique (up to homeomorphism)

extremally disconnected space that can be mapped irreducibly onto X
by a perfect map (see [16]). This space is called the absolute of X,
and is denoted by E{X). We may identify E{X) with the space AΓ[X]
described in 1.7.

(ii) Note that if X is compact then E{X) = S(R(X)).
(iii) For any space X, E{βX) = βE(X); this follows from 1.6(ii)

and the fact that E(X) is dense in the extremally disconnected space
S(R(βX)) = E(βX)

(iv) Two spaces X and Y are said to be co-absolute if E(X) and
E(Y) are homeomorphic.

PROPOSITION 1.9. If there is a perfect irreducible map from X
onto Y, then X and Y are co-absolute.

Proof. Since the composition of two perfect irreducible maps is
a perfect irreducible map, there is a perfect irreducible map from
E(X) onto Y. The above-mentioned uniqueness of the absolute im-
plies that E(X) and E(Y) are homeomorphic.

The converse to 1.9 is untrue; for example, let aN be the one-
point compactification of N. Then βN and aN are co-absolute by
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1.9 (the extension to βN of the embedding ί: N—>aN is the required
map), but as \aN\ < \βN\, there is no irreducible perfect map from
aN onto βN.

We conclude this section with some miscellaneous known results.

PROPOSITION 1.10. Let W(X) denote the set of points at which
the space X is locally compact. Then W{X) = βX — clβx(βX — X).

Proof. Let p e W(X) and let A be a compact subset of X such
that pemtxA. By 3.15(b) of [6], peintβxA thus pgclβx(βX - X).
Conversely, if pe X — W(X) and V is a /3X-neighborhood of p, then
there is a compact subset K of V such that p e intβx K. Since p g
W(X), K - X Φ 0 ; thus p e clβx(βX - X).

The following theorem, and its corollary, are due to Parovicenko
[10] and Rudin [14].

THEOREM 1.11. [CH]. Let Y be a compact totally disconnected
Hausdorff space without isolated points. If:

( i ) Every zero-set of Y is regular closed
(ii) Y is an F-space
(iii) Y has c open-and-closed subsets,

then Y is homeomorphic to βN — N.

COROLLARY 1.12. [CH]. Let X be a locally compact, σ-compact,
noncompact space with a base of c open-and-closed sets. Then βX — X
is homeomorphic to βN — N.

Proof. Since X is locally compact and σ-compact, by 14.27 of [6]
βX — X is a compact F-space. Since X is σ-compact, it is Lindelof
and hence realcompact; it therefore follows from 3.1 of [3] that con-
dition (i) of 1.11 is satisfied by βX — X. As X is realcompact, βX — X
has no isolated points. Since X is Lindelof and has a basis of open-
and-closed subsets, by 16.17 of [6] βX — X is totally disconnected
and has a base of c open-and-closed subsets. Hence by 1.11 βX — X
and βN — N are homeomorphic.

Finally, the following result is due to Comfort and Negrepontis

[1].

THEOREM 1.13. [CH]. Let D be the discrete space of cardinality
y$! and let Ω be the subspace of βD — D consisting of all the points
in the βD-closure of some countable subset of D. Then:

( i ) Ω can be expressed in the form Ω = \Ja<ωiΩ(a), where each
Ω(a) is a homeomorph of βN — N, each Ω{a) is open-and-closed in Ω,
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and Ω(a) 3 U? <« ^ M (a ranges through the set of ordinals less than
the first uncountable ordinal a)γ).

(ii) Up to homeomorphism Ω is the only space satisfying the
conditions in (i).

(iii) The one-point compactίfication of Ω is homeomorphic to
βN- N.

2. .^'pleasant spaces* If A is a closed subset of X, let A*
denote the set clβxA — X (in particular, βX — X = X*). We are
interested in knowing when the map A—>A* is a Boolean algebra
homomorphism from R{X) into R{X*). It turns out that this is so
precisely when [clx{X - A)]* = clx*{X* - A*) for all AeR(X). We
are accordingly motivated to make the following definition.

