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A GENERALIZATION OF COMMUTATIVE AND
ASSOCIATIVE RINGS

ERWIN KLEINFELD

Let R be a ring satisfying the following three defining
relations: (i) (x, ¥?, ©) = yo(w, ¥, ©), (i) (&, y,2) + (W, 2, ) + (2,
x, ) =0, and (iii) ((z, ¥), =, x) = 0, where (@, b, ¢) = (ab)c — a(be),
(@, b)=ab—ba, and aob=ab+ ba. All three identities follow
from commutativity, hence are true in Jordan rings. Besides
(i) holds in Lie and alternative rings, (ii) holds in Lie and
quasiassociative rings and in alternative rings of character-
istic three, while (iii) holds in right alternative rings. The
main result is that if R has characteristic = 2,3 (that means
no elements in R have additive order two or three) and no
divisors of zero then R must be either associative or
commutative,

The classification of commutative rings has not been attempted,
perhaps because the important tool of decomposition relative to an
idempotent due to Albert requires power-associativity. It is well known
that commutative rings need not be fourth power associative. Besides
one would have to find a way to classify the numerous finite, com-
mutative devision rings. The choice of identities was dictated by the
fact that there exist rings without divisors of zero which satisfy (i)
and (ii) but which are not commutative. The Cayley-Dickson division
algebras satisfy (i) and (iii) yet are not commutative. In fact the
Cayley-Dickson division algebras over fields of characteristic 3 satisfy
all three identities. There is some reason to believe that ultimately
there will be found a set of identities suitable for generalizing the
better known rings such as alternative, Jordan and Lie rings. The
present study is helpfull in delineating possible candidates for replacing
commutativity. A few examples will be discussed at the end of the
paper.

Throughout most of the paper we shall require R to be a ring
which satisfies (i)-(iii), has characteristic = 2, 3 and no divisors of zero.
However in the beginning we can dispense with (iii) and weaken the
assumption of no divisors of zero to assuming that there exists no
element x50, such that 2*=0. In every ring we have the
Teichmiuller identity

f(w’ X, Y, 2) = (’LUZU, Y, Z) - (wv rY, Z) + (QU, @, yZ)
— w(x, ¥,2) — (w, z,y)z2=0.

(1)

Hence
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0 = flw, 2, 4, 2) — f(&, ¥, 2, w) + [y, 2, w, ¥) — [z, w, )
= (wzx, ¥, ) — (w, xy, 2) + (W, , y2) — w(x, ¥, 2) — (W, &, Y)z
— (xy, 2, w) + (2, ¥z, w) — (x, ¥, 2w) + 2(y, 2, w) + (&, ¥, R)w
+ (yz, w, ) — (y, 2w, ) + (¥, 2, wr) — Y, w, ) — (¥, 2, W)x
— (zw, 2, ¥) + (2, wx, ¥) — (2, w, 2y) + 2(w, 2, ¥) + &, W, VY .

As a result of (i) we have (wzx,y,2) + (2, wx, ) + (¥, 2, wx) =0,
—(zy, 2, w) — (W, 2y, 2) — (2, w, 2y) = 0,

(y2, w, 2) + (@, y2, w) + (w, x,y2) =0, and — (2w, x, ¥) — (¥, 2w, ) —
(z, y, zw) = 0. Comparing these identities with the previous one we
see that —w(z, ¥, 2) — (w, x, ¥)z + z(y, 2, w) + (%, ¥, 2w — YR, w, ) —
(y, 2, w)x + z(w, x, ¥) + (3, w, x)y = 0. Hence

(2) (wy (x’ Y, z)) - (x9 (yy %, w)) =+ (y, (Z, w, x)) - (Z, (w: @, y)) =0.

In (2) put w=2=w. Then 0=(3, (x, y, v))—(z, (%, x, ¥)) + (¥, (2, », ¥))—
(z, (y, z, x)). If y=z=2 in (ii) then 3(=, x, ) =0, so that (z, x, ) =0.
If z=2 in (ii) then (z, ¥, ) + (x, 2, ¥) + (y, , ) = 0. This results
in 2(x, (x, ¥, ®)) = 0, so that

(3) (x9(xyyyx)):0'

In an arbitrary ring we have the semi-Jacobi identity (zy, 2) —2(y, 2) —
@ 2y =92 + (2,9 — (x,2,y). But in view of (ii) we may
rewrite it as

(4) (xy,2) — 2(y,2) — (@, 2y = —(y,2,2) — (2,2,9) .

