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A CONSTRUCTIVE STUDY OF MEASURE THEORY

YUEN-KWOK CHAN

In this paper we study measures on locally compact metric
spaces. The constructive theory of a nonnegative measure has
been treated in Bishop's book "Foundations of Constructive
Analysis". Unfortunately, there is no constructive method to
decompose a general signed measure into a difference of two
nonnegative ones. In analogy to the classical development,
we shall consider two ways to look at a signed measure,
namely, as a function function (an integral) and as a set
function (a set measure). From an integral on a locally
compact metric space X we obtain compact subsets of X to
which measures can be assigned. The set measure thus arrived
at is shown to be in a weak sense additive, continuous, and
of bounded variation. Next we study a set measure having
these three properties defined on a large class of compact sub-
sets of X. From such a set measure we derive a linear func-
tion on the space of test functions of X. This linear function
is then shown to be an integral. Finally it is demonstrated
that the set measure arising from an integral gives rise in
this manner to an integral which is equal to the original one.
In particular, every integral is the integral arising from some
measure (Riesz Representation Theorem).

We shall make use of concepts and results in Bishop's book (reformed
to hereafter as C.A.), in which one can find a presentation of the
constructive viewpoint and the constructive methods.

1* Compact subsets of a boundedly compact metric space* A
metric space (X, d) is said to be totally bounded if, given any ε > 0,
there is a finite, possibly empty, sequence of points in X which forms
an ε-net for X. A metric space (X, d) is said to be compact if it is
totally bounded and complete. A boundedly compact space1 is one in
which every bounded subset is contained in some compact subset.
Hereafter let (X, d) denote such a space. For each compact subset A
of X, and each xe X, we let d(%, A) stand for the number min (1, inf
{d(x,y):ye A}). Here the infimum is easily proved to exist (C.A.) if
A is nonempty, and -is taken to be co if A is empty. Given any
compact subsets A and B of X, write

d'(A, ΰ)Ξmax (0, sup{d(α;, B): xe A), sup{d(x, A): x, B}) .

Here the supremum of an empty set is taken to be — co. dr can easily
be shown to be a metric on the family of compact subsets of X.

1 Called locally compact space in C. A.
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The proof of the following theorem is almost a verbatim reproduc-
tion of one in C.A., and so will not be given here.

THEOREM 1.1. Assume (X, d) is compact. Let f be a continuous
function on (X, d). Then we can find a countable subset A — Af of
the real line, with the following properties.

(1) The set (a ̂  / ^ b) == {xe X: a ̂  f(x) <; b) is compact when-
ever the numbers a and b are in —A with a < 6.

(2) Suppose a and b are in —A with a <b. Then for numbers
a! and b' in —A which are close enough to a and b respectively, the
distance d'{{a ̂  / ^ 6), (α' ίg / ^ 6')) is arbitrarily small.

DEFINITION 1.2. Let A and B be subsets of X. We call the
closure of A Π B (resp. A U B) in X the closed intersection (resp. union)
of A and B, and denote it by A/\B (resp. AVB).

Let K and L be compact subsets of X. We say K and L are
compatible if K/\L is compact, and if for each ε > 0, there exists
ε > 0 such that

d(x, KA L) < ε for every xe X with d(x, K) < 3 and d(x, L) < δ .

We say K well contains L, and write K ZD L, if there is a positive
constant a such that d(x, L) > a whenever d(x, K) > 0.

PROPOSITION 1.3. Assume that K, L, and H are compact subsets
and that the sets generated from them by the operations Λ and V are
compact and pairwise compatible. Then the following equalities hold.

(i) KVL = LVK,KΛL = LΛK.
(ii) (KVL)VH=KV(LVH),(KΛL)ΛH=KΛ(LΛH) .
(iii) (KVL)ΛH = (KΛH)V(LΛH), (KΛL)VH - (KVH)Λ

(LVH) .

The proof is straightforward and is omitted.

DEFINITION 1.4. For any pair of continuous functions / and g on
X we shall let / Λ g (resp. / V g) denote the function min (/, g) (resp.
max (/, g)).

