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A CHARACTERIZATION OF A CLASS OF UNIFORM
SPACES THAT ADMIT AN INVARIANT
INTEGRAL

G. L. ItzgowITzZ

In this paper we consider a class of uniform spaces that
we temporarily call equihomogeneous spaces. These spaces were
first considered by Y. Mibu in a paper On Measures Invariant
Under Given Homeomorphism Groups of A Uniform Space.
The reason for considering equihomogeneous spaces is that one
can easily show the existence of a Haar type integral on them
just by using an obvious modification of a standard existence
type proof for the Haar integral on locally compact topo-
logical groups. We show that these spaces coincide in the
locally compact case with the class of uniformly locally compact
spaces considered by I. E. Segal in his paper Invariant Mea-
sures on Locally Compact Spaces that appeared in 1949. Our
main theorem is that a locally compact equihomogeneous space
is a locally compact topological homogeneous space and hence
is a quotient of locally compact topological groups. We are
therefore able to use the theory of A. Weil to deduce existence
and uniqueness of an invariant integral for these spaces.
These results seem to explain why no examples of spaces,
satisfying Segal’s or Mibu’s conditions, aside from topological
groups and their quotients have been found to date.

1. Introduction and definitions. We first became aware of the
existence of an invariant measure on certain locally compact uniform
spaces when we were looking for conditions for existence of a con-
tinuous measure on such spaces. It was natural to attempt to imitate
the existence proof for the Haar integral in locally compact groups
in the more general case of uniform spaces. We found that an obvious
modification of a proof found in Hewitt and Ross [1] worked in the
case of homogeneous uniform spaces provided two conditions were
satisfied by the group of homeomorphisms acting on the space.

Afterwards we became aware of two papers, one by I. E. Segal
[5], which seemed to be more general in nature then our observation,
and the other by Y. Mibu [3], which considered exactly the conditions
we considered. Both papers used a set theoretic-measure theoretic
approach adopted first by Haar, while we used a functional analytic
approach first considered by A. Weil. The problem with these results,
is that no examples of uniform spaces have been found satisfying these
conditions except, for the obvious ones. We will show in this paper
that the obvious spaces are the only ones.
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Let (X, ) be a uniform space.

DEFINITION 1.1. A function f: X— X is nonexpansive with re-
spect to a base <& for % if for each Ue <% and (w, y)e U, the
relation (f(x), f(y)) € U, also holds.

DEFINITION 1.2. By a <Z-nonexpansive homeomorphism f of a
uniform space (X, ) onto itself, we mean a homeomorphism f of
X onto itself such that f is nonexpansive with respect to a base <Z
for the uniformity Z.

DEFINITION 1.3. A uniform space (X, ) will be called an equi-
homogeneous space if there is a group G of homeomorphisms acting
on X such that (i) G is transitive (i.e., given p, g€ X, there is g G
such that gp = ¢), and (ii) there is a base < for % such that G is
a group of <Z-nonexpansive homeomorphisms of the uniform space.

COROLLARY 1.4. (i) Each ge G satisfies gU[x] = Ulgz]. (Ulx] =
{y: (x,y) € U}). (ii) Each g€ G is uniformly continuous hence a uni-
morphism.

Convention. From now on we will assume that <7 is a symmetric
base for Z/; that is, if Ue <& then U™ = U(i.e., if (x, y) € U than (y,
x)e U). Our notation will be the standard notation of Kelley [2].

THEOREM 1.5. Let G be a group of homeomorphisms acting on
the uniform space (X, /), then the following are equivalent:

(i) there is a base <& for ZZ such that G is a group of Z-
nonexpansive homeomorphisms of (X, Z/).

(il) G is an equicontinuous group of unimorphisms on the uni-
form space (X, Z’).

Proof. (i) = (ii) obvious.
(ii) = (i) Let ¢* be the map induced on the structure space by
the element g € G via the relation

gz, y) = (9%, 9y) -
Let Ue z/. Since G is equicontinuous, there exists Ve % such that
¢ Vc U, for all ge G. Let

Ut =Ug¢*VcU.
9eG
For each Ue % select one U* as above. Then <& = (U* Ue %} is
a base for % and G is nonexpansive relative to <. To see this,
observe that if g,€ G, then
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giU* = giU gV =Ugl*V=Ug'V=U*.
geG geG ge6

NoraTioN. If (X, %) is an equi-homogeneous space then we shall
use the notation (X, G, %, <#) to indicate that G is a group of <Z-
nonexpansive homeomorphisms acting on (X, %).

