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SUBDIRECTLY IRREDUCIBLE IDEMPOTENT SEMIGROUPS

J. A. GERHARD

Subdirectly irreducible idempotent semigroups have been
discussed by B.M. Schein. Using his results, a subdirectly
irreducible idempotent semigroup is shown to be either a
semigroup of mappings of a set into itself, with certain
stated conditions, or the dual of such a semigroup, or one
of these with an adjoined zero. This characterization is
used to show that, with a few exceptions, the join reducible
elements of the lattice of equational classes of idempotent
semigroups contain only subdirectly irreducible members
belonging to proper subclasses. This result gives structure
theorems, special cases of which appear in the literature. An
example is also given of an infinite subdirectly irreducible
idempotent semigroup in the equational class of idempotent
semigroups defined by xyx = xy.

The starting point for the study in this paper is the paper of
B. M. Schein [5], in which he gives necessary conditions for an
idempotent semigroup to be subdirectly irreducible. This result is
exploited in § 1 to give a characterization of subdirectly irreducible
idempotent semigroups (Theorem 1.5).

In §11, the description of the lattice of equational classes of
idempotent semigroups given in [1], and the characterization of sub-
directly irreducible idempotent semigroups given in §1 are used to
show that a subdirectly irreducible idempotent semigroup which
satisfies certain equations also satisfies other, more restrictive equa-
tions. These results are used to prove Theorem 2.4 and its corollary.
These give conditions under which a join reducible equational class
contains no subdirectly irreducibles not contained in a proper subclass.
The other join reducible classes are subclasses of the class defined by
the equation (xyzx = xzyx), and a complete list of the subdirectly
irreducibles of this class is given. (There are only six of these; the
cardinality of the largest is three).

Finally we give an example of an infinite subdirectly irreducible
idempotent semigroup which satisfies the equation (xyx = xy). This
answers a question of Schein [6] and shows that all equational
classes of idempotent semigroups except the subclasses of the class
defined by (xyzx = xzyx) contain infinite subdirectly irreducible idem-
potent semigroups.

1* The characterization* Let S be a semigroup. If a, be S,
let θ(a, b) denote the smallest congruence which identifies a and 6.

669



670 J. A. GERHARD

Let Δ = {(s, s)\seS}. The semigroup S is subdirectly irreducible if
and only if there exist a, be S, a Φ b, such that θ(a, b) gΞ#(e> c£) for
all c, de S, c Φ d. The congruence 0(α, b) is just the smallest con-
gruence of S which is distinct from A.

The dual (S*9 *) of a semigroup (S, •) is defined by S* = S and
a*b = δ α for all a,beS. If we denote a semigroup simply by S,
we denote its dual by S*.

A zero of a semigroup is an element 0 e S which satisfies #0 = Ox =
0 for all # e S . A semigroup has at most one zero.

B. M. Schein has shown (Theorem 3.6 and Theorem 4.7 of [5]),
that in order to characterize subdirectly irreducible idempotent semi-
groups, it is sufficient to consider those without zero. This result is
given in the following theorem.

THEOREM 1.1 (Schein [5]). An idempotent semigroup S which
contains a zero 0 is subdirectly irreducible if and only if S—{0} is a
subsemigroup which is subdirectly irreducible and (if\S\>2) contains
no zero.

For the remainder of this section we will deal only with sub-
directly irreducible idempotent semigroups without zero.

THEOREM 1.2 (Schein [5], Theorem 4.7). If S is a subdirectly
irreducible idempotent semigroup (without zero), then S satisfies one
of the following conditions.

(1.3) Let K = {k\ks = k for all seS} .

Then K is a two-sided ideal of S, and for any x, y e S, xk = yk for
all ke K implies x = y.

(1.3)* Let K={k\sk = k for all seS} .

Then K is a two-sided ideal of S, and for any a?, y e S, kx = ky for all
keK implies x = y.