Suppose/x, •••,/» are continuous functions on X. We shall let
ψ = ψ(fu , fn) denote the (finite) family of functions generated from
fi, -' ,fn by the operations Λ and V. We shall say a (Lebesgue)
null subset A of R is exceptional for the functions fl9 •••,/* if the
following three conditions are satisfied.

( i ) For each ae — A, the sets

(f^a)^{xeX:f(x)^a) (feΨ)
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are compact.
(ii) For each ae — A and f e Ψ, by choosing the number be — A

near enough to α, we can make d'{{f ^ α), (/ ^ b)) arbitrarily small.
(iii) For each ae —A, the sets (/ ;> a) {f eΨ) are pairwise com-

patible.
The following proposition and its corollary show the abundance of

compatible compact sets.

PROPOSITION 1.5. Assume (X, d) is compact. Given continuous
functions f, •••,/„, there exists an exceptional set A of real numbers
for A, •••,/»•

Proof. Since Ψ = Ψ(fu •••,/») is a finite family, using 1.1 we can
find a countable subset A of R such that conditions 1.4 ( i )—(i i ) hold.
Now let o) be a common modulus of continuity for the functions in
Ψ. Consider any ae —A, and functions / and g in Ψ. Let ε > 0 be
arbitrary. By 1.4 (ii) we can choose be — A with b < a such that

d'((fAg^a),(fAg^ b))< ε .

Let δ = min (1, ω(α — &)). Suppose a G l i s such that d(x, (f ^ α)) < δ
and d(a?, (# ^ a)) < <5. Then there is some y :n (/ 2> α) with d(aj, ?/) < δ,
and so /(a?) ^ δ Similarly gr(a?) ̂  b. Consequently xe (fΛg^b) and
so d(x, (fΛg>a))< ε. But (f A g ^ a) = (f ^ a) A (g ̂  a). It fol-
lows that

d(x, (f ^ α ) Λ ( ^ ^ α)) < e .

Therefore (/ ^ α) and (g ̂  α) are compatible. We have thus verified
1.4 (iii).

DEFINITION 1.6. A continuous function h on (X, d) is said to be
proper if for all real numbers a and b with a < 6, the set (a ̂  h -^ b)
is contained in some compact subset of X.

COROLLARY 1.7. Let flf fn be proper functions on X which are
bounded above. Then there is a null subset A of R which is exceptional
for fu , fn.

Proof. For each natural number k, choose a real number ak such
that ak < —k, and such that the set Lk = (f V V/n ^

 ak) is compact.
Choose a compact set Kk which well contains Lk. Then by 1.5 there
is a null set Ak of real numbers which is exceptional for the functions
fίlKk, > ,fn\Kk. Since compact sets in Lk which are compatible as
compact subsets of Kk are also compatible in X, the set of real numbers
UΓ=i Ak can easily be verified to be exceptional for the functions

fit ' ' •/*•
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PROPOSITION 1.8. Suppose the null set A is exceptional for the
functions fu , fn. Then for all f and g in Ψ(fu •••,/») and ae —A,
we have (fAg^ά) = (/;> α) Λ (ff sέ α) and (fVg^a) = (/^α)

Proof. The first equality is easily verified. Take any x in (/ \/g ^
a). For every natural number k choose bk in — A with bk < a and
d'((f ;> ft*), (/ ;> a)) < Ar1. Then either x e (/ < α) or α? e (/ ^ bk). In
either case d(#, (/ 2̂  α) V (# ̂  α)) is less than Ar1. Thus xe (f ^ a)V
(g ^ α). So (fVg^a) is contained in (/ >̂ α) V (# ί> a). Contain-
ment in the other direction is obvious.

2 Measure induced by an integral. Hereafter C(X) will denote
the space of test functions on (X, d), namely, continuous functions on
X with compact supports.

DEFINITION 2.1. A (signed) integral μ on X is a linear function

on C(X) whose value at an element / of C(X) is written I fdu, such

that for each feC(X) there is Mf ^ 0 with \hdμ ^ Mf whenever

heC{X) and \h\ S l / l

DEFINITION 2.2. A sequence {fn} of test functions is said to belong
to a compact subset K of X if for all n,

( i ) 0 < S / . ^ l ,
(ii) fn(x) = 0 if eZ(α, if) ^ w 1 ,

and (iii) fn(x) = 1 if α? e ίΓ .