DEFINITION 2.1. Let & be a family of closed subsets of X. We
shall call X a .^-pleasant space if [clx(X — B)]* = clx*\X* — JB*] for
all B e .^.

Before considering iϋ(X)-pleasant spaces, we make several observa-
tions and notational conventions.

REMARKS 2.2. ( i ) We shall let K{X), L(X), and %T{X) denote
respectively the families of all compact subsets, closed subsets, and
zero-sets of the space X.

(ii) For any space Xand any AeL(X), it is evident that X* =
A* U [clx(X- A)]*, and hence that clx*{X* - A*) S [c^(X - A)]*.

(iii) In [9], Mandelker defines a space to be "μ-compact" if the
intersection of all the free maximal ideals of C(X) is precisely those
functions in C(X) with compact support. It is an easy consequence
of theorem 4.2 of [9] that X is ^-compact if and only if it is ^(X)-
pleasant. Thus the concept of a .^-pleasant space is a generalization
of Mandelker's concept of a ^-pleasant space.

PROPOSITION 2.3. The map A—*A* is a Boolean algebra homo-
morphism from R{X) into R(X*) if and only if X is R(X)-pleasant.

Proof. Assume that X is i?(X)-pleasant and that A e R(X). Then

clx* (intx, A*) = cίx*[X* - ciz*(X* - A*)]

= clAX* ~ WAX - A)]*]

= [clx[X - clx{X - A)ψ

= [clx (intx A)]*

- A* .

Thus A*eR(X*) and the map A-->A* maps R(X) into R(X*). If
A,BeR(X), then
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(A V B)* = (A U B)* = A* U £* = A* V 5*

and

(A')* - [ c k ( Z - A)]* - ciAX* - A*) - (A*y.

Thus our map preserves complements and finite joins, and hence is a
Boolean algebra homomorphism.

Conversely, if A —> A* is a Boolean algebra homomorphism, then
(A*)'- (A')* for each AeR(X), and this implies that X is 2ϊ(X)-
pleasant.

We wish to show that the class of L(X)-pleasant spaces includes
several familiar classes of spaces. We need some preliminary results.
The topological boundary of a subset S of a space X will be denoted
by bdzS.

LEMMA 2.4. Let X be any space. If Ae R(X), Be L(X), and
A* S B*, then clx{A — B) is pseudocompact.

Proof. Put S - dx{A - B) and V = (intx A) - B. As A e
it follows that S = clxV. Suppose that S is not pseudocompact, and
choose he C(S) — C*(S). Then h is unbounded on V. It follows from
1.20 of [6] that V contains a countable set D = (dn)neN, C-embedded
in S, such that h is unbounded on D. As D is countable it is real-
compact and hence it follows from 8A.1 of [6] that D is closed in S
and hence in X. As h is unbounded on D, D is not compact and so
D* Φ φ

As S is completely regular, for each n e N we may choose fn e C(S)
such that fn(dn) = 1 and fJbdxS] = {0}. Let Z = Π{Z(fn): ne N}.
By 1.14(a) of [6], Z is a zero-set of S that contains 6dxS and is dis-
joint from D. As D is C-embedded in S, by 1.18 of [6] D is com-
pletely separated from Z in S. Hence there exists / e C(S) such that
f[D] = {1} and /[Z] = {0}. Define a real-valued function # on X by
# [ X - S] = {0}, g\S=f. As /[ftd r̂S] = {0}, it is evident that g belongs
to C(X) and completely separates D and B. Thus by 6.5 of [6] it
follows that D* Π 5* = 0. But ΰ g A and so μ f l * g A * . This
contradicts our assumption that A * g δ * . Hence clx(A — J5) is pseu-
docompact.

COROLLARY 2.5. If BeL(X) and X* = B*, then clx(X - B) is
pseudocompact.

The following proposition is a generalization of a portion of The-
orem 4.2 of [9]. The proof that (iii) implies (iv) appears, in essence,
both in [9] and in [11].
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LEMMA 2.6. Let & be a family of closed subsets of X. Assume
that έ% is closed under finite unions and that {B*: ΰ e ^ } is a base
for the closed subsets of X*. The following are then equivalent:

( i ) X is ^-pleasant.
(ii) For any B e &, X* = 5* implies that clx(X — B) is compact.
(iii) For any Beέ£, X* g clβxB implies X* g int^ clβxB.
(iv) For any J B G ^ , int2* B* = (iτΛβx clβxB) - X.

