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FIXED POINTS AND STABILITY FOR A SUM OF TWO
OPERATORS IN LOCALLY CONVEX SPACES

G. L. CAIN, JR. AND M. Z. NASHED

Some fixed point theorems for a sum of two operators are
proved, generalizing" to locally convex spaces a fixed point
theorem of M. A. Erasnoselskii, for a sum of a completely
continuous and a contraction mapping, as well as some of its
recent variants.

A notion of stability of solutions of nonlinear operator
equations in linear topological spaces is formulated in terms
of specific topologies on the set of nonlinear operators, and a
theorem on the stability of fixed points of a sum of two opera-
tors is given. As a byproduct, sufficient conditions for a
mapping to be open or to be onto are obtained.

l Introduction. Several algebraic and topological settings in the
theory and applications of nonlinear operator equations lead naturally
to the investigation of fixed points of a sum of two nonlinear opera-
tors, or more generally, fixed points of a mapping on the Cartesian
product X x X into X, where X is some appropriate space.

Fixed point theorems in topology and nonlinear functional analysis
are usually based on certain properties (such as complete continuity,
monotonicity, contractiveness, etc.) that the operator, considered as a
single entity must satisfy. We recall for instance the Banach fixed
point theorem, which asserts that a strict contraction on a complete
metric space into itself has a unique fixed point, and the Schauder
principle, which asserts that a continuous mapping F on a closed con-
vex set K in a Hausdorff locally convex topological vector space X into
K such that F(K) is contained in a compact set, has a fixed point. In
many problems of analysis, one encounters operators which may be split
in the form T = A + B, where A is a contraction in some sense, and
B is completely continuous, and T itself has neither of these properties.
Thus neither the Schauder fixed point theorem nor the Banach fixed
point theorem applies directly in this case, and it becomes desirable
to develop fixed point theorems for such situations. An early theorem
of this type was given by Krasnoselskii [12]: Let X be a Banach
space, S be a bounded closed convex subset of X, and A, B be operators
on S into X such that Ax + By e S for every pair x, y e S. If A is a
strict contraction and B is continuous and compact, then the equation
Ax + Bx = x has a solution in S. The proof of this theorem is quite
simple, given the Schauder principle.

Krasnoselskii's theorem is an example of an algebraic setting which
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leads to the consideration of fixed points of a sum of two operators*
In this setting, a complicated operator is split into the sum of two
simpler operators which have been well investigated and for which fixed
point theorems abound. For recent contributions to fixed points of
this type, see Remark 3.1.

There is another setting which also leads naturally to the investi-
gation of fixed points of a sum of two operators. This setting arises
from perturbation theory. Here the operator equation Ax + Bx = x is
considered as a perturbation of Ax = x (or of Bx = x), and one would
like to assert the existence of a solution of the perturbed equation,
given that the original unperturbed equation has a solution. In such
a setting, there is, in general, no continuous dependence of solutions
on the perturbations. If, however, one requires such continuous de-
pendence, then we have a general problem of stability of solutions,
where stability is defined in terms of certain topologies on the class
of operators under consideration.

The purpose of this paper is to prove some fixed point theorems
in the two settings mentioned above.

2* Definitions and preliminaries• Throughout this paper, X will
denote a Hausdorίf locally convex topological vector space, and 3? a
family of seminorms which generates the topology of X. For p e & and
r > 0, the set {x\p(x — x0) < r} is denoted by Sp(x0, r). The closure of
this set is denoted by Sp(x0, r), and its boundary by dSp(x0, r). We shall
also sometimes use V(p) to stand for Sp(θ, 1). A continuous mapping
F: X—> X is said to be ^-completely continuous for p e & if the closure
of F[SP(Θ, n)] is compact for each positive integer n. F will be
called completely continuous if it is p-completely continuous for
every pe ^ .

Several generalizations of Schauder's fixed point theorem to locally
convex topological vector spaces have been made by Tychonoff [26] t

Hukuhara [9], Yamamuro [28], Singbal [25], Nguyen-Xuan-Loc [17],
and others. In the present paper, we shall be interested in the fol-
lowing variants of Schauder's fixed point theorem, which are listed in
order of increasing generality.

THEOREM 2.1. Let X be a Hausdorff locally convex topological
vector space.