THEOREM 1.6. If (X, G, ZZ, <Z) 1is locally compact, then (X, %)
18 uniformly locally compact.

Proof. Let pe X. Then there is Ue & such that U[p] is com-
pact. But then gU[p] = Ulgp] is compact for each ge G. Since G is
transitive, Ulx] is compact for each xe X, so (X, %) is uniformly
locally compact.

REMARK. This last theorem shows that the conditions in Segal’s

paper may be weakened. That is, local compactness may be substituted
for uniform local compactness.

2. (X, G, z, %) is a topological homogeneous space. Let
(X, G, z*, %) be an equi-homogeneous locally compact space. Let ec G
denote the identity of G (and of X). We introduce a topology 7 on
G as follows: The basic open sets around ec G are of the form

(U, F) = {g € G: for each pe F, gpe Ulp]}
where F'C X is compact and Ue 7.

REMARK. This topology was introduced by Y. Mibu in [3], where
he showed that these sets were a base for a topology on G. We
remark that he did not show that these sets are actually open in the
topology. We will show that each of the sets .o (U, F) are open,
and give a different proof that they form a base for a topology on G.

LEMMA 2.1. Let ge .o7(U, F). Then there is Ve <& such that

Vigp] < Ulp], for all pe F .
Proof. For xe X, define (z, x) = (x, g(x)). Then + is a continuous

map of X into X x X; and +(F x F)cC U. Since 4 is continuous,
there is Ve <& such that (F x V[F])c U. Thus

{(v, gp): xe F, pe V[Fl}c U.
In particular, we have (x, gv) € U for all pe V[z], x€ F. Thusgpe Ulx]
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for all pe V[z], and hence
Vige]l = gV[z] < Ulx], xe F .

THEOREM 2.2. (G, t) is a Hausdorff topological group.

Proof. To show that (G, ) is topological group we need to verify
(i)—(v) of Theorem 4.5 in Hewitt and Ross [1]. The obvious identity

{e} = N{7(U, F): Ue &#, F compact}

implies that (G, 7) is Hausdorff.

(i) Given &7 (U, F) there is &7 (W, F") such that [ (W, F")|*C
7 (U, F).

Without loss of generality, we may assume that U[p] is compact
for all pe X. Since F is compact, it follows that there is a finite
collection p,, +--, p,€ F such that

F =UUploF.

Since F” is a neighborhood of F, there is Ve <&, VcC U, such that
VIF]c F' (Kelley [2], Theorem 33, p. 199). Let We <Z be such that

WcV,and WoeWcCV.
Let g, g'e 7 (W, F'). Then for each pe F we have

gpe Wipl s WIF] < F'.
Thus it follows from the definition of .o (W, F”) that
g'9lpl € Wlgplc WeW[plc VIpl < Ulp] .

But then ¢’g ¢ &7 (U, F).

(ii) Given .7 (U, F), there is &7 (V, F’) such that o7 (V, F')~' C
(U, F).

This is clear because .7 (U, F) = &7 (U, F)~'. This last identity
follows from the observation that if gpe U[p] then

p=yggpe Ulg™'p] .
Since U is symmetric g~'p e U[p].

(iliy For each &7 (U, F) and ge .o (U, F'), there is &7 (V, F")
such that
9.7 (V, F'yc (U, F) .

Let ge .7 (U, F). Then by Lemma 2.1, there is V such that
Vigp]l < Ulp], for all pe F. Clearly if g,€ .97 (V, F'), then g,pe V[p],
if pe F so that
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990 € gVIp] = Vlgplc Ulp] .
Thus ¢.7(V, F)c (U, F).
(iv) For each .7 (U, F) and each g € G, there is a .7 (V, F”) such
that ¢g='.o7(V, F'\g c &7 (U, F).
If we take F' = gF, and let U = V, then

g7 (U, gF)g = {97'9.9: gJ[p]l € Ulp], for all pegF}
= {97 hy: ho[p] € Ulgp] for all pe F'}
= {ky: k[p]e Ulp] for all pe F}
= (U, F),
so (iv) is satisfied.
(v) If o = (U, F), .o = (U, F;) there is &7 (U, Fy) C

N, .
Just choose U,c U, NU, F,= F,UF,.

REMARK. Condition (iii) implies that each .&7 (U, F') is open, since
there is a neighborhood of each of its points contained properly in it.

LemMMA 2.3. The map Gx X— X defined by (g, ) — g is continuous.