It is clear that S satisfies (1.3) if and only if S* satisfies (1.3)*.
Because of this we will say that condition (1.3)* is the dual of (1.3).
In a similar way the following lemma will give rise to a dual lemma
(which we will label with*) and which will be obtained just as (1.3)*
was obtained from (1.3), that is by replacing the operation everywhere
it occurs by the operation*, or more simply by assuming the original
condition holds for S* instead of S.

LEMMA 1.4. Let R be a subdirectly irreducible idempotent semi-
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group (without zero) which satisfies (1.3). Let θ(a, b) be the smallest
congruence of S distinct from Δ. Then a e K.

Proof. Let k e K. (K = 0 is impossible by (1.3) since S has no
zero and hence | S | > 1.) Since k is not a zero of S and ks = k for
all se S, there exists se S such that sk Φ k. It follows that
(a, 6) G 0(sfc, fc). Since iΓ is a two-sided ideal, θ(sk, k) S if2, and there-
fore ae K.

THEOREM 1.5. An idempotent semigroup S (without zero) is sub-
directly irreducible if and only if S or S* is isomorphic to a semi-
group T which satisfies the following two conditions:

( i ) C(X) £ Γ g Xx, where Xx is the semigroup of all mappings
of X into itself, C(X) is the set of all constant mappings of X, and
T is a subsemigroup of Xx.

(ii) There exists k, k'eC(X) such that θ{k,kf) S 0(c, d) for all
c, deC(X), cΦ d.

Proof. Let S satisfy (1.3). Define <p: S -> Kκ by (φ(s))(k) = sk,
for all se S, ke K. It is easy to check that φ is a homomorphism,
and that φ is one-one. The monomorphism establishes (i) and (ii) for
φ(S), since φ{K) — C{K). If S satisfies (1.3)*, the above argument
shows that S* is isomorphic to a semigroup T satisfying (i) and (ii).

To establish the converse, it is enough to show that if T satisfies
(i) and (ii), then T is subdirectly irreducible. By (ii) it is enough to
show that if s, te T, s Φ t, then there exist c, de C(X), c Φ d, such
that θ(c,d)ξiθ(s,t). Since s Φ t, there exists keC(X) such that
sk Φ tk. Since sk, tk e C(X) and θ(sk, tk) £ θ(s, t), the proof is complete.

II* Subdirectly irreducible idempotent semigroups and equa-
tional classes*

1. Join reducible classes.
The lattice of equational classes of idempotent semigroups has

been completely described in [1]. We refer the reader to that paper
for any notation not explained here, and especially to Fig. 2 of [1],
which gives a summary of some of the results which we use. Our
first task is to show that a subdirectly irreducible semigroup which
is assumed to satisfy certain equations can then be shown to satisfy
more restrictive equations.

LEMMA 2.1. Let S be a subdirectly irreducible idempotent semi-
group which satisfies (1.3). If S satisfies (p = q), where for some
% ^ 3, I E{p) I = n, p ~ nq, and if n = 3, pR3q, then S satisfies (p(0) =
9(0)).
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Proof. Without loss of generality, p = p(0)p(0)F(p) and q =
g(0)g(0)F(g), (by Theorem 1.8 of [1]). It follows immediately from
Proposition 2.13 of [1] if n ^ 4, and from the definition of i?3, if n =
3, that p(0) = <z(0). Let ^ be any substitution of the variables oc-
curing in (p = q) by elements of S. (As usual ψ may be thought
of as a mapping of the free semigroup on suitable generators into
S.) Since p = q holds in S we have

In particular if ψ(p(0)) = τKg(0)) = keK, then ψ(p(0))k = f(q(O))Jc.
Now p(0) ί ^(^(0)) = ̂ 7(̂ (0)), and consequently the above argument
shows that ψ(p(Q))k = ψ(q(0))k for all ke K. It follows from Lemma
1.6 that τKp(O)) = iHg(0)) and therefore that p(0) = g(0) holds in 5.