In the following, let μ be a given integral on X.

DEFINITION 2.3. A compact subset K of X is said to be strongly
measurable with respect to μ if there is a sequence {/„} of test func-
tions belonging to K such that \fngdμ converges for all test functions

9-

The following lemma is proved in C.A. (P. 173).

LEMMA 2.4. Let K be a compact subset of X. Suppose {fn} belongs

to K and suppose \fndμ converges. Then the limit is independent of
J . . . . . Γ

the sequence {/„}. Thus if {fn} is in addition such that \fngdμ con-

verges for all geC(X), then, for given g, the limit liml fngdμ is in-

dependent of {/n}.

DEFINITION 2.5. Let K be strongly measurable and let geC(X).

Define μ{K) = lim \fndμ and I gdμ = lim\fngdμ, where {fn} is some
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sequence of test functions belonging to K such that these limits exist
(By 2.4 these are well defined). μ{K) is called the strong measure of
K.

PROPOSITION 2.6. Let K be strongly measurable and g a test func-
tion. From every sequence {f'n} of test functions belonging to K, we
can select a subsequence {/"} such that

lim [fήgdμ = [ gdμ .

Proof. Let {fn} be a sequence of test functions belonging to K
such that \fnhdμ converges for all heC(X). Since \fn—fή\ vanishes
on K and on {x e X: d(x, K) ^ n~1}, we can select a sequence of integers
{wj such that n{ < ni+1 and

I A - A I + ••• + | / . < - A I ^ 2 for a l i i .

By abuse of notation we again write fi for fn., and // for f%i. Let
hi — fι — f (i = 1, 2, •). Then clearly for every choice of integers
j and iγ < i2 < < i3- we have

\hh+ ••• + hi.\ ^ 2 on X .

Therefore

\hhg + . . . + fe^| ^2|flr| on X ,

and so, by the definition of an integral, there is M^ 0 such that

\hhgdμ + . . . + \ h.gdμ M

for all integers j and iγ < i2 < < iy. Thus, by passing to a sub-
sequence, we may assume

Yhigdμ—>0 as i—> ©o .

If follows that χflgdμ—>lim \fngdμ.

S J %^c» J f /

fίgdμ converges in a weak sense to I gdμ Given any sub-
r Jx V

sequence of I fήgdμ we can select a subsequence which converges to
\ gdμ). This is the strongest result we can expect to get, as is
)κ J

shown by the following example.
Let {an} be a given sequence of 0 or l's, containing at most one

1, but it is not known whether there is a 1. For each n write rn for
n~γ. Define integrals μn on the real line by μn = ε2n — ε2n+1 where εk
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denotes the integral defined by \fdεk = f(rk) for all feC(R). Let

μ be the integral on R defined by

\fdμ = Σ an\fdμn for all / e C(R) .
J n = ί J

The last series converges by the continuity of / . For each n, let fn

be a continuous function on R, having values in [0, 1], supported by
[ — r2%_i, r2Λ_J, and equal to 1 on [ — r2n, r2%]. Let /£ be a continuous
function on i?, having values in [0,1], supported by [ —r2w, r2w], and
equal to 1 on [ — r2n+1, r 2 n + 1]. Clearly /n and /£ belong to the compact
set K = {0}. For each n and m it is also clear that \fndμm = 0. Thus
\fndμ = 0 for all n. Given any test function g, since # behaves like
a constant near 0, we can prove \fngdμ—>0. Thus K is strongly
measurable with respect to μ. On the other hand for any n and m
we have \fndμm = —§mn (δmn the Kronecker delta). Hence \fήdμ =

— an. We cannot, however, tell whether — an converges in the ordinary
sense.

LEMMA 2.7. // K is strongly measurable, and g and g' are test

functions which coincide on K, then \ gdμ = \ g'dμ.
)κ lκ

Proof. Let {fn} be a sequence of test functions belonging to K

such that \fjιdμ converges for all heC(X).