Define % = (x, ¥, ). With this notation (3) states that (u, x) = 0.
Then as a result of (4) (uz, ) = — (u, x, x) — (x, ©, w). But (ii) implies
that —(u, x, ) — (z, ©, u) = (%, u, x), so that (uzx, ) = (x, , ®). Simi-
larly (2u, ©)=—(x, %, u) — (%, 2, ¥) = (%, %, x), so that (xou, x)=2(x, u, x).
From a linearization of (i) it follows that (x, oy, x) = xo(x, ¥, ) +
yo(x, x, ) = xo(x, ¥, ©). Then because of (3), 0 = (z, (x, xoy, x)) =
(x, wou). Consequently 2(x, u, z) = 0, so that

(5) @, u, 2) = (@, (@9, 2),2) =0.

Substituting ¥* for ¥ in (5) we see that 0=(z, (x, ¥% ), x) = (x, you, x),
using (i). From a linearization of (i) it follows that (x, you, ) =
yo(x, u, ) + wo(x, ¥, ¥) = uo(x, y, x), using (56). Thus 0 = uo(z, ¥, ).
But (x, ¥, ) = %, so that 2u®* = 0. But then %’* =0, so that u =
(x, ¥, x) = 0. We have proved

LEMMA. If R is a ring of characteristic + 2, 3, satisfies (i) and
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(i) and has no element x # 0, such that x* =0, then R must be
flexible, that is satisfy the identity (x, y, x} = 0.

For the remainder of the paper we assume that R satisifes (iii),
has no divisors of zero and satisfies the hypotheses of the Lemma.
In view of the Lemma, (4) may be rewritten as

(6) (xy, 2) = 2(y, 2) + (v, 2)y .

Using (6) repeatedly we have ((w,2x,v),2) = (wz-y — w-xy, 2) =
wx‘(yy z) + W(x, z)'y + (w, Z)x‘y - 'LU'fC(y, Z) - W'(x, Z)’y - (wy Z)'ﬂ?y =
((w’ z)’ x’ y) + (w) (x? z)? y) + (w’ mi (y) z))' Thus

(1) (w,2,9),2 = (w,2), 29 + W, (2,9 + w2 (Y2) .

If we put z=y==w in (7) then ((w, =, 2), )= ((w, 2), z, )+ (w, (x, x), )+
(w, z, (z, 2)). As a result of (iii) we have

(8) (w, 2, ©), x) = 0 = ((z, ©, w), 2) .

Let v=(z,y). Then 0=f(z, ¥y, x, )= (Y, 2, ¥) — (@, y2, ) + (2, ¥, 2Y) —
2y, ©, ¥) — (x, 9, x)y. Because of the Lemma the last two terms
vanish. Then (ii) implies that (zy, z, v) + (x, ¥, xy) = — (¥, 2y, %) =
(x, 2y, ¥), using the Lemma. Hence 0= (z, zy, v)— (%, yz, ¥) = (z, v, ¥).
We have shown that

(9) (@, v,9) =0.

Linearizing (iii) we see that ((v, v), «, )+ (%, ¥), v, ) + ((z, v), =, ¥)=0.
Thus (v, 9, ) + (v, %, y) = 0. Since (ii) implies (@, ¥, 2) + (y, z, v) +
(@, v,y) =0, we may use (9) to obtain (v, ¥, 2) + (¥, 2, v) = 0. But
then (v, %, ¥) = (¥, ©, v). Because of the Lemma we have (v, z,y) =
—(y, , v). Thus (v, x, ¥)=0=(y, z, v). This together with the Lemma
and (9) implies, using (ii)

@ vy ==Uuvr=02y==Uzv=017v-2

19 =(x,9,v)=0.

In (7) put w= =2, and z=1y. Then ((x, 2,9,y =, ¥9),,v) +
(=, (x, ), ¥) + (x, =, (y, y)) = 0, using (10). Hence
(11) ((W, fU, y)a y) = 0 = ((y’ x9 CC), ’,l/) *

By using a linearization of (11) together with flexibility it follows
that

(12) (ﬂf, (xy Y, Z)) = _(xy (xy z, y)) = (3}', (yy z, x)) = —‘(CU, (zy Y, (U)) .

But since (, ¥, 2) + (v, 2, ) + (2, , y) = 0, using (ii) we have
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(13) <‘,Uy (zv €, y)) = —2(37, (xy Y, Z)) .

Using (6) we see that (2%, (z, 2, ¥)) = xo (2, (x, x, ¥)) = 0, as a consequence
of (8). But then a linearization of (11) gives us ((z, z, 2%, y) =
__((xy x, y)v xZ) = <x27 (ﬂ?, €, ?/)) =0. So

14) (@ @, 2),y) =0.
By linearizing (14) we see that

((woy, x, ), ¥) + (2% ¥, ), ) + ((&*, x,9),y)=0.