Proof. ( i) implies (ii): If X is ^-pleasant and X* = J3* for
B G ^ , then [clx(X - 5)]* = c i Γ ( I * - £*) = 0 and so clx(X - B) is
compact.

(ii) ίmp^es (iii): If X* g ci^JS, by (ii) clβx(X - ΰ ) g l . Thus
X* g βX - clβx(X - B) g C^ZJB and (iii) holds.

(iii) implies (iv): It is always true that (int^ clβxB) — X g intz* J3*.
Let pe intA*J3*. Since {B*: Be ^?} is a base for the closed subsets
of X*, there exists Ae^ such that peX*-A*<^B*. Thus
X* = (A U J5)* and as έ%? is closed under finite unions, A{J Be ^ .
Hence by hypothesis X* g int^^ clβx(A U B). Thus

p e mtβx clβx(A U B) Π (/5X - c^xA) g clβxB

so p e int;3 γ cZ^5. Thus (iv) holds,
(iv) implies ( i ): If ΰ e ^ , then

clx*(X* - B*) = X* - int^jB*

= (/SX - int^x cZ^B) - X (by (iv))

- clβx(βX - clβxB) - X

= ci^z(X - B)~ X

= [clx{X- Bψ ,

and the lemma is proved.
The conditions imposed on & in 2.6 are obviously satisfied if

^ - L(X) or ^ = T(X). It is easy to show that {[clx (intx Z)]*:
Ze^(X)} is always a base for the closed subsets of X* (see [17],
2.10); hence R{X) also satisfies the hypotheses imposed on έ%? in 2.6.

THEOREM 2.7. The class of all L{X)-pleasant spaces includes the
class of all realccmpact spaces, the class of all metric spaces, and the
class of all nowhere locally compact spaces.

Proof. Let BeL(X) and suppose X* = ]3*. By 2.5 clx(X - B) is
pseudocompact. If X is realcompact, its closed subspace clx(X — B)
is both realcompact and pseudocompact (8.10 of [6]), and hence is
compact (5H.2 of [6]). If X is metric, then clx(X — B) is a pseudo-
compact metric space and hence is compact (by 3D.2 of [6], every
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pseudocompact normal space is countably compact). In either case 2.6
implies that X is L(X)-pleasant.

If X is nowhere locally compact, choose Be L{X) If X* S olβxB,
by 1.10 clβxB = βX and s o ΰ = I . Thus X is L(X)-pleasant by 2.6.

REMARKS 2.8. ( i ) Theorem 8.19 of [6], theorem 4.2 of [9], and
2.6 together imply that every realcompact space is ^(X)-pleasant.
Theorem 2.7 can be viewed as an extension of this result.

(ii) If X is metric then JT(X) = L{X). It is proved in [9] that
every metric space is ,SΓ(X)-pleasant, and hence L(X)-pleasant.

The following result is an immediate consequence of 2.3 and 2.7.

THEOREM 2.9. If X is either realcompact, or metric, or nowhere
locally compact, then the map A —> A* is a Boolean algebra homomor-
phίsm from R{X) into R(X*).

Since every locally compact σ-compact space is realcompact, 2.9
is a generalization of theorem 2.8 of [17].

Two EXAMPLES 2.10. In this section we give an example of a
space that is ^Γ(X)-pleasant but not 2?(X)-pleasant, and an example
of a space that is iϊ(X)-pleasant but not ^Γ(X)-pleasant.