There exists a compact set L outside which g and gf vanish. Let
/ be a test function which equals 1 on L. Then by the definition of
an integral, there is Mf ^ 0 such that

"hdμ ^Mf\\h\\

wherever h e C(X) is supported by L. Now g — g' vanishes on K and
so \\{g — g')fn\\ is arbitrarily small if n is large enough. But

ύ Mf\\(g - g')fn\\ .

The desired result follows.

DEFINITION 2.8. Let K be strongly measurable. For each con-
tinous function g on K, write

μκ{g) =
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where g is some test function on X which extends g. μκ is a func-
tion by 2.7. Clearly μκ is an integral. We call μκ the restriction of
μ to K.

PROPOSITION 2.9. Suppose K is a compact subset of X which is
strongly measurable with respect to μ. Suppose L is a compact sub-
set of X which is well containd in K and strongly measurable with
respect to μκ. Then L is strongly measurable with respect to μ, and
μ(L) = μκ{L).

Proof. Let {fn} be a sequence of test functions on X belonging to
K, such that \fngdμ converges for all g e C(X). Let {f'n} be a sequence
of test functions on K bearing a similar relationship to L and μκ.
Since KZDZDL, for each n we may assume that f'n is the restriction
to K of some test function f" on X which is supported by K; indeed
we may assume that the sequence {/Γ} belongs to L. Now, for any
geC(X), let gκ be the restriction of g to K. Then by assumption
the sequence \fήgκdμκ converges. But, for each n,

\fήgκdμκ = lim \fmf"gdμ = \f"gdμ .
J m->oo J J

The first equality holds by the definition of μκ; the second because

f"g is supported by K, and fm = 1 on K. Thus \f"gdμ converges.

Moreover

μ(L) = lim [f'Jdμ = lim \f'ndμκ = μκ{L) .

The following theorem, which is a generalization of one in C.A.,
shows that strongly measurable sets are abundant.

THEOREM 2.10. Let h be a proper function on X. Then there
exists a (Lebesgue) null set B of real numbers such that the set
(u ^ h fg v) is strongly measurable for all u and v in -B with u < v.

Proof. In view of 2.9, we may assume that X is compact. It
suffices to show that for [0, 1] (and similarly for any interval) there
is a null set B such that the set (u ̂  h ̂  v) is strongly measurable
for all u and v in [0, 1] — B with u < v. Without loss of generality,

assume that \\fdμ ^ | | / | | for every feC(X).

For each natural number n write

^ 1 and \g(x) — g(y) \ ̂  nd(x9 y)} ,
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and write for each k (0 ^ k <̂  n4 — 1),

Snk Ξ { / G C(i2): | | / 1 | ^ 1; / is supported by

[kn-\ (k + l)n- 4 J; and |/(s) - / ( ί ) | ^ 2(w + l ) 6 | s - t\) .

Then, by Ascoli's Theorem (C.A.), the sets Gn and Snk are compact
with respect to the supremum norms. Therefore, for given natural
numbers m, n, and k(0 ^ k ^ n4 — ΐ), the number

amnk =

is well defined. For given m and n, let £7mw and Vmn be a partition
of {0, 1, , n4 - 1} such that

Umnk > n~2 if ke Umn; amnk < 2n~2 if ke Vmn .

For each k e Umn, choose fk e Snk and gk e Gm with

> Λ—
 2

Let / = ^k,umn{f^h)gk Then | | / | | ^ 1 by the definition of the f'ks.
Thus

1 ^ (/d^ - Σ ί ( Λ ° ^ ) ^ ^ > n~2 card (C7OTW) .

Or card (Z7mn) ^ ^ 2. (card (?/„») is the number of elements in Umn).
Now construct a countable subset Ah of J? which is related to h

as Af is to / in 1.1. For all natural numbers m and w, let Bmn be
the union of the set

\J [kn-4,{kλ

and the set

U 4 ([kn~4 -n~\ kn~4 + n~6] f] [0, 1]) .