(a) Let K be a nonempty compact convex subset of X and let F
be a continuous mapping of K into K. Then F has a fixed point in
K.

(b) Let K be a nonempty closed convex set in X and let F be a
continuous mapping of K into K such that F{K) is contained in a
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compact set. Then F has a fixed point in K.
(c) Let F be a p-completely continuous mapping of X into X. If

F maps dSp(xQ, r) into Sp(x0, r), then F has a fixed point in Sp(xQ, r).

Part (a) is simply Tychonoff's generalization of Schauder's theorem
{For a proof, see Dunford and Schwartz [4] or Bonsall [1].) A simple
and interesting proof of (b) is given by Singbal [25]. Part (c) is a
generalization of Rothe's version of Schauder's theorem [22].

Let Ό c X and p e ^ . A mapping A:D—>D is said to be a
^-contraction if there is a yp, 0 ̂  ΊP < 1, such that for all x, y in D,
p(Ax — Ay) ^ Ύpp(x - y).

Let ^ be the neighborhood system of the origin obtained from
£P. Thus if U e ̂ , there is a finite number of seminorms pu p2, , pn

in & and real numbers rlf r2, , rΛ such that U — Γ\ΐ^iV{Pi), where
= {x\p(x)<l}.

THEOREM 2.2. Suppose Dis a sequentially complete subset of X and
the mapping A: D —*D is a p-contraction for every pe^. Then A
has a unique fixed point x in D, and Akx—>x for every xeD.

Proof. Let xe D and let U — f\ΐriV(P%) be given. For any y e D
and k ̂  1, we have

Pi(Aky - y) ̂  (1 - Ί^ΓιPi{Ay - y), i = 1, 2, , n.

Choose m sufficiently large to insure that

7Γ(1 - Ίd~ιPi{Ax - x) £ rt for i = 1, 2, , n.

Then for y = Amx, we have

Pi(Am+kx - Amx) ̂  (1 - Ίi)-ιPi{Am+ιx - Amx)

^ 7Γ(1 - Ί^PiiAx - x) S u.

Thus {Akx} is a Cauchy sequence in D and so converges to a point a?
in D. Clearly Ax = x, and uniqueness of the fixed point follows as usual
since X is Hausdorff.

3* Fixed points of a sum of two operators in locally convex
spaces* We begin with a simple theorem which generalizes Krasnosel-
skii's fixed point theorem [12] to locally convex spaces.

THEOREM 3.1. Let D be a convex and complete subset of X, and
A, B be operators on D into X such that Ax + ByeD for every pair
%,yeD. Suppose A is a p-contraction for every p e &*, and B is con-
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tinuous and B(D) is contained in a compact set. Then there is a point
x in D such that Ax + Bx = x.

Proof. For each y e D, the mapping A defined by Άx = Ax + By
is a p-contraction for each p e 0* and maps D into D, so by Theorem
2.2, it has a fixed point, Ly. In other words, Ly = Ά(Ly) = A(Ly) +
ify. Thus for all w, v in J9,

Lu - Lv = A(Lu) - A(Lv) + Bu - Bv.

So for each pe^, we have

p(Lu — Lv) <: 7pp(Lu — Lv) + p(i?^ — Bv),

or

(3.1) p(L^ - Lv) ^ (1 - ΊP)~ιp{Bu -

It is clear from (3.1) that the operator L is continuous. To see
that L(D) is contained in a compact set, let {Lxa} be a net in L(D).
Then {i?#α} has a convergent subnet {i?#l}, since B(D) is contained in a
compact set. Thus {JB#ά} ίs a Cauchy net, and by (3.1), so also is
{Lx'a}. Hence L(D) is contained in a compact set, so L has a fixed
point x in D, and

x = ώ = A(Lx) + Bx — A£ + J5^

This completes the proof.
The various forms of the Schauder-Tychonoff theorem stated in

Theorem 2.1 require a priori that a certain closed ball (or its boundary)
be mapped into itself by the operator. In his work on integral equa-
tions, Dubrovskii [3] used an alternative approach of finding conditions
on a completely continuous operator which guarantee the existence of
some closed ball which is mapped into itself by the operator. In
the next theorem, we use this technique in the setting of a sum of
two operators to prove a fixed point theorem which contains as a special
case a new variant of the Schauder-Tychonoff theorem in locally convex
spaces. Before proceeding to the theorem, we shall give some needed
definitions.