( i ) Let W denote the space of all countable ordinal numbers.
Then βW — W U {&>J, where ωι is the first uncountable ordinal. By
8.19 of [6] and 4.2 of [9], W is /^-compact and thus %T(W)-pleasant
(see 2.2 (iii) and 2.6). Ii aeW let a+ denote the smallest ordinal
greater than a. Put U= {a+:a is a limit ordinal in W) and V =
{a+: a e U}. Then clwU and clwV are in R{ W). Evidently U Γ) V = Φ,
and so clwU Λ clwV = φ. As U and V are cofinal subsets of W,
evidently {clwU)* A (clwV)* = {ωj Λ {ωj = {α)J. Hence the map A—>
A* is not a Boolean algebra homomorphism from R(W) into R(W*),
so by 2.3 W is not #(I^)-pleasant.

(ii) Let F be a finite subset of βN- N, and put X = βN- F;
then βX — βN. By 1.6 X is extremally disconnected, and so every
regular closed subset of X is open-and-closed in X. Hence if A e R{X),
[clx(X- A)]* - X* - A* = clx<(X* - A*) (since X* = F). Thus X
is R{X)-pleasant.

As βN is an infinite compact space, by 4K.1 and 4L.1 of [6] there
exists Ze %*(βN) such that Z — int^v Z Φ φ. Choose pe Z — mtβNZ;
evidently p e βN — N, so without loss of generality assume that Z Π
F = {p}. Put H = Z Π X; then He^T(X). If p t clβNH, there exists
/ G C(βN) such that f(p) - 0 and f[clβNH] = {1}. Thus {p} = Zf)Z(f),
which contradicts 9.6 of [6]. Hence {p} = clβxH - X = H*. Thus
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clz*(X* - H*) = F - {p}. But clβx{X - H) = clβN(βN - Z), which
contains p since p <£ int^v Z. Thus p e [clx(X - H)] * and so X is not
;T(X)-pleasant.

Recall that bdxA denotes the topological boundary in X of a sub-
set A of X.

PROPOSITION 2.11. Let X be an L(X)-pleasant space, and let
AeL(X). Then {bdxA)* C bdx*A*. If X is normal, then (bdxA)* =
bdx*A*.

Proof. Since A is closed in X we have

φdxA)* = [AΓ\dx{X- A)]*

QA*f)[clx(X- A)]*

= A* n clx.(X* - A*)

= bdx.A* .

If X is normal, a modification of the argument used in 6.4 of [6]
shows that the above inclusion is in fact an equality.

3* Co-absolutes of βX-X. Let X be any completely regular
Hausdorfϊ space. It is evident that the family K(X) Π R(X) is an
ideal of the Boolean algebra R(X). Let us denote the factor algebra
R(X)/K(X) Π R(X) by Stf(X). If X is #(X)-pleasant, then obviously
R(X) Π K(X) is the kernel of the homomorphism defined in 2.3, and
hence {A*: A e R(X)} is isomorphic to j^(X). For each A e R(X) this
isomorphism takes the subset A* of βX — X to the equivalence class
[A] of Jϊf(X).

It is an immediate consequence of 3.15(b) of [6] that K{X) Π
R{X) = K{X) Π R(βX)y and this equality will be used repeatedly.
Throughout this section k will denote the map from E{βX) onto βX
defined in 1.4 and 1.7, and βX - X will be denoted by X*.

THEOREM 3.1. Let X be any completely regular Hausdorff space.
(i) S(j*f(X)) and clβE{X)[βE(X) - E(X)] are homeomorphic.
(ii) The space X is R(X)-pleasant if and only if the restriction

of k to βE(X) — E(X) is a perfect irreducible map from βE(X) ~
E(X) onto X*.

Proof. ( i ) Let Δ be an ideal of the Boolean algebra U, let λ
be the canonical isomorphism defined in 1.3, and put

H= S(U) - U {\{u):ueA} .

In § 10 of [15] it is shown that the map g defined by g([u] )= X(u)Γ)H
is a Boolean algebra isomorphism from the factor algebra U/Δ to the
open-and-closed subsets of H. Since H is closed in S(U) and hence
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compact and totally disconnected, the well-known duality between
Boolean algebras and compact totally disconnected spaces implies that
H and S(U/Δ) are homeomorphic.

Now let U = R{βX) and Δ = R{βX) Π K(X). The isomorphism
defined in 1.2 fixes Δ element wise, and so U/Δ is isomorphic to J^(X).
Hence S(U/Δ) and S(J&{X)) are homeomorphic, and so by the above
remarks it suffices to show that in this case H — clβE{X)[βE{X) — E(X)\.