Then the Lebesgue measure of Bmn is at most

ΎΓ4 card (Umn) + 2n4 n~6 <; 2ΉΓ 2 .

Thus B = Ah{J (|Jm=i ΓlΓ=i \Jn=j Bmn) has Lebesgue measure zero. Now
suppose u, ve [0, 1] — B with u < v. We shall show that the set
(u ^ h -^ v) is strongly measurable.

For each n, construct fn e C{R) with support [u — n~\ v + rr*]
such that fn = 1 on [u, Ϊ;] and /Λ is linear on each of the intervals
[u — n~6, u] and [v, v + n~% Let m be an arbitrary natural number,
and ge Gm. There is a natural number j such that w, ve —Bmn for
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all n ^ j. Fix any n with n ^ j. It follows from the definition of
Bmn that

ue [k'n~* + n~\ (k' + l)wr4 — n~6] for some kf e Vmn

v e \k"n-* + n~\ {k" + 1)^~4 - n~6] for some ft" e Vmn{k' ^ &") .

Since fn — fn+1 is supported by [u — n~6, u] U [v, v + ^"6] and since
u < 'y, we can write fn — fn+1 = f + f" where / ' equals fn — fn+1 on
[u — n~6, u\ and zero elsewhere, and where / " equals fn — fn+1 on
[v, v + n~6] and zero elsewhere. In particular, / ' is supported by
[k'n~\ (k' + ϊ)n~4]. For all real numbers s and ty

\f'(s) - f{t) I ̂  |/.(β) - Λ(ί) I + |/.+ι(β) - Λ+ ι(ί) I

^ 2 ( ^ + l)βIs — t\ .

Therefore f'eSnk,. But k'e Vmn. Thus αmnfc, < 2n~\ Consequently,

\[(f'°h)gdμ ^2n~2. Similarly we show j f ( / " ° % d μ | ^ 2n~2. Com-

bining, we see that

Therefore \{fn°h)gdμ converges for all geGm. Since by the Stone-

Weierstrass Theorem (C.A.), the linear span of \jZ=iGm is dense in C(X)

under the supremum norm, we see that \(fn°h)gdμ convergers for all

g 6 C(X). It remains to choose from the sequence {fn°h} a subsequence
which belongs to the set (u ^ h ^ v). For every natural number i,
by the definition of B and Ah, we can find v! and v' in [0, 1] — B
such that vf < u < v < v' and

d'((u ^h^v),{u' ^ h ^ v')) ^ i'1 .

Let Ui be a natural number greater than (u — u')~ι and (V — /y)~1.
For every x such that d(α;, (u ^ h ^ v))>i"1, we have fe(a?) ̂  ^ ' or
fe(a?) ^ v'. It follows that /niofc vanishes at this x. Clearly fn.oh — 1
on the set (u <* h ^ v). Combining, we see that {fnioh} belongs to

PROPOSITION 2.11. // {Kn} is a sequence of strongly measurable
subsets of X, if K is a strongly measurable subset contained in each
KnJ and if d'(K, Kn) ^ n"1 for each n, then μ{K'n) converges to μ{K)
for some subsequence {Kή} of {Kn}.
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Proof. Choose a sequence {gn} of test functions such that O^gn<Ll,

gn = 1 on Kn, gn(x) = 0 if d(α?, i Q ^ n"1, and [gndμ - μ(#») ^ n~\

Since d'(iΓ, if%) ^ n~\ the sequence {#2?J belongs to K. Hence by 2.7

we can choose a subsequence {g'n} of {#2w} such that \g'ndμ—>μ(K) as

n->oo. Take the corresponding subsequence {K'n} of {i^}. Obviously

μ(K'n)-+μ(K).

LEMMA 2.12. Suppose K is strongly measurable. Then there
exists a constant Ak ^ 0 such that

for every sequence Lu K1} L2, K2, , Lm, Km of strongly measurable
sets with Kz)Z)LXZDZ)K^Z) ••• =)Z)L m Z)3K m .