For an operator ϊ7, a point xQ e X, and a real number r > 0, define
for each pe ^,

Rp(x0, T, r) = r~ι sup {p(Tx - Tx0) \ p(x - x0) ^ r}

and

Qp(Xo, T, a) = {r\Rp(x0, T, r) < a}.
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Now consider Qp(x0, T,a) as a subset (possibly empty) of [0, oo], the
one-point compactification of [0, °°), and let cl(Qp(x0, T, a)) denote the
closure of Qp(xQ, T,a) relative to [0, oo]# Define

βp(xQ, T) = inf {α| oo G cl(Qp(^0, Γ, a))}.

We shall say that T is p-quasibounded at x0 if βP(x0, T) exists, T is
called quasibounded at x0 if it is p-quasibounded at x0 for each pe^.
Note that this notion of quasiboundedness generalizes that of Granas [8].
The following theorem generalizes Theorem 3 of Nashed and Wong [16].

THEOREM 3.2. Suppose the mapping S is a p-contraction for every
pin ^, with contraction constants 7P, and suppose the mapping T is
continuous and T(X) is compact. If X is complete and if there is an
x0 in X and a pe & such that T is p-quasibounded at x0 and

ΊP + βp < 1,

then (I — S — T)x = z always has a solution.

Proof. Choose a so that ΊP + a < 1 and °o e Q\{QP{XQ, Γ, a)). Let
u0 = (/ — S — T)x0, and choose c so that c > p(z — uQ)[l — (yp + α)]~\
and ce Qp(x0, T, a). Then Rp(x0, T, c) < a. Now define the set

D = {x e XI p(x - x0) <: c).

It follows that for x and y in D, Sx + Ty + z is in D:

p(Sx + Ty + z- x0) = p(Sx + Ty + z - u0 - Sx0 - Tx0)
^ p(Sx - Sxo) + p(Ty + Tx0) + p(z - uQ)
^ ΊPc + ac + [1 — (ΎP + a)]c ^ c.

It now follows from Theorem 3.1 that there is an x in D such that
Sx + Tx + z = x.

REMARK 3.1. For various fixed point theorems for a sum of two
operators in Banach and Hubert spaces, see Krasnoselskii et al. [13],
[14], Browder [2], Edmunds [5], Fucίk [6], [7], Kirk [11], Nashed and
Wong [16], Petryshyn [18], [19], Sadovskii [23], and Webb [27]. In
some of this previous work, the theorems are formulated for a mapping
F(x, y), not necessarily of the form Ax + By. Nadler [15] considered
mappings defined on the Cartesian product of two metric spaces which
are contractions in one variable or in each variable separately and
proved that under certain conditions, such mappings have fixed points.

Essentially the same proof as that of Theorem 3.1 yields the fol-
lowing result.
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THEOREM 3.1' Let D be a convex and complete subset of X and
suppose F: D x D —> D is such that for each p e &, there is a constant
7p, 0 £ yp < 1, so that

p(F(x, y) - F(x, z)) ^ ypp(y ~ s)

for all y, z in D. Suppose further that B: D —> D is continuous, B(D)
is contained in a compact set, and

p(F(x, y) - F(z, y)) ^ p(Bx - Bz).

Then there is a point x e D for which F(x, x) = x.

REMARK 3.2. Examining the proof of Theorem 3.1, one sees that
if D — Sp(x0, r), and X is complete, then we need only require that B
be p-completely continuous. (We invoke 2.1c to obtain a fixed point
of the operator L.)

For the operators considered in this section, the equation

(3.2) Ax + Bx = x

has a solution in particular when A or B is the zero operator. Thus
equation (3.2) may be considered as a perturbed equation associated
with

(3.3) Ax = x, or Bx = x.