LEMMA 2.2. Lβ£ S be a subdίrectly irreducible idempotent semi-
group which satisfies (1.3). If S satisfies an equation (p = q), where
pRnq, pSnq for some n ^ 3, then S also satisfies an equation (p0 = q0)
where if n^4, p0Tn^q01 p0Rϊ~iq0, Po£»*-i?o and if n = 3, /(p0) = /(g0)
(and therefore S(p0) = S(g0)) α^ώ H*(q0) Φ H*(qQ).

Proof. It is enough to prove that the Lemma holds if in addition
pTZq. In this case we can assume without loss of generality that
I E(p) I = n, since (p = q) defines a member of the skeleton of the
lattice. We will show that (p(0) = q(0)) can be taken for the equation

(Po = ?o).

By Lemma 2.1 we know that S satisfies (p(0) = ̂ (0)). The fact
that p(0) and q(0) satisfy the conditions of the present lemma is
given implicitly in [1]. The rest of the proof consists of showing
which results of [1] can be used to show that p(0) and q(0) satisfy
these conditions.

We consider the case n ^ 4 and n = 3 separately. If n Ξ> 4, it
follows from Proposition 2.13 of [1] that ϊ(p(0)) - ϊ(g(0)) and there-
fore in particular that p(0)Tn^q(0). Since pRnq, it follows immedi-
ately from (2.20) of [1] that ^(0)22*^(0). If we had p(0)S *_,<?(()),
then by (2.17) of [1], it would follow that p(0) - g(0), and therefore
that pSnq. This contradiction shows that ^(0)^1^(0).

If n — 3 the definition of pR3q gives immediately that I(p(0)) —
I(g(0)). If H*(p(0)) - H*(q(0)), it follows from Proposition 2.4 of [1]
that p(0) — 3g(0). Since \E(p(0))\ = 2, this implies that p(0) ~ g(0),
and therefore in particular that pS3q. This contradiction establishes
that jff*(p(O)) Φ H*(q(0)), completing the proof of the lemma.

LEMMA 2.3. Let S be an idempotent semigroup which satisfies
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(1.3). If S satisfies an equation (p = q) where pRnq for some n^S,
then S also satisfies an equation (pQ = q0) where if n ^ 4, PoS^^qo
and PoX*+q» and if n = 3, E(pQ) Φ E(qQ)f H(pQ) = H(qo)y H*(p,) Φ
H*(q0).

Proof. We deal with the case n = 3 separately since Lemma 2.1
cannot be applied in this case. It follows from results of [1] (see
Pig. 2) that if S satisfies an equation (p = q), where pRzp, it satisfies
(xyzx — xzyzx), since this equation satisfies pK3q and pS*q. But then
xyz = xz for all x,yeSy zeKf and therefore, xy = x for all x>yeS.
The equation (xy = x) can be taken for the equation (p0 = q0) in case
n = 3, since it satisfies the given conditions.

In case n ^ 4, we proceed in a manner similar to that used for
the proof of Lemma 2.2. We may assume in addition that pStq and
that I E(p) I = n, and apply Lemma 2.1 to show that (p(0) — q{ϋ))
holds in S. It remains only to show that p(0) and q(0) satisfy the
stated conditions.

As in the proof of Lemma 2.2 we can establish that ΐ(p(0)) ~
T(q(0)) and therefore in particular that p{0)Sn^q(0). That p(0)^*^(0)
is an immediate consequence of 2.20 of [1].

THEOREM 2.4. Let ϊt = % V 2t2 be the join of its proper subclasses
Sίi and St2, in the lattice of equational classes of idempotent semigroups.
If Se$t is subdirectly irreducible without zero, then S e 2^ (J 2C2

Proof. The classes St which satisfy the hypothesis of this theorem
can be obtained from Fig. 2 of [1]. We will prove the theorem for
each in turn. It is of course enough to show that each subdirectly
irreducible S e 21 is contained in a proper subclass of §ί. We list the
several cases and indicate the results used in each. We give a com-
plete proof for the first example but leave the details of the other
examples to the reader.