However a linearization of (11) shows that

((xoyy X, Q?}, ?/) = _«yv X, iU), {,Uo'y) = (xoyy (yy @, .’17)) = _(xoyy (ﬂ?, @, y)) .

But use of (8), together with (8) and (11) implies that (zoy, (v, x, %)) =
0, so that ((xzoy, x, z), v) = 0. Hence (2% ¥, 2), ¥) + (2% z, ¥), y) = 0.
But this last identy together with a linearization of (11) and the Lemma
shows that (2%, @, ¥}, y) = —((¢", ¥, ©), ¥} = ([, ¥, ), y) = — ((y, 2, @), ¥) =
((y, 2, ®), y). Since (i) gives us &% =z, y) + (=, 9, 2°) + (¥, 2*, ) =0,
we see that 3((«* z, ), y) =0. Using characteristic different from 3,
this leads to ((z? z, %), y) = 0. Thus

15) (@ =, v, v = (g, y, 2%, v) = ({y, 2%, ),y = (2%, ¥y, ), V)
= ((y, %, 2%, y) = ((x,2%, y),y) = 0.

Then 0 = f(z, x, 2, ¥) = (@, 2, y) — (x, 2% y) + (x, 2, vy) — 2(x, 2, y) —
(x, x, z)y implies, using (15) that ((z, x, zy), v) = (x(z, =, ¥), y). Follow-
ing (14) we proved that ((z, x, zy), y) = 0. Thus (2(z, z, ¥), y) = 0.
But then using (6) we have 0 = (x(x, z, %), ¥) = 2((z, x, v), ¥) + (&, ¥)
(z, x, ¥) = (x, ¥)(x, z, y¥), using (11). Thus

(16) @, (@ 2y =0.

Linearizing (10) we obtain

a7 (@, w, t) + (w,y),z, 1) + ((»8), w9y + (w, ), 2,y =0.

In A7) put w = (x, 2), and ¢t = (2, , 2). Then (z, t) = (=, (z, 2, 2)) =0,
because of (8). Also using a linearization of (11) together with (iii),
(w, t) = ((z, 2), (z,2,2) = — (2, (x, %, (x,2)) = 0. Thus the last two terms
vanish and we are left with

(18) ((x’ y)r (xy Z), (xv x, Z)) = _<((x7 Z)y y)y X, (xy xX, Z)) .
We note that by using (6) twice we get

(19) ((x’ y)y Z) + ((yy z)’ x) + ((Z, x)y y) =0.
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If we linearize (10) we see that ((z, ¥), @, t)= — ((%, ©), @, ¥). In this last
identity put y=(, 2), and ¢t = (z, @, 2). Then ((z, (y, 2)), #, (@, 2, 2)) =
—((z, (z, %, 2)), %, (y, 2)) = 0, using (8). Thus (%, 2), 2), 7, (¢, %, 2)) = 0.
But then using (19), — (=, 2), ), 2, (%, 2, 2)) = (2, ), ¥), @, (*, @, 2)) =
—(((z, y), 2), 2, (x, 2, 2)). This together with (18) implies that

(20) ((il}', :U), (x; Z), (ﬂ?, &, z)) = —-(((Q’J, y)y Z), Z, (xi @, Z)) .
Linearizing (16) we see that

(@, )t t, s) + & i, t,8) + CyE, e, s) + (@9 Y

@) F 9@ty + (bt By = 0.

In (21) let ¢t = (z, %), and s= (¥, ,2). As a result of linearizing (11)
we see that (¢ s)= ((&, ¥), (&, 2, 2)) = — (2, (%, @, (z, ¥))) =0, using (iii).
This makes the last two terms vanish. Also (z, s) = (z, (z, 2, 2)) = 0,
because of (8), so only the first three terms remain. But (v, ¢, s) =
(z, (z, v), (x, &, 2)) = — (=, (x, (x, z, 2)), ¥y) =0, using a linearization of
(10) together with (8). Similarly

(t! &y S) = ((ﬁ’/’, y)’ &y (xa @y Z)) = ——((93, (iU, €, Z)), @, (CU, y)) =0,

again utilizing a linearization of (10) together with (8). Thus only
one term survives, namely 0= (x, ¥)(t, ¢, 8) = (x, ¥)((z, ¥), (x, v), (z, z, 2)).
Using the hypothesis of no divisors of zero we get

((x; y)’ (x’ y)’ (x’ €, z)) =0.
Linearizing the last identity we get
(22) (@ y) (@, 2), (@, x,2) = —((, 2), («, 9), (¥, 2,2) .