Theorems 3.1 and 3.2 state sufficient conditions under which the ex-
istence of a solution of either of the operator equations (3.3) is pre-
served with a perturbation of the operator in a certain class. We do
not, however, have any information on how much of a change results
in the solution. In particular a slight perturbation of the operator A
by an operator of type B need not necessarily produce only a slight
change in the solution. In other words, in the algebraic setting of
Theorems 3.1 and 3.2, one does not necessarily have continuous de-
pendence of solutions of Ax = x on perturbations of A by operators of
the type B (or vice versa). We shall turn our attention in the next
section to this question of continuous dependence of the solutions.

4* Stability of fixed points and solutions of nonlinear operator
equations* In [10], Kasriel and Nashed formulated and investigated a
notion of stability of solutions of some classes of nonlinear operator
equations in Banach spaces in terms of specific topologies on the set
of nonlinear operators, and obtained some results on the openness of
cetain mappings as a byproduct. In this section, we extend these for-
mulations in several directions and prove a theorem on the stability
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of fixed points for the sum of two operators.
Let J%Γ be a collection of continuous maps on X whose domains

are such that if Ao e 3ίΓ, x0 e domain of Ao, then Sp(x0, r) c domain of
Ao for r sufficiently small. Let y be a topology on J%Γ. Suppose
Aoe _%", 2 / o e I and Aoxo = yQ.

DEFINITION 4.1. The solution x0 of Aou = y0 is called p-stable with
respect to {3ίΓj ^) if for each r > 0 there exist d > 0 and a neigh-
borhood Ω of Ao such that for all yeSp(y0,d) and AeΩ, there exists
ana G Sp(x0, r) such that Ax = y. The solution xQ is said to be a stable
solution with respect to (J%^, _^~) if it is a p-stable solution for every

For A e J2Γ, (x0, Ay r) will be called a p-admissible triple if Sp(x0, r)
is contained in the domain of A.

Let J%ΓP be the class of all continuous maps B from open subsets
of X into X which are such that I — B is p-completely continuous.
If (x0, Bo, r) is a p-admissible triple and b > 0, then Ωπ(x0, BQ, r, p, 6)
will denote the collection of all Be 3ίΓp such that (x09 B, r) is a p-admis-
sible triple and p{Bx — Box) <̂  b for all xeSp(x0,r). Let ^ be the
topology on 3ίΓp generated by taking the collection of all such Ωυ as
a subbase.

Now define

Rp(x0, T, r) = r" 1 sup {p(Tx - Tx0) | p(x - x0) = r},

and

τjp(xo9 T) - inf {r I Bp(xOf Γ, r) < 1}.

Note that stability for the class J2Γ can be reduced to considera-
tion of equations of the form AQx — θ.

THEOREM 4.1. Let BQ e 3ίΓp and suppose BQx0 = θ. If ηp{xQ, I— Bo) =
0, then x0 is a p-stable solution of Box = θ with respect to

Proof. Let e > 0 be given. There is an r, 0 < r < e, such that
R — Rp(x0,1 = Bo, r) < 1. Let a and d be positive numbers such that
a + d < (1 - i2)r. Let B e Ωv(xo, BQ, r, p, a) and y e Sp(θ, d). Consider
the mapping F on Sp(x0, r) defined by Fx = x — Bx + y.

Clearly F is p-completely continuous since B 6 3ίΓp. If JP maps
dSp(x0, r) jnto Sp(α?0, r), it has a fixed point xeSp(x0, r) Then i?£ = y,
with 55 e Sp(ajo> ^) c Sp(x0, e), which proves the theorem. Now we show
that F indeed maps 8Sp(x0,r) into Sp(x0,r):

p(Fx - a,,) ̂  p(x - BQx - Xo) + p(Bx - Box) + p(y),
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and

p(x - BQx — x0) ^ Rp(x0,1 — Bo, τ)r = Rr.

Hence

- x0) ̂  ifr + α + d ^ ifr + r - J?r = r.

If 3ίΓc is the class of all continuous operators B from open subsets
of X into X which are such that I — B is completely continuous, and
if ^ } is the topology on J%ΓC generated by taking as a subbase the
sets Ωuixo, Boyr, p,b) for all pe^, then we have the following

COROLLARY. If Bo e 3^ and BQx0 = θ, and if ηp(x0,1 — Bo) = 0 / o r

0 is a stable solution of BQx = <9 wiίA respect to

We next turn our attention to the question of stability of sums
of operators.