Let §1 be defined by an equation (p = q) for which pRnq, p8nq,
pR*q and assume n ^ 4. If S satisfies (1.3) we can use Lemma 2.2
to show that S satisfies an equation (p0 == #0) where PoΓn-iϊo* VoRt-ιq^
PoSί-do. It follows that (p0 = q0) defines a proper subclass of St.
If S satisfies (1.3)*, S* satisfies (1.3) and we can use Lemma 2.3 for
S* (or Lemma (2.3)* for S) to show that S* satisfies an equation
(Po = #o) where poSί»-i?o and po#»-i?o But then S satisfies an equation
(p* = 00*) where PoSZ^q* and p*!!*-&*, and (p0* = #o*) therefore defines
a proper subclass of 2C. The proof for n = 3 is similar.

If §1 is defined by an equation (p — q) where pRnq, pRϊq, p8nq, p8*q,
then if S satisfies (1.3) use Lemma 2.2, and if S satisfies (1.3)* use
Lemma (2.2)*.
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If 3Ϊ is defined by an equation (p = q) where pTnq, pSnq,
p8£q, then an equation (pf = qr) where p'Kn+ιq

f also holds in 31. If
S satisfies (1.3) use Lemma 2.3 (in case n + 1), and if S satisfies
(1.3)* use Lemma (2.2)*.

If 21 is defined by an equation (p — q) where pKnq, pK%q then if
S satisfies (1.3) use Lemma 2.3, and if S satisfies (1.3)* use Lemma
(2.3)*.

If 3ί is defined by an equation (p = q) where E(p) = E(q), H(p) =
H(q), I(p) Φ J(g), H*(p) Φ H*(q), then an equation (pf = q') where
p'Kfq* and ptRzq

t also holds in St. If S satisfies (1.3) use Lemma 2.3 to
show that S satisfies an equation (p0 = q0) where E(p0) Φ E(q0), H(p0) =
H(qQ), H*(pQ) Φ H*(qQ). If S satisfies (1.3)* use Lemma (2.3)* to show
that S satisfies an equation (p0 = q0) where E(p0) Φ E(q0), H(p0) Φ H(q0)
and H*(po) = H*^). Since S satisfies (p0 = q0) and (p = q) it also
satisfies the equation (x ~ y) which defines a proper subclass of 31.

The remaining cases are just the duals of the above.

COROLLARY 2.5. Let 31 = % V 3t2, where % and % are defined
by equations (/L = gj and (/2 = g2) where E(f^) — E(g^ and E(f2) =
E(g2). If Se3ί is subdirectly irreducible then Se3t1U2ί2. (E(f) is
the set of variables of /.)

Proof. The theorem establishes the result in case S does not
contain a zero. By Theorem 1.1, the subdirectly irreducible semi-
groups with zero are obtained by adding a zero to a semigroup with-
out zero. It is easy to see that if S — S U {0} is a semigroup such
that S is a subsemigroup, the equations (/ = g) true in S are exactly
these true in S with E(f) = E(g), and this establishes the corollary.

REMARK 1. Corollary 2.5 is equivalent to the statement that for
3t, 3ίL and 3ί2 as given, if S e % then S is a subdirect product of
Sx e Sti and S2 e 3I2. This result can of course be proved without
reference to subdirectly irreducibles. In fact the solutions of the
various word problems, which show that f — g holds in 3t if and
only if a condition holds for /(/) and /(#), and a second condition
holds for F(f) and F(g), enable us to define congruences θy and θ2,
on any free algebra T in 3ί, such that θ1 A θ2 = A. The splitting of
non-free algebras is accomplished via the appropriate isomorphism
theorem by showing that {θ1 V θ) Λ (θ2 V θ) — θ for any congruence
θ on T. This last result is easy to check since by definition if fθxu
and fθ2v, then f = uv in T. Taking (/, g) e {θι V θ) A (θ2 V 0), and
using this result enables us to show immediately that (/, g) eθ. We
leave the details to the interested reader.
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REMARK 2. Special cases of the above results are known ([2],
[3], [4], [7]) In particular the paper of M. Petrich [3] gives the
results of our next section. We include the next section, however,
for completeness and because the arguments become especially simple
in view of Theorem 2.4 and its Corollary.