Proof. Let Ue &# and let xe X be arbitrary. Then let Ve <
be such that Ve Vc U. Let ge &7 (V, {x}). Then

gVliz] = Vigz] c Vo V]z]c Ulz] .

Thus &7 (V, {x}) Viz] < Ul«].
More generally, consider Ulgx]. Let Ve .<# be such that VoV
U. Then

[g7(V, {a)]VIz] © Ulga] ,
since if g, 7 (V, {«}), then
99, Vel = gVlgwlcg Ve Viz] Cc gUlx] = Ulga] .

LEMMA 2.4. If WC G is open, and C C X, then gWg~'C is homeo-
morphic with WC (g € G).

Proof. Let ,(9,) = 999" 9,€G. Then +, is an inner auto-
morphism and homeomorphism of G onto itself. Let f: WC — gWg~'C
be defined by

f(gox) = ["ﬁ“g(go)](x) .
Then f is 1 — 1 and onto, since if gg,0~'x = gg,0~'y then & = y since

99,97 € G, and hence g = g.y.
We show now that f is continuous. Let Ue.<Z and consider
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Ulfgsx]. By continuity of the map G x X — X, there is a neighbor-
hood W,c G of fg, and a neighborhood Ve <Z such that

W Viz] < Ulfge] .

Since +, is continuous, there is V, C G containing g, such that (V) <
W,. But then

F(Vige]) = f(g.VIx]) = (99 VIe] C [y, (V)] VIe] < Ul fgex]

so that f is continuous.
We observe that f~—' is defined since f is 1 — 1 and onto. Also
S~ is defined by f~'ga = ;' (9,4). Here ;' = 4,1 since

gy = "l"g—l"/"g(go) = "/’;1[9909_1] = g—lggog_lg = "ﬁg—1°“ﬁg(go) .

Thus a similar proof shows that f~!' is continuous so that f is a
homeomorphism.
Y. Mibu in [3], proved the following powerfull theorem.

THEOREM 2.5. Let WC G be open. Then W 1is totally bounded
if for each compact F = X the set W(F') is totally bounded.

In the conditions for this theorem Mibu states that X is o-compact
(0-bounded), however he does not use this fact in the proof. It is a
corollary of this theorem, and of Lemma 2.4 that if X is locally
compact, then G is locally bounded. Here we say that G is locally
bounded if each ge G has a totally bounded neighborhood. Our proof
is a modification of a proof in Mibu’s paper which shows that if X
is locally compact and connected then G is locally bounded.

NoTATION. Let o7 (U, ») = &7 (U, {z}), v e X.

THEOREM 2.6. If X is locally compact, then G is locally bounded.

Proof. Let W,= .7 (U, p,) where p,c X is fixed, and U[p] is
compact for all pe X. We observe that U"[p,] is totally bounded for

each n=>1. Let C be compact, Cc U:-, U"[p,]. Since C is compact,
there is 7, such that

CC,Q UHlp. (U* = UsU, k= 2,8, -+, n) -

Now each ge W, satisfies gC c Upet* U¥[p,]. Therefore,

no+1

wiclcU Ul .
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and so W,[C] is totally bounded. Observe that 2 = Uz, U"[»,] is open

and closed in X.
Let C < X be compact. Then there are a finite number of elements

of G, say ¢, ++-, g, such that Cc J%., g, 2. Observe that each C, =
CnNyg,Q2 is compact, since each ¢,2 is open and closed.

By Lemma 2.4, W,C, is homeomorphic to g, W.9,'C,. Now g,'C, =
C,c 2 and is compact, so the above argument shows that Wyg;'C, is
totally bounded. But then so is g, W.g,'C, and also W,C,. It is now
clear that

we = U (W,C,)

is totally bounded. Since C was arbitrary in X, it follows from
Theorem 2.5 that W, is totally bounded.

THEOREM 2.7. Let F be compact and Ue #. Then (U, F)x
is open for each xe X.

Proof. We observe first that if Ue <%, x¢ X, then
(U, x)x = Ulx] .

This is because if ye Ulx] then there exists g e .7 (U, {x}) such that
gr =y. Also if ge 7 (U, x) then gxe Ulx].
Now if ye X is arbitrary and ge G is such that go = y then

9.7 (U, 0)g7" = {99,97": g,x € Ulx]}
= {gh: hygx e Ula]}
= {ky: kg e Ulga]} = &7(U, ga) .