Evidently S(U) - S(R(βX)) = E{βX) = βE(X) (see 1.8), and H =
βE{X) - U (λ(A): A e R(βX) Π K(X)}. Suppose that p e βE(X) - E(X).
Thus k(p)eX*. If AeR(βX) and peλ(A), then &(p) e Jc[X(A)] = A
and so A - X ^ ? . Thus Ag R(βX) Π i£(X) and so peif. Hence
/SJ^X) - #(X) S H, and as if is closed in βE(X) we have

clβEUΊ[βE(X) - E(X)] S H.

Conversely, if p£ clβE(X)[βE(X) - E(X)], by 1.10 pe W(E(X)). Hence
there is a compact J5r(X)-neighborhood A of p, and as β(E(X)) is
totally disconnected we may assume that A is open-and-closed in
β(E(X)). By 1.3 A = X(F) for some FeR(βX). As A £ λf[jη, it
follows that k[A] = ί7 £ X; thus FeR(βX) Π iί"(X). Hence p£ H
and s o f f = c^(Z)[/5i?(X) - ^(X)]. Hence (i) is true.

(ii) Since A; is perfect and βE(X) - E(X) = kr[X*], evidently
k\βE{X) — E(X) is perfect. The only question is whether this rest-
riction of k is irreducible.

Suppose that X is i?(X)-pleasant, and let B be a proper closed
subset of βE{X) — E{X). Then we can find an open-and-closed subset
F of βE(X) such that B £ JP - £?(JSΓ) and [^(X) - ^(X)] - F Φ φ.
By 1.2 and 1.3 there exists AeR(X) such that F = λ(ci^A). Thus
ft[S] £ fc[F - ί (X)] = ci^A - X = A*. Suppose that A* - X*. Since
X is JS(X)-pleasant, by 2.6 clx(X — A) is compact, and hence a mem-
ber of R(βX); i.e. dβx{βX - clβxA) e R(βX) Π #(X). As λ preserves
Boolean-algebraic complements, it follows that

βE(X) - F - X(clβx(βX ~ clβzA)) S ^ ( X ) - # .

Hence βE{X) — F £ E'(X) which contradicts our choice of ί7. Hence
A* ^ X*, fe[B] is a proper closed subset of X*, and k\βE{X) - E{X)
is irreducible.

Conversely, assume that k\βE(X) — E(X) is irreducible. We shall
prove that the contrapositive of 2.6 (ii) holds. Let A e R{X) and
suppose that clx(X — A) is not compact. Then clβx(βX — clβxA) —
X Φ φ, and so X(clβx(βX - clβxA)) - E(X) Φ φ. Thus

[βE(X) - E(X)] - X(clβx(βX - clβxA))
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is a proper closed subset of βE{X) — E(X); in other words, X{clβxA) —
E(X) is a proper closed subset of βE{X) — E(X). By hypothesis this
implies that k[X(clβxA) — E(X)], i.e. A*, is a proper closed subset of
X*. This establishes the contrapositive of 2.6(ii) and hence by 2.6
X is JS(X)-pleasant.

COROLLARY 3.2. If X is a metric space, or nowhere locally com-
pact, or realcompact, then there is an irreducible perfect mapping
from βE(X) — E{X) onto βX — X, and these two spaces are co-absolute.

Proof. This follows immediately from 3.1, 2.7, and 1.9.

We now consider co-absolutes of specific classes of spaces. Our
first result is obtained by elementary means and does not require the
machinery developed in § 2.

THEOREM 3.3. Let X be nowhere locally compact. Then:
( i ) βE(X) — E(X) is extremally disconnected.
(ii) If X is extremally disconnected, so is X*
(iii) E(X*) = βE(X) - E(X) (up to homeomorphism).

Proof. ( i ) As X is nowhere locally compact, by 1.10 X* is
dense in βX. Hence by 1.5 £r[X*], which is βE{X) - E(X), is dense
in βE(X). Thus by 1.6 βE(X) - E(X) is extremally disconnected.