Proof. By the definition of an integral, there exists a constant

Aκ^ 0 such that \fdμ\ ^Aκ\\f\\ for each feC(X) supported by

K. Now let

(*) i f Z) ZD Lx 3 3 i^! =) ID Z> =) L m 3 3 Km

be a sequence of strongly measurable sets. Choose sequences of test
functions {/*} and {gi} belonging to K{ respectively L; such that

lim [fίdμ = μ{K%)\ lim \gι

ndμ = μiL,) (1 ̂  i ^ m) .

Let d > 0 be arbitrary. Partition 1, , m into subsets P and Q
such that

u{U) - M*Q < S if iG P; /£(!,<) - μ{Kύ > - δ if iG Q .

Then

Σ I (^) - i"(^) I = Σ I M^i) - M*Q I + Σ I μ(Ld -
ΐ = i

Σ {- (A«(̂ ι) - μ(K*)) + 2δ} + Σ {̂ (L,) - μiKt) + 2δ}
P ieQ

Σ
ieP

= 2mδ + lim { Σ [(ft ~ βiW + Σ ((ffί - fi)dμ\ .

But, from the well containment (*), it follows that if n is large enough,
the function ΣίeP {ft - gί) + Σ*ieQ (Λ - Λ) is supported by K and has
values in [-1,1]. Therefore by the definition of AK1 the integral of
this function
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ieQ

is at most Aκ if n is large enough.
Consequently

- μ(Kt)\ £
i = l

But d was arbitrary. The desired inequality follows.

PROPOSITION 2.13. Suppose K is strongly measurable. Then there
exists a constant Bκ > 0 such that

for every sequence of strongly measurable sets KZD^ZD z> Km.

Proof. Choose a positive real number α0 such that the set

K' = {x e X: d(x, K) ^ α0}

is strongly measurable. Such a choice is possible by 2.10. Let Aκ, ^ 0
be a constant associated to K' as in the above lemma. Let Bκ =
2AK, + 1. Now consider any sequence of strongly measurable sets
Kz^Kγ-DK2~D ID Km. Inductively (on i = 1, , m), let α̂  > 0 be
so small that α̂  < αi_L and such that

is strongly measurable with | μ(K^ — μ(Kΐ) \ < (2m)-1. Then it can
easily be shown that

Therefore, by the definition of Aκ,,

But then

PROPOSITION 2.14. // two strongly measurable sets K{ and K2 are
compatible, and Kγ Λ K2 as well as Kλ V K2 are strongly measurable,
then

μ(K2) = μ(Kγ A K2) + μ{K, V K2) .
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Proof. Let {/J, {gn} be sequences of test functions belonging to
Kx and K2 respectively. Clearly the sequence {fnVgn} belongs to
Kx V K2. Since Kt and K2 are compatible we can select a sequence
nγ < n2 < < nk < of natural numbers such that d(x, Kλ A K2) >
AT1 implies d(x, iQ > wϊ"1 or d(#, iΓ2) > nk

ι. Then the sequence {fnkΛgΛk}
belongs to KλAK2. Therefore, by 2.6 and by passing to a subsequence,
we have

μ{Kx A K2) + μ(K, V K2) = lim ((/„, Λ gnkdμ + j / Λ j f c V

- lim ί(Λ, + gnk)dμ =

PROPOSITION 2.15. The empty set 0 is strongly measurable, and
μ(0) = 0.

Proof. Just consider the sequence of test functions {fn} where
fn = 0 for each n.

3. Measure spaces and integration.

DEFINITION 3.1. Let (X, d) be a boundedly compact metric space.
Let F be a family of compact subsets of X such that, for every
proper function / on X, there is a (Lebesgue) null subset Af of R
such that the set (α ̂  / ^ 6) is in F for all a and 5 in —A/ with
a < b. Suppose further v is a real valued function on F such that

( i ) v is additive in the sense that

v(Kd + 1>(1Q - v{K, A K2) + v{Kx V iΓ2)

whenever i^, K2e F are compatible and i^ Λ K2, Kt V iΓ2 are in F,
(ii) v is continuous in the sense that, given compact sets K, Kne

F(n e N) with KdKn and d'{K, Kn) —> 0, we can choose a subsequence
{K:} of {jQ such that v(K'n) -> v(Z),

(iii) v is of bounded variation in the sense that, for every K in
ί7 there exists Bκ ^ 0 such that for any sequence
of elements of ί7 we have

Σ
i ---l

(iv) v(0) = 0, where 0 is the empty set.
Then we say that v is a signed measure on (X, cί) and (X, ώ, F, v) is
a signed measure space. When no confusion is likely, we call a signed
measure simply a measure, and a signed measure space simply a
measure space. Members of F are said to be measurable.
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In what follows, (X, d, F, v) will denote a given measure space,
unless otherwise is explicitly stated.