Therefore g o7 (U, x)g~'y = (U, y)y = Uly], which is open. But then
&7 (U, {x})y is homeomorphic to U[y], by Lemma 2.4, so it is open.

Let .7 (U, F') be arbitrary, where F' is compact, Ue <. Choose
V such that VoVoVc U. Then the collection {V[x]: x e F'} is an open
cover of F and so is reducible to a finite subcover V]z], -+, V]x]
of F. Consider now N, &7 (V, {x}). Let ge N.7(V, {x;}). Then
if ve F we have x¢ V]x,], for some i. But then

gx e Vige,] C Vo Vix, ] Vo Vo V] Ulx] ,
so that ge .7 (U, F). Thus
k
NV, fzh) c (U, F) .

Now M., o7 (V, {x;}) « is open, so that .&7 (U, F)x is a neighbor-
hood of z. Let ye .o/ (U, F)x, then y = gx for some ge (U, F).
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By part (iii) of Theorem 2.2 there is a neighborhood &7 (V, F”) such
that

9.7 (V, F')c (U, F) .

Clearly gxeg 7 (V, FYyac &7 (U, F)x, and g7 (V, F)x is a neigh-
borhood of gx since .&7(V, F')x is a neighborhood of xz. This shows
that ¥ is in the interior of .o/ (U, F)x, so that .o (U, F)x is open.

COROLLARY 2.8. The sets &7 (U, x), Ue &#, xe X, are a subbasis
for the topology of G.

COROLLARY 2.9. (X, G, 7) is a topological homogeneous space.

Proof. This follows from the definition of a topological homo-
geneous space (see Nachbin [4] page 128).

COROLLARY 2.10. Let pe X. Let G,C G be the group of home-
omorphisms in G leaving p fizred. Then X is topologically isomorphic
(homeomorphic as a homogeneous space) with G/G,.

Proof. This is Proposition 1 on page 133 of Nachbin [4].

3. The connection with the Weil theory of homogeneous
spaces. We may observe that in the proofs of the above theorems we
only assumed two facts, namely:

(a) G was transitive

(b) If ge G then gU[z] = Ulgx] for each ze X.

The transitivity of G was used in 2.6 and 2.7. It is clear therefore
if we extend G to a larger group G satisfying (b) (and automatically
(a)) that the theory goes through as in §2, so that again X is
topologically isomorphic with G'/G,.

LemmA 3.1. If {9.} is a Cauchy net in G then {g.x} converges for
each xe X.

Proof. Since {g.} is Cauchy, it follows that there exists o, = «,(U,
F) such that if a, B = «a, then g;'g.€ (U, F). Thus g,€g,,.~ (U,
F)if a=za. If zeX, theny, = g.x¢c 9.5 (U, F)z, a totally bounded
set. This means that there is a subnet y,, converging to some point
Y€ 9an¥ (U, F)x. We claim that y,—y. To see this, consider V[y].
Let W be such that WoWc V. Now .&7(W,y)Wlylc Vly]. Thus
there is «, such that if o, 8 = «a,, then g,g7'ec (W, y), since {g.} is
Cauchy. Also there is v, such that if v = v, then g,% = ¥, € Wlyl.
Choose a > «a, and v, such that v, = v, #(v,) = ;. Then if v = v, and
a> a, we have
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G = GuFeingen@ € (W, y) WlylC V]y] .

Since Ve & was arbitrary, ¢g,o — y. The above shows that the limit
of each Cauchy sequence of functions is a well defined function of X
into X.

NOTATION. Let G = {g: 9.— 9, gu€ G, {g.} a Cauchy sequence in
G}. Then G is the Weil completion of G.

THEOREM 3.2. (Weil) G is locally compact if G is locally bounded.

THEOREM 3.3. Let G be the Weil completion of G, then each ge G
1s a homeomorphism of X satisfying gU|[x] = Ulgx].

Proof. (@) g is 1 — 1.

If © + vy, there is Ve && such that x¢ V]y]. Let WC V be such
that WoWcC V. Then Wzl N Wyl = @, and so Wlgx]N Wlgy]l = @
for all a. If gx = gy, then g,xec Wlgzx] and gy Wlgz] for a = «,
(for some a). But then gxe Wlgy]l N Wlg.x], a contradiction.

(b) g is onto because g~'x = lim, g;' = is defined for all x e X. See
Kelley [2], page 212, the note after Exercise Q(d).

(¢) g is continuous and open and gUl[x] = Ulgzx].