Using (17) on the right hand side of (22) we note that —((z, 2), (z, %),
@,2,2) =(((2,9), 2), ®, (@,2,2)) + (2, (,2,2)), (2,9), 2) + ((2,9), @,2,2)),2,2).
However the second term of the last identity vanishes because of (8),
while ((z, ¥), (#, 2, 2))= —(2, (7, 2, (2, ¥)) = 0, because of a linearization
of (11) and (iii). Thus the third term vanishes also. This leaves us
with

(23) —((, 2), (x, 9), (@, », 2)) = ((x, v), 2), @, (@, 2, 2)) .
Combining (22) with (23) we find that

(24 ((, ), (@, 2), (x, 2, 2) = (%, 9), 2), @, (¥, 2,2))

But comparing (24) and (20) and use of characteristic not 2 yields

(25} ((x: z)r (-27, ?/), (.’E, Z, Z)) =0= ((.’?0, ?/)r (97, z), (xr z, Z)) .
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Using (25), flexibility and (ii), it follows that

((x) x, Z), (x) Z), (d), y)) = ((.’,U, €, Z), (4, y)y (e, 2)) =0

26
@ (v, @), @) = (@ 2, @2, @) -

In the course of proving (16) we established (x(x, z, ¥), ¥) = 0. Then
use of (8) and (6) shows that 0= ({z, x, ¥)x, ¥) = (x, x, ¥)(x, y¥), because
of (11). Using this latest identity together with (26) gives us 0 =
((x, v), (x, =, 2), (z, 2)=[(z, ¥)((z, , 2)] (x, 2). But a linearization of (16)
shows that (x,v)(x, x,2) = — (,2)(x, ,¥), so that 0 = —[(x, 2) (x, %, ¥)](x, 2).
Again using the hypothesis of no divisors of zero, it is clear that

@7 (z, 2 (2, ,y) =0.

Consequently either (x,2) = 0, for every z in R or (x,z,y) =0, for
all ¥ in R. In particular if we assume that (x, ) # 0, then both
(%, x, 2)=0, and (y, y, 2)=0, for all z in R. Since (z, x+y) = (x, y)#
0, then 0=(x+vy, 2+ ¥, 2 = (=9, 2 + (y, %, 2). Using flexibility and
(i1) it follows that

(28) (x! Y, z) = —(y! €, z) = (Z, @, y) = —‘(z, Y, .’,U) ’
(29) (xy %, y) = 2(%, Y, z) = —(yy z, x) .

From a linearization of (16) we have (z, %)(x, ¥, 2) + (%, ¥)(, 2, ¥) +
(x, 2)(x, ¥, ¥y) = 0. Since (x, y) = 0, and (z, v, y) =0, we get (x, ¥, ) =
—(w, 2, ¥). This together with (29) leads to 3(z,¥,2) = 0, so that
(x, ¥, 2 =0. Similarly (y, z,2) =0, and (z, %, ¥) =0. Thus if (x, y) #
0, then (x, 4,2 = (2, 2,9 = (¥, 2, x) = 0. Hence

(30) 0= vy 2 =@y =) =@yeoy .

Linearize (30) to obtain (z, y)(x, 7, s)= — (%, r)(x, ¥, s). Assume (z, y)+#
0. Then (30) implies that (z, y,s) = 0. But then (x,y)(z, r,s) = 0.
Similarly (x, y)(r, s, ©)=0, and (z, ¥)(s, #, ¥)=0. TUsing the hypothesis
of no divisors of zero then « lies in the nucleus N of R.

(31) If (x,y) = 0, then 2, y belong to the nucleus N of R.

Suppose n, n’ belong to N while a, b, ¢ are arbitrary elements of R.
Then because of a linearization of (80) we have (n, n)(a, b, ¢) +
(@, )(m, b, ¢) + (m, b)(a, n',¢) + (a, b)(n, n',¢) =0 = (n, n)a,bd,c). If
R is not associative then (n, n') = 0. Thus suppose there exist z,y
in R such that (x,y) #+ 0. As a result of (81) z,y belong to N. If
R is not associative then (,¥) = 0, contrary to assumption. Hence
R must be associative. We have proved
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THEOREM. If R is a ring of characteristic = 2, 3 that satisfies
()-(@ii) and has no divisors of zero them R 1s either commutative or
assoctative.

We conclude with a short discussion of the identities and some
examples. If we take the ring @ of real quaternions and define a
new product xxy = c(xy) + (1 — ¢)(yx), where ¢ is a scalar, ¢+ 1/2, then
Q(x) becomes a ring that is flexible, satisfies (ii) and is even a non-
commutative Jordan ring. It may also be verified that Q(x) has no
divisors of zero. But it does not satisfy (iii) and in fact is neither
associative nor commutative. The Cayley-Dickson division algebras
satisfy (i) and (iii), and those of characteristic 3 satisfy even (i),
yet are neither associative nor commutative. Hence we could not
omit either (ii) or (iii) from the hypothesis.
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