If xoeX,Ao is a continuous operator, and Ue%S, then we shall
say (Bo, Ao, U) is an admissible triple if x0 + £7 c domain Ao. (Recall
that ^ is the neighborhood system of the origin obtained from ^ . )
Let <ĝ  be the collection of all continuous operators A which are such
that I— A is a p-contraction for every p e &. (Hereafter called simply
a contraction.) For Ao in ^jpe&Ίa and b real numbers, and
(x0, Ao, U) an admissible triple, we define Ωy^x^ Ao, U, p,a, b) to be the
collection of all A in ^ such that

( i ) (x0, A, U) is an admissible triple,
(ii) p((A — A0)x — (A — A0)x0) <Ξ bp(x — x0) for all xe x0 + Ϊ7,

(iii) p(Aίc0 — ̂ .ô o) ^ ô
We define ^7 to be the topology on ^ obtained by taking all such
Ωx as a subbase.

Let ^ 2 be the collection of all continuous operators B which are
such that I — B has its range contained in a compact set. For
ΰ o ^ % 2 > e ^ , r a real number, (xQ, BQ, U) an admissible triple, we
define Ω2(x0, Bo, Z7, p, r) to be the collection of all Be^2 such that

(i) (xOfB, U) is an admissible triple, and
(ii) p(Bx — Bx0) ̂  r for all xex0 + U.

We define S~% to be the topology on ^ 2 with all such Ω% as a subbase.
Next let ^ — ̂  x ^ be the Cartesian product of ^ and ^ 2

endowed with the product topology ^ = ^[ x ^ . Suppose iΓ0 is an
operator such that I - Ko = So + To for (I - SQ, I - To) in ^ .

DEFINITION 4.2. The solution xQ of ίΓoU = y0 is called stable with
respect to ( ^ , ^ " ) if for each Ue^f, there is a neighborhood β of
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( / - S o , I - T o ) and a I f e ^ such that for all yeyo+W and
(I — S, I — T)eΩ, there exists an xex0 + U so that Kx = y, where
I - K = S + T.

Recall the definition of Rp(x0, To, r) and Qp(x0, To, a). For p in &
define

ap(x0, To) = inf {α | 0 6 cl(Qp(x0, To, a))}.

THEOREM 4.2. Lei X be complete. Suppose KQxQ — yQ, where
I - Ko = So + To for (I - So, I - To) in ί Γ . If ΊP + ap < 1 /or every
p in &*, then x0 is a stable solution with respect to (^,^~). (yp is
p contraction constant of So and ap = ap(x0, To).)

Proof. Once again we shall, without loss of generality, take y0 =
θ. Let U = ΠΓn T̂(2><) e ^ be given. For each ΐ = 1, 2, , w, there
is α ί< > 0 such that ζi + 7* < 1 and 0 e cl(Q{(fto, To, f 4)), where 7« denotes
7jn, etc. Choose s< ^ r< so that -R<(aj0, To, s{) < fi# Now choose positive
constants ai9 bi9 ci9 d{, for each i = 1, 2, , n, so that

δiSi + α* + 20^ + d< < (1 - fi - 7i)s<.

Let

B = J - Γ e ή β2(^o, / - To, C7, p<f Cί),
1

and

A = I - S e Π filial, / - So, U, p^ ai9 6<).
1

Also, let W = Πΐ
Suppose y e W and consider Sa; + Tz + y for all x and 2 in £c0 + ί/*,

where U* = cl(ΠΐSiV(Pi)). We shall show that Sx + Tz + yexo+U*:

Sx+ Tz + y - xo = Sx+ Tz + y - S0Xo- Toxo

= (Sx - SoXo) + (Tz- Toxo) + y
- (A — A0)x — (A — Ao)xo + Sox — S0Xo

+ (A - Λ)«o + (Tz - Toz) + (TA - To)
y,

where Ao = I — So. Now for each i = 1, 2, , n, we have

Pi(Sx + Tz + y - x0) ^ ^((A - A0)x - (A - Λ)ί»o)
+ Pi(Sox - Soxo) + Pi((A -
+ Pi(Tz - Toz) + pΛΓβSBo - Ta;0)

+ pt(T^t - Toxo) + pt(y)
^ biPi(x - ίCo) + ΎiPi(a; - *„) + at + c{ + c,

+ Rifa, To, sjs, + Pi(y)
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So for every x, z e x0 + U*, we have Sx + Tz + y e x0 + £/"*; thus by
Theorem 3.1, there is a point x e x0 + Ϊ7* so that Sx + Tx + 2/ = &, or
Kx = 2/, where I - K = S + T.