We shall show that gU[x] c U[gx], for each Ue &, and xze X.
Thus if Vc U is such that V[gx]< Ulgz], then g V[z] © Ulgx], so that
g is continuous. Similarly ¢ is continuous, so that g is open. But
then gUlx] < Ulgx], and g~'Ulx] < Ulg~'x]. Thus

Ulz] < g7'Ulge] < Ul2] ,

and therefore gUl[x] = UJgx].

To see that gU[x]c Ulgzx], for each Ue &#, and ze X, let ye¢
Ulzx], for some xc X, Ue <#. Then choose Vc U such that V[y]C
Ulx]. Since g,y — gy, there is «, such that « > «, implies that
gy € Vlgy]. But then gy e V]g.y] C Ulg.z]. Therefore g.x e Ulgy] for
a > a,. This shows that gxe Ulgy] so gy e Ulgx].

COROLLARY 3.4. The space (X, G) is a locally compact topological
homogeneous space, where G is the Weil completion of G. Thus X is
homeomorphic as a homogeneous space to G/G,, where G, = G is the
stability group of pe X (i.e., G, = {geG: gp = p}.).

Proof. G satisfies conditions (a) and (b) of the beginning of this
section, so this Corollary follows from 2.9 and 2.10.

DEFINITION 3.5. Let G be a locally compact topological group with
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Haar measure A. The modular function 4%(s) is defined by

|, # @sdn@)

47(s) =
|, f@ar@)

» feCi(a) -

DEFINITION 3.6. A positive integral gz 0 on a locally compact
group G is relatively left invariant if for every se G, there is a real
number 4(s) > 0 such that p(fes) = 4(s)p(f) for every f e Ci(G) = {f:
f =0, and f has compact support}. £ is invariant if 4 = 1.

The following theorems are well-known and may be found in
Nachbin [4]. In these theorems the groups G, H are locally compact.

THEOREM 3.7. 4¢ is a continuous homomorphism of G into the
multiplicative group RY of the strictly positive real mumbers.

THEOREM 3.8. (Weil) The following are equivalent for a topological
homogeneous space (X, G):

(i) There exists a positive integral pt = 0 on X, which is relatively
wmvariant under G and having modulus 4, where 4: G— R* is a con-
tinuwous homomorphism.

(i) 4Z@)=4@) 45, for all t e H. Here H=G, for some fized pe X.

If either (i) or (ii) occurs then pt is umique up to a multiplicative
constant.

THEOREM 3.9. (Weil) In order that there ewist at least ome im-
variant positive integral pt+ 0 on X, it is necessary and sufficient that
417 (t) = 45(t), for te H. (Here H = G,, for some fixed pe X).

Note. Theorem 3.8 can be found in [4], page 138, and Theorem 3.9
in [4], page 140.

_ NoratioN. Let W(G) = G = Weil completion of G, and let H =
G, = [W(®)], for some fixed pe X.

LeEMMA 3.10. 479 4s constant on H. In fact 479 (H) = {1}.

Proof. We observe that ec HcC &7 (U, p), for each Ue &#. Thus
Hc n{7 (U, p): Ue «#}. (Note that we are considering .57 (U, p) C
W(G).). ~

Let now Ue <7 be fixed and let U[x] be compact for all ze X.
Let Vc U be such that Vo Vc U. Then an elementary computation
shows that .o~ (V, p).>7(V, p) € .7 (U, p). By 3.7, 4¥” is a continuous
homomorphism. Since .57 (U, p) is compact, it follows that
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D, = 479 o7 (U, p)
is compact in R¥. Now
N{D,: Ue &} = {1}

since a'*" — 1 for all a e R*. Therefore 47¢ (H) = {1}.

THEOREM 3.11. There exists an invariant integral on X, unique
up to a multiplicative constant.

Proof. Since Hc .7 (U, p), where UJx] is compact for all z ¢ X,
it follows from the proof of Theorem 2.6 that H is compact. Therefore
H is unimodular so that 47 = 1. Also from Lemma 3.10 it follows
that

1= 47(t) = 479t), te H .

Thus 3.9 implies that there exists an invariant positive integral £« + 0
on X. But then 3.8 implies that g is unique up to a multiplicative
constant.

From this point on, we will assume that G is weakly transitive
on X, and that G is <Z-nonexpansive. By weakly transitive we mean
that Gu is a dense subset of X for some x e X (hence for each » ¢ X).
This definition agrees with the one appearing in Segal [5].

LemMmA 3.12. (U, {gh)xc Ulx] as a dense subset.
Proof. Obvious from definition of weak transitivity.