(ii) This follows immediately from (i).
(iii) Either using 3.2 or by direct calculation, we see that the

restriction of k to AΓ[X*] is a perfect irreducible map from /<r[X*]
onto X*, and so by 1.8(i) it follows that E(X*) = βE{X) - E(X).

COROLLARY 3.4. [CH]. Let Q and I denote respectively the spaces
of rational and irrational numbers. Then E(Q*) can be partitioned
into two disjoint subspaces, one hornzornorphic to E(I) and the other
homeomorphic to JV*. The preceding statement is also valid when
"Q" and "I" are interchanged.

Proof. Since Q is a dense subspace of the space JR of real num-
bers, by 1.5 the space k^[Q] is a dense subspace of E(βR), and hence
is extremally disconnected (see 1.6(ii)). (In this case k is the cano-
nical irreducible map from E{βR) onto βR). Hence by 1.8(i) kr[Q]
may be identified with E'KQ), and by 1.3(ii) we may identify E(βR)
with βE[Q). Similarly £r[/] may be identified with E{I). Thus

βE{Q) - E[Q) - k-[βR - Q]

- kΓ[R* U /]

- [βE(R) - E(R)] U
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Since \R(R)\ = c, and since k\E{R) is a perfect irreducible map from
E(R) onto R, it follows that E(R) is locally compact, σ-compact, and
noncompact, and has a basis of c open-and-closed sets. Hence by 1.12
βE(R) - E{R) is homeomorphic to N*, and so E(Q*) = E(I) U JV*.
As "Q" and "J" can be interchanged in the above argument, the
corollary follows.

In Theorem 2.19 of [17], we have proved [CH] that if X is a locally
compact, σ-compact, noncompact Hausdorff space and if |^Γ(X)| = c,
then there is an irreducible map from iV* onto X*. The following
result is a slightly modified version of this. Note that its proof is
considerably more.efficient than that employed in 2.19 of [17].

THEOREM 3.5. [CH]. If X is locally compact, σ-compact, and
noncompact, and if \R{X)\ = c, then there is an irreducible map from
N* onto X*.

Proof. Since k\E{X) is a perfect map from E(X) onto X, our
assumptions imply that E(X) is locally compact, σ-compact, and non-
compact. Since \R(X)\ = c, E(X) has a basis of c open-and-closed
subsets, so by 1.12 βE(X) - E(X) is homeomorphic to N*. But X
is σ-compact and hence realcompact (see 8.2 of [6]). Hence X is
ϋ?(X)-pleasant, and our theorem follows from 3.1 (ii).

REMARK 3.6. Let X be locally compact, realcompact and non-
compact. As k\E{X) is a perfect map, it follows that E(X) is locally
compact and noncompact. As X is realcompact, so is E(X) by 8.13
of [6]. It follows from 3.1 of [3] that

3?(βE(X) - E(X)) £ R(βE(X) - E{X)) .

In an extremally disconnected space every regular closed set is open-
and-closed; hence if βE(X) — E(X) were extremally disconnected,
every zero-set of it would be open-and-closed. It follows from 4J and
9.12 of [6] that βE(X) - E(X) would be an infinite compact P-space,
which by 4K of [6] is impossible. Hence βE{X) — E(X) is not ex-
tremally disconnected, and although there is a perfect irreducible map
from βE(X) - E{X) onto X* (see 3.1), nonetheless βE(X) - E(X) Φ

We now identify some co-absolutes of X* when X is a locally
compact metric space.

THEOREM 3.7. Let X be a locally compact, noncompact metric
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space without isolated points, and let δX denote the smallest cardinal
number m such that X has a dense subset of cardinality m. Then:

( i ) There is an irreducible perfect map from F* onto X*, where
Y is the free union of δX copies of E ([0, 1]).

(ii) [CH] If either δX = yt or δX = ^ , then X* and JV* are
co-absolute.