2. Subdirectly irreducible semigroups in subclasses of the class
defined by the equation (xyzx — xzyx).

The hypotheses of Corollary 2.5 hold for all join reducible elements
of the lattice of equational classes of idempotent semigroups except
those which are proper subclasses of the class defined by (xyzx = xzyx).
The conclusion of Corollary 2.5 holds for the class defined by (xyx —
x) but fails for the class defined by (xyz = xzy) and the class defined
by its dual. To show this we list all subclasses of the class defined
by (xyzx = xzyx), together with their subdirectly irreducible elements.

In the class defined by (x = y) the only (subdirectly irreducible)
member is the semigroup So consisting of one element. In the class
defined by (xy = x), the subdirectly irreducible members are So, and S19

the two element semigroup which satisfies (xy — x). In the class defined
by (xy — yx), there can be no subdirectly irreducible semigroup satis-
fying (1.3) or (1.3)* since (by Lemma 1.4), \K\ ^ 2, and for k, Jc'eK,
k Φ k\ kkf — k Φ kr = k!k. The subdirectly irreducible elements in
this class are therefore just So and So U {0}. By our general results,
the subdirectly irreducible elements of the class defined by (xyz =
xzy) are So, S0U {0}, St and the semigroups formed from these by
adding a zero if the semigroup has no zero. This gives the new
semigroup St U {0}. In the class defined by (xyx — x) the only sub-
directly irreducible elements are Slf S* and So since E(xyx) Φ E(X).
Finally the subdirectly irreducible elements of the class defined by
(xyzx = xzyx) are just SQ, SQ U {0}, Sl9 St U {0}, Sf, S? U {0}, The re-
maining subclasses of the class defined by (xyzx = xzyx) are the duals
of classes already listed.

3. An infinite subdirectly irreducible idempotent semigroup satis-
fying (xyx = xy).

In the previous section we listed several equational classes of
idempotent semigroups with only finite subdirectly irreducible ele-
ments. In this section we show that every other equational class
has infinite subdirectly irreducible members by exhibiting an infinite
subdirectly irreducible idempotent semigroup satisfying (xyx = xy).
This answers a question of B. M. Schein [6].

Let S consist of the following mappings of the set of natural
numbers into itself. The mappings a{, ί ^ 0 are the constant mappings
defined by a{(j) — i for all j . The mappings bif c<, i ^ 2, are defined
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by bi(ΐ) = Ci(ΐ) = i, bi(j) = 0, ί ^ i, c<(j) = l,iφ j . Since the α<f δ< and
C{ are idempotent, we can show that S is an idempotent semigroup
by proving that it is closed with respect to composition of mappings.
If one of the factors is a constant the result is a constant. If both
are non-constants, they occur among the following: b&i = b{, cfii = cζ

and if i Φ j , bfij = bicύ = α0, c&j = c<6y = αx.
In order to show that S is subdirectly irreducible it is enough

(by Theorem 1.5) to show that θ(a0, aλ) S θ(aif a3) for all i Φ j . If i Φ
j , θ(aif a,j) contains (α< = bi<Li9 a0 = 6<ay) and (a{ — c^, ay — c<αy) and

therefore (α0, αx).
We now show that S satisfies (xyx = xy). If x, y or xy is a con-

stant, or if x = y, the result is trivial. The only other case is {x, y} —
{bi, cj for some i, and in that case it is easy to check that xyx — xy.
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