LEMMA 3.2. Let K and L in F be such that v{K) Φ v(L). Then
d'(K, L) > 0.

Proof. Construct a sequence {an} of 0 or Γs such that

d'(K, L) < n~ι if an = 0; d'{K, L) > 0 if an = 1 .

For each natural number n such that an = 0, choose a positive real
number bn with bn < w 1 such that the set

Kn = Ln = {xeX: d(x,K)£bn}

is compact and belongs to F. By the definition of F this choice is
possible. For each n such that an = 1, let Kn = K and Lw = L. Obvi-
ously d'CK, iΓJ ̂  w-1 and ώ'(L, LΛ) ̂  2^-χ for all w. Therefore by 3.1
(ii) we can find an n such that

J - v(K)\ <2-*\ι>(L) - v(K)\

and

\v{Ln) - v{L)\ <2^\v{L) - v{K)\ .

For this n, we cannot have an = 0, because this would imply Kn — Ln,
contradicting the above inequalities. But then an — 1 and so d'(iΓ, L)>
0.

In the following let g be a test function and α > 0 be some real
number such that (\g\ ̂  a) is compact. Suppose x19 , xn form a /5-
net for (\g\ ̂  α:) where β is some positive real number such shat β < a
and iΓ; = {&: d(x, xλ) A Λ rf(#, a?*) ̂  β} belong to F for every i =
1, •••, %. If —/5 belongs to the complement of some exceptional set
for — d( , ajj (i = 1, , n), write

where for convenience we write Ko for the empty set. We will show
that as a approaches 0, the sum S converges.

PROPOSITION 3.3. With notation as above, the limit \ima^0S exists.

Proof. Consider two sums S = Σ?=i 9(χi)(v(Kί) — v(K^) where
xly , xn form a /3-net for (|^| ^ α), and S' - Σ?=i (^)(y(^) - ^ ) )
where a?[, , α4 form a β'-net /or (|^| ^ α') In proving that |S — S'|
is arbitrarily small if α and a! are small enough, we may assume that
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Ki and K) (i = 1, , n; j = 1, , m) are such that the compact sets
obtained from them via the operations Λ and V belong to F and are
pairwise compatible. (If necessary we can replace β and β' by β + Θ
and β' + θ respectively, where θ is chosen according to the following
restrictions. Firstly —θ belongs to the complement of some exceptional
set for the functions generated via Λ and V from the functions β —
d(-, O Λ Λ d{-, xd and β' - d( , x[) A Λ d( , x]), (i = 1, , n;
j = 1, , m). Secondly, for every function / generated in this way,
the compact set (/ ^ — θ) belongs to F. Furthur, we know by assump-
tion that — β belongs to the complement of some exceptional set A for
the functions d( , c )̂, •••, d( , xn), and we choose θ so that — β — θ
belongs to —A also; a similar relation is to hold for —β' and — β' — θ.
Then the compact sets Ki = {x: d(x, xλ) Λ Λ d(x, α?<) ̂  β + θ} = {x: β —
d(x, xx)A Λd(x, Xi)>: —θ} and the compact sets K'3 = {χ: d(x, x[)A Λ
d(α, x's) ̂  /3' + 6>} = {x: /9' - d(aj, x[) A Λ d(α;, ̂  ) ^ -<?} will have the
desired properties; namely, compact sets generated from them via Λ
and V belong to F and are pairwise compatible. From 3.1(ii) we see
that the numbers θ, \S — S\, and \S' — S'\ can be made arbitrarily
small.)