LEMMA 3.13. Let ye Ulx], then there is a net x, = g.x —y. The
net {g9,} is a Cauchy net in G.

Proof. Consider the product net {g;'g,} where g;e{g.}. We will
prove that lim,; g5'g.c = ©. To see this, consider W[z]. Let VoV C
W. Then there exists «, such that a > «, implies that g.xe V[y].
But then ye V]g.x] so that g;'ve V[z]. Now let &, 8> a,. Then

g7'9.v€ g5 Vlyl< Vigsiylc Ve Viz] C W]x] .

Since We .«# is arbitrary, it follows that lim,; g7'9.x = =.

Now let y = gx for some ge G. Then {9g9.97'v = gg.x} is a Cauchy
net in X. Thus Lemma 2.4 shows that {g,y} is convergent. Hence
as above lim, ;05'9.y = y. This shows that lim, ;97'g.y = ¥ on a dense
set Dc X. Thus g¢7'9., is eventually in .o (U, y) for each Ue <,
ye D.
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Consider now &7 (U, F). Let Ve <& be such that Vo VoV U.
For each xc F, let y,e DN V[z]. Then xe V[y,]. Since F' is compact,
there is ¥, *++,¥.€D such that Fc U, V[y;]. Consider now ge
N, 7 (V,y,). If xe F, then ze V[y;] for some 7. But then

gregViyl = Vigyilc Ve V] C Vo Vo Viz] C Ula] -
Thus

N7 (V,9) c (U, F) .

Since g¢7'g. is eventually in every &7 (V, ), xe D, Ve &, it follows
that ¢7'g, is eventually in every .&7(U, F') and so {g,} is Cauchy in G.

COROLLARY 3.14. The following are equivalent for a net g,c G:
(i) {g9. is Cauchy in G.

(ii) There exists xe X such that {g.x} is Cauchy in X.

(iii) The net {9.} is pointwise convergent on X.

(iv) The net {g.} converges uniformly on compacta in X.

Proof. (iii) = (iv) is Theorem 15 on page 232 of Kelley [2].
(i) = (iii) = (ii) = (i) follows from 3.1 and 3.13.

COROLLARY 3.15. G has the topology of umiform convergence on
compacta. W(G) 1is the closure, in the collection of all continuous
functions of X into X, with respect to the topology of wuniform con-
vergence on compacta.

COROLLARY 3.16. If there exists a weakly transitive uniformly
equicontinuous group of homeomorphisms on a locally compact uniform
space (X, ), then X 1is a quotient of locally compact topological groups.

COROLLARY 3.17. Let (X, %) be a locally compact uniform space.
If (X, ) admits a weakly transitive group of uniformly equicontinuous
homeomorphisms, then the group of all uniformly equicontinuous home-
omorphisms 1s locally compact in the topology of uniform convergence
on compacta.

3.18. Second proof of Theorem 2.6.

According to the Ascoli Theorem (Kelley, Theorem 17, p. 233 [2]),
W,c G is totally bounded iff W,[x] is totally bounded for each ¢ X.

Letting W, = .7 (U, p,), where Ulx] is compact for all ze X, we
see that W,p, = Ulp,] and U[p,] is compact. Let pe X, then by 2.4,
W,p is homeomorphic with gW, g 'p. Clearly if ge G is such that
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9~'p = p, we have that Wg~'p = W,p, has compact closure, hence so
does W,p. Thus W, is totally bounded, i.e., the closure of W, in
W(G@) is compact.

COROLLARY 3.19. Let X be a locally compact metric space. If
there exists a weakly transitive group of isometries on X, then X 1is
a quotient of locally compact topological groups.

COROLLARY 3.20. (i) W(GQ) the Weil completion of G is transitive
on X.

(ii) There exists a G-invariant measure ¢ on X.

(iii) u is unique up to a multiplicative constant.

Proof. (i) WI(G) consists of all limits of Cauchy sequences in G.

(ii) (X, W(@)) is a topological homogeneous space so existence
follows from Theorem 3.11.

(i) Let {g9.} be a Cauchy sequence in G. Then g, converges
uniformly on compacta to ge W(G). Let fe Ci(X), so that support
f = F is compact. We will show that

[ 7eo@dt@) = lim | oo, @dpte)

where y is a G-invariant regular Borel measure on X. Thus ¢ extends
to a W(G)-invariant regular Borel measure on X and so is unique.
Since g,— ¢ in the topology of W(G), there exists «, such that a >
«, implies that

99 e (U, F) .