Proof. ( i ) A theorem of A. H. Stone (see 9.5.3 of [2], for ex-
ample) states that every metric space is paracompact; it is also known
([2], 11.7.3) that every locally compact paracompact Hausdorff space is
a free union of locally compact <τ-compact Hausdorff spaces. Since a
σ-compact metric space is separable, it follows easily that either
δX = y$0 and X is σ-compact, or else δX > y$0 and X is the free
union of δX locally compact, σ-compact, noncompact metric spaces.

Suppose first that δX = ^ 0 . As k\E(X) is a perfect map from
E{X) onto X, it follows that E{X) is locally compact, σ-compact and
noncompact. As X has no isolated points and k\E(X) is irreducible,
it follows that E(X) has no isolated points. By 11.7.2 of [2], since
E(X) is locally compact and σ-compact it can be written in the form
\JneNclE(χ)V(n), where for each neN, V(n) is open, clE{X)V{n) is com-
pact, and clmx)V{n)ξi V(n + 1). As E(X) is noncompact, the last
inclusion may be assumed to be proper. Put B(0) = clE{X)V(0) and
B(n) = clE{X)V(n) — clE{X)V{n — 1) if n ^ 1. As E(X) is extremally
disconnected, its regular closed sets are all open-and-closed; hence
{B(n):neN} is a family of compact, pairwise disjoint subspaces of
E{X) whose union is E{X). As each B(n) is open-and-closed in E(X)
it is extremally disconnected (see 1H of [6]). As E(X) has no isolated
points, neither have any of the B(n). The restriction of k\E(X) to
each B(n) is easily seen to be an irreducible map from B(n) onto
k[B(n)]; hence k[B(n)] is a compact metric space without isolated
points whose absolute is B(n). But any two compact metric spaces
without isolated points have homeomorphic absolutes (see § 9C of [15]);
hence each B(n) is homeomorphic to E([0, 1]). Thus E(X) is expres-
sible as a free union of ^ 0 copies of i?([0, 1]).

If X were not σ-compact, then as noted above, X— \JaeiX{oc),
where each X(a) is locally compact, σ-compact, and noncompact, and

\Σ\ = δX. Thus E(X) = U*ente-[X(a)]. As each hr[X(a)] is open in
E(X) and thus is extremally disconnected, the argument of the pre-
vious paragraph shows that E(X) is a free union of δX ^ 0 = δX
copies of E([0, 1]).

In either case, since X is metric by 2.9 and 3.1 there is an
irreducible map from βE{X) — E(X) onto X*. Hence (i) is true.

(ii) If δX= Ko, then \R(X)\ - c and the proof of 3.5 imme-
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diately shows that βE(X) - E(X) is homeomorphic to N*. Thus by
1.9 iV* and X* are co-absolute.

If dX = Hi» well-order the fc^ copies of E([0,1]) whose free union
is E(X) and write E(X) = Oa<VlF(a)f where each F{a) is a copy of
E([0,1]). (ω, is the first uncountable ordinal.) Put Y= E(X). Let
(λ(α)) α<ft) 1 bea well-ordering of the countable limit ordinals and for
each a < ω,, put G(a) = (J {F(y): Ύ < λ(α)} and 42(α:) = clβτG(a) - F.
Finally, put / = U*<«iβ(α) β y 1-12 each Ω(ά) is homeomorphic to
N*, and since 7 < a implies G(a) — G(y) is not compact, for each a
we have β(α)3Ur<« β W Since each G(a) is open-and-closed in F*,
each β(#) is open-and-closed in J. Hence by 1.13 (ϋ) / is homeomorphic
to Ω. But J is evidently dense in F*, so F* is a compactification of
J. By 1.13 (iii) iV* is homeomorphic to the one-point compactification
of /, so there is an irreducible map from F* onto JV*. Thus by 1.9
F* and iV* are co-absolute. But by part (i) of this theorem, F*
and X* are co-absolute; hence X* and JV* are co-absolute.

4* Absolutes and remote points* The main result in this sec-
tion is 4.5, which identifies the absolute of a compact metric space
without isolated points with the Stone-Cech compactification of a certain
set of remote points (under assumption of the continuum hypothesis).