REMARK. If we take To = 0 in Theorem 4.2, we get a stability
theorem for the fixed point of a contraction mapping on a complete
locally convex Hausdorff topological vector space X. We note, however,
that it is possible to formulate other notions of "contraction" for which
the fixed point is not necessarily stable. Let Wo be an open neighbor-
hood of θ e X, x0 6 X, and W = x0 + Wo. Let F:W-^X. We say that
JF7 is a weak contraction if there exists a convex, closed and bounded
Vd Wo such t h a t x,yeW and 7/ — x e XV imply F(y) — F(x) e XaV for

some 0 < a < 0. Let F be a weak contraction on W into X, and
F(x0) — xoe(l — a) V. Then there exists a unique fixed point x of ί7,
# G #0 + l^ However, this fixed point is obviously not necessarily stable.

5* Applications* The fixed point theorems of § 3 can be applied
to obtain existence theorems for mixed nonlinear integral equations of
Urysohn-Volterra and Hammerstein-Volterra types in locally convex
spaces in the same manner as the fixed point theorem for a sum of two
operators in Banach spaces were used in [16].

We now obtain as an application of Theorem 3.1, a sufficient con-
dition for a mapping to be open, which generalizes conditions given in
[10], [20], and [21]. Recall that a mapping F: X—> Y is open at a
point yQeF(X) if y0 is an interior point of F(X); that is, if there is
a neighborhood N of y0 such that N a F(X). It follows easily from
Definition 4.2 that if Ku = y0 has a stable solution with respect to
( ^ , ^ ~ ) , then K is open at yQ. The hypothesis of Theorem 4.2 thus
also insures the openness of K at y0. We can, however, find much
weaker conditions which insure that K is open at y0. To this end,
define

<PP(x0, T) = inf {a\Qp(x0, Γ, a) Φ 0 } ,

and suppose K is as in § 4; that is, / - K = S + T for (I - S, I - T)
in <ίf.

THEOREM 5.1. Assume X is complete. If Kx0 — y0 and for some
p in & it is true that Ύp + <PP < 1, then K is open at y0.

Proof. We may without loss of generality take yQ = θ. Choose
ξ so that Qp(xo, T,ξ) ^ 0 and yp + ξ < 1. Let s e Qp(x0, Γ, ξ) and choose
d < (1 - ζ — 7β)s. We shall now show that Sp(θ, d) is contained in the
range of K.
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Let u G Sp(θ, d) and consider p(Sx + Ty + u — x0) for x and y in
Sp(x0,s):

p(Sx + Ty + u- Xo) = p(Sx + Ty + u - Sx0 - TxQ)
^ p(Sx - Sαso) + p(2ty - TxQ) + p(u)

<: 7Ps + ξs + d < s.

Thus by Theorem 3.1, there is an x e Sp(x0, s) such that Sx + Tx + u =
δ?, which proves the theorem.

An immediate application of this result is the following theorem
giving sufficient conditions for certain operators to be onto maps.

THEOREM 5.2. Let B:X—>X be a continuous operator such that
T(X) is contained in a compact set, where T = I — B. Suppose for
each xe X, there is a p e & such that φp(x, T) < 1. Then the range
of B is X.

Proof. B is open at each point of B{X) from the previous theorem,
so B{X) is an open subset of X. We shall show that B(X) is also a
closed subset of X, and hence B(X) must be all of the connected space
X.

To show B{X) is closed, let x be an accumulation point of B{X)
and let {ya} be a net in B(X) such that ya —* x. Let xa be such that
Bxa = ya. Then {Txa} has a convergent subnet, say {Txf

a}. Since Bx'a~
x'a — Tx'a, and {Bx'a} and {Tx'a} converge, we then know that {x'a} con-
verges. But Bx'a~>x, so xeB(X). Thus B(X) is closed, and the
theorem is proved.
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