Therefore if a = «,, we have gg;'F C U[F] so that g;'Fc Ulg~'F].
Clearly if x€(U[g™'F] then xelg;'F for each a = a,. Thus g.xec(F
for each a = a,, so that

fogox) =0, az=Za,.

This shows that U[g~'F] contains the support of fog, for a = a,. If
we take Ue <& such that Ulx] is compact for all z¢ X, it follows
that U[g—'F] is compact. Also since f is uniformly continuous, the
family {h.: h, = fog.} is equicontinuous and pointwise convergent to
h = fog. Therefore h,— h uniformly on compacta. Thus if a = «,
we have

|, foo@dp@ = | feo@dp@ —| | roo@due)

Tlg™ Uly

- Safog@c)d;z(x) :



136 G. L. ITZKOWITZ

This proves that
|, f@du@ = | foa@du)— | feowdut)
so that p is W(G)-invariant.
COROLLARY 3.21. (Segal [5]) ¢ is unique iff G is weakly transitive.

Proof. See Theorem 7, page 126, paragraph 1, for the case in
which G is not weakly transitive. We have shown the converse.

COROLLARY 3.22. Let X be a locally compact metric space. If
there is a weakly transitive group G of isometries of X, then there
18 a unique G-invariant regular Borel measure on X.

4. Existence proof of a G-invariant measure according to the
method of A. Weil. For completeness, we give here a direct proof
for existence of a G-invariant measure on (X, G, %7, .<#). The proof
is almost identical with one of the standard proofs of existence of the
Haar measure on a locally compact topological group.

In what follows (X, G, z, &) will be an equihomogeneous locally
compact space, that is, G is a transitive group of .<&-nonexpansive
homeomorphisms acting on the uniform space (X, %).

LEMMA 4.1. Let f, 6€Cy(X). Then there exist elements s, s,,
cee,8,6G and ¢, -+-, c, > 0 (positive real numbers) such that

Ms

f=

C,.008, .
1

\{
Il

Proof. Let FC X be a compact set such that f = 0 on (F. Let
ac X be such that ¢(a) > 0. Since ¢ is continuous, there exists a
¢ >0, and a neighborhood Ue <& such that ¢(x) = p for all x e Ulal.
By compactness, we can cover F' by a finite number of neighborhoods
Ula]J(F < U, Ula;]). For each 4, let g;e G be such that g,(a;) = a.
Let ¢, = || f||o/tt- Then

CESE TS

for all x, proving the Lemma.

DEFINITION. Let f, ¢ e Ci(X). Let (f: ¢) = inf {37, ¢,: there ex-
ists a sequence g, +--, 9, € G such that
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f=2ed09).

LEmMMA 4.2. (@) [[fll-/lI$]le = (f:9)
(o) (fea: ¢) = (f:9)

(e (afig)=a(f:¢), a=0

d (fi+ fa0) = (fi29) + (far 9)

(e (fra) = (f:9)(8: )

Proof. (a) We note that
f@) = 3 e g0g.(®) = S|l 4]l

for each 2, so that

for each covering sum.
(b) If foa < 3ir ¢, p°g,, then

f = feaca™ £ X ¢,400,007" = 3 ¢, 800,
r=1 r=1

so that
(fr9) =2ie,
and hence (f: ¢) < (fea: ¢) by taking infimums of covering sums.
Similarly

(fea: ¢) = (f:9) .

(¢) obvious
(d If fi<>ricd0g, and f, = D7, d;poh;, then

fl + fZ é %Cr¢°gr + Jzzadjéoh’j
so that

(fi+ fad) = Sie+

e

d; .

Taking infimum we get
(fi+ i) =(fi9) + (fai ).
(e) If we apply Lemma 1 to f, ¢, v we get
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f =S osoan 6 < Sdeh; .
Therefore for any x, we have
f@) = 3 e.dog.(@) = chlg. diyroheg. ()]

= 33 ¢,d;oh;00,(3) -

r=1 g=1

Therefore (f: ) < Croe,)(Cir1d;). Again taking infimum over both
e, >d; we get

(F: ) = (f2 9)(8: ) -

From now on f, will be a fixed nonzero element of C;(X).