A point p 6 βX is called a remote point of βX if p is not in the
/9X-closure of any discrete subspace of X. We shall denote the set
of remote points of βX by T{βX). Remote points have been studied
by several authors (see [4], [11], and [13]). One of the better char-
acterizations of T(βX) has been given by Plank in Theorems 5.3 and
5.5 of [11]. The following is a statement of these results of Plank.

THEOREM 4.1. Let X be a metric space without isolated points.
Then

T(βX) =

If in addition X is separable and noncompact, and if the continuum
hypothesis is assumed, then \ T(βX)\ = 2C and T(βX) is dense in X*.

As before, let k denote the canonical irreducible map from E(βX)
onto βX and let λ denote the Boolean algebra isomorphism from
R(βX) onto the open-and-closed subsets of E(βX).

LEMMA 4.2. Let X be a metric space without isolated points. If
peT(βX) then |Aτ(p)| == 1.

Proof. Let p e l * . Suppose that x and y are distinct points of
βE(X) and that k(x) = k(y) = p. By 1.2 there exists AeR(X) such
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that xeX(clβxA) and yeβE(X) — \{clβxA). This latter set is

X(clβx(βX - clβzA)) ,

since λ is an isomorphism. Thus p e [clβx(βX — clβxA) Π clβxA] — X =
[clx(X - A)]* n A*. As X is L(X)-pleasant, it follows that

p e clx*(X* - A*) Π4* = δdx*A*

As 12(X) § JT(X) since X is metric, we have A e %*{X) and so by 4.1
pi T(βX). The lemma now follows.

THEOREM 4.3. Let X be a metric space without isolated points.
Then T(βX) and λΓ[T{βX)\ are homeomorphic.

Proof. By 4.2 k\kΓ[T{βX)] is a one-to-one continuous mapping
from kr[T{βX)] onto T{βX). As & is a closed mapping from /3#(X)
onto βX, evidently k\kr[T{βX)\ is a closed mapping from /ir[T(/3X)]
onto T(βX), and hence is a homeomorphism.

COROLLARY 4.4. Lβί X be a metric space without isolated points.
If T(βX) is dense in X*, then βE(X) — E(X) contains a dense
homeomorphic copy of T(βX).

Proof. Since X is metric and hence i?(X)-pleasant, by 3.1
k\βE(X) - E(X) is an irreducible map from βE(X) - E(X) onto X*.
Hence by 1.5 kr[T{βX)] is dense in βE(X) - E(X), and the corollary
follows from 4.3.

THEOREM 4.5. [CH]. Let X be a separable, nowhere locally com-
pact metric space without isolated points. Then T{βX) is extremally
disconnected and E{βX) = β[T(βX)].

Proof. By 4.1 T(βX) is dense in X*, which in turn is dense in
βX by 1.10. Hence by 1.5 kΓ[T{βX)\ is dense in the extremally
disconnected space βE(X). By 1.6 and 4.3 it follows that T(βX) is
extremally disconnected and that βE(X) = β[T(βX)].

As remarked in the proof of 3.7, all compact separable metric
spaces without isolated points are co-absolute: since every separable
metric space without isolated points has a metric compactification, all
compactifications of separable metric spaces without isolated points
are co-absolute (see 1.2). Hence, for example, it follows from 4.5
that E([0,1]) = /9[Γ(/3Q)], where Q denotes the rationals.

REMARK 4.6. [CH]. The assumption in 4.5 that X is nowhere
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locally compact cannot be dropped. To see this, assume that X is a
locally compact, noncompact separable metric space without isolated
points. An easy generalization of the proof of 6.2 of [11] shows that
there exists p e T{βX) that is not a P-point of X*. Hence there exists
Ze%"(X*) such that pebdx*Z. Since X is locally compact and real-
compact, by 3.1 of [3] Z = clx* (intx* Z). Now consider T{βX) Π intz* Z
and T(βX) - Z. The former is an open subset of T(βX), the latter
is a cozero-set of T(βX), and they are disjoint. As T(βX) is dense
in X*, p belongs to the 7X/3X)-closure of both of these sets. Hence
T{βX) cannot even be basically disconnected (see 1H of [6]), let alone
extremally disconnected.
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