DEFINITION. Let ¢ e Ci(X) for fe Ci(X) define

_ (fr9)
I = il
)= e)

LEmMA 4.3. (a) I,0) = 0.
(b) I,(fea) = I(f) for all acG.
© L@f) = aL(f) (x> 0.
d) L(f.+ f) = L(f) + L(f)-
() Ii(f) = L(fo) if fi = fo
@) 1/(fe: ) = L(f) = (f: fo)-

Proof of (f). Since (f:9¢) < (f: fo)(fo: ¢) it follows that I,(f) <

(f: fo)-
Also

(for 8) = (for (S 9)
$0

L _ (i gm
A

LEmMMA 4.4. Let pe X be fived. Let [, f.e Ci(X) and let € > 0.
Then there exists Ue <& such that each ¢ e Cii(X) having support in
Ulpl satisfies

L(f) + LI(f) S L(f.+ fo) +¢.
Proof. Let F be a compact set on which f (x) + f,(x) = 0 for all
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x¢ F. Choose € Cif(X) so that y(f) =1 ¥(X)[0,1]. Let ¢ > 0.
In the following we will be using numbers 4, 7 depending on f,,
fa fo & 4 in a manner to be determined later on in the proof.
Let f = f,+ f.+ 64 Define

fl(x) 1
M@={f@>ﬁﬂ”i°
0 if f(x)=0

Sfe®) -
M@={f@)ﬁﬂ@io
0 if f)=0.

Thus h,, h,e CH(X).

Let Ue <& be such that |k (x) — h(y)| < 7 and |hy(x) — h(y) | <7
whenever (z, y)e U. (By Kelley [2], Theorem 31, h, h, are uniformly
continuous). Let ¢ € CH(X) be such that ¢(x) = 0 for x ¢ U[p]. Then
as was shown in Lemma 1, there exists a sequence s, --+, s,€ G and
positive real numbers ¢, ---, ¢, such that f < D7, ¢,é0s,.

If gos,(x) = 0, then s.(x) e U[p] so that xe U[s;'p] and hence (.ie.,
(x, s;'p) e U)

[h(@) — hu(s7'P)| <7 -
Thus we can write
h(@) = k(@) — h(s7'D) + hu(s7'D) = 7 + hu(s7'p)
and hence
(*) $(s,0)h(x) = ¢(s,@)[7 + h.[s;'p)] when ¢(s,x) # 0 .

However (*) holds even if gos,(x) = 0 and so (*) holds for all «x.
We observe now that (*) implies that

£@) = h@)f (@) < @ 3 e85, @)
= 3 e.pos,(@h(®) = 3 o805, uls'p) + 7] -
Thus
(fi 9) = B elhos @) + 71,

and similarly

(f 9) < S elhesr(o) + 7] -

Since
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bt o it S o Fot ot op g
S f
it follows that

(fi: ) + (2 8) < B elhioss'(0) + heos?(0) + 27] < 3o [1 + 21 .

Taking infimum of ¢, we have
(fir9) + (far9) = (fr )1 + 2],
and dividing by (f,: ¢) we get

L(f) + L(f,) = L(f)[1 + 27]
= [L,(f + f2) + L,09)][1 + 27]
= [I,(f, + f2) + oL,(y)][1 + 27]
= L(fi + f2) + 20L,(f1 + f2) + oL, (y)[1 + 27]
= L(f+ fo) + 20(f, + far fo) + a(ys fo)ll + 27] .

Now choose 0, » so that 2n(f, + f.: fo) + 0(¥: fo)[l + 29] <e, and the
Lemma is proved.

THEOREM 4.5. If (X, G, %, &) is an equi-homogeneous locally com-
pact space then there exists a G invariant integral (measure) I on CH(X).
The measure defined by I is a regular G-invariant Borel measure.

Proof. Let feCj(X). Define T, =[1/(fs: f), (f: fo]l (T, is a
compact interval in R*)., Let T = P;T;,. Then T is compact. We
observe now that each I, can be regarded as an element of T, by
associating I, with {¢;} e T where t; = I,(f).

Let <# be the base for % associated with the group of home-
omorphisms G, and suppose <% is directed by inclusion. Fix pe X.
For each Ue .«#, choose exactly one nonzero ¢,ec Ci(X) such that
¢y(x) = 0 if xe(U[p]. Now {I,: Ue .=} is a net in the compact space
T, and so there is a convergent subnet {I;} converging to an element
I of T. It is clear that I has the following properties

(i) I#0.

(ii) I(f) > 0 whenever feCi(X), f # 0.

(i) I(f, + fo) = I(f) + I(f5).

(iv) I(foa) = I(f) for all feCH(X), acG.

(v) I(af) = al(f) for « = 0.
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