Let L be a compact set outside which g vanishes. Choose a number
7 > 1 such that K == {x: d(x, L) ^ 7) belongs to F. Since we will be
concerned only with small values of a and a\ we may assume KnaK
and Kf

m c K. Now suppose ε > 0 is given. Let 5 e (0, ε) be so small
that d(x, x') < δ implies \g(x) — g{xf)\ < ε. To estimate |S — S'\, write

S - Σl/WW) - »(Ki-d ~ v(

with a similar expression for S'. Then, for a, α' < 5/2, we have

\S — Sf < Σ Iα(^ )ίv(if ) — v(iί ) — viK'AK') -f
i —1

+ Σ Σ \{g{χi) - gix'MviKtΛK:) -

Σ

= Σ

- g(4))[v((KiΛK'j)V(Ki-1ΛK'm))
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Σ
3=1

The equality follows easily from 3.1( i ) . Suppose the ith term in the
first sum is positive. Then, in view of 3.2, we can find x in KtVKi
with d(x, Ki^VKl) > 0. Obviously d(x, xs) ̂  β and d(x, K'm) > 0.
Since K'mZ)(\g\ ;> α'), we must have \g(x)\ ̂  oί < δ and so \g(Xi)\ ^
δ + ε < 2ε. Hence the first sum in the bound for | S — S'\ is no greater
than

2e±\v(KiVK'm) - v{K^\jKm)\ £ 2εBκ ,

where Bκ is the constant associated to K as in 3.1(iii). Similarly, the
third sum is bounded by 2εBκ. As for the second sum, if the summand
indexed by (i, j) is positive, then 3.2 again implies the existence of
some y in (K.AK^ViK^AKJ with d(y, {K.AK^WiK^AK^)) > 0.
It follows from this that d(y, xt) ̂  β and d(y, x\) ̂  β\ and so d(xi9 x$) ̂
β + β' <2a < δ. Therefore \g(Xi) — g(Xj) \ ̂  ε. Hence the second sum
is bounded by

n m

ΛK'm))\.£ εBκ .

(Here we used the fact that for every i,

Kt A K'm D Z) (KtΛKΰ V {K^AKl) Z)

AKf

m) 3 =) (K^AKL) .)

Summing up, we have |S — S'| ^ 5εβ^. Since ε > 0 was arbitrary,
the desired convergence follows.

PROPOSITION 3.4. // we define a function v on C{X) by v(g) =

\gdv = lim^o S, then v is an integral.

Proof. The linearity of v is obvious from the definition of S.
Suppose now / 6 C(X) is supported by the compact set L. Let K be
associated to L as in the proof of 3.3. Let g be any test function
such that I fir I ̂  | / [ . Then g is also supported by L, and by the defini-
tion of S we have \S\ ̂  \\g\\Bκ as soon as a is so small that Kn(zK.
Thus ί \gdv ^\\g\\Bκ^\\f\\Bκ. Therefore 2.1 is satisfied.

We now prove the following Riesz Representation Theorem for a
signed integral on (X, d). This theorem also shows that the family
of measure spaces as defined in 3.1 is not vacuous.

PROPOSITION 3.5. Let μ be an integral on (X, d). Let F be the
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family of compact subsets of X which are strongly measurable with
respect to μ, and let v(K) be the strong measure of K for each K in
F. Then (X, d, F, v) is a measure space, and for each g in C(X) we

have \gdμ = \gdv, where v is the integral defined in 3.4.

Proof. That (X, d, F, v) is a measure space follows from 2.10,
2.11, 2.13, 2.14, and 2.15. To show that μ and V coincide on C(X)
consider any continuous function g which vanishes outside some com-
pact set L. Consider a sum S = Σ?=i 9(Xi)(v(K*) — K^-i)) where
xlf •••, xn form a /S-net for (\g\ ^ a) with β < a. For each i let gm

be a sequence of test functions belonging to Ki such that ψΐ.dμ con-
verges to v(Ki) as m approaches infinity. We may assume that
glmι ^ 9m ̂  / where / is a nonnegative test function with f(x) = 1
whenever d(x, L) ^ 1. Suppose ε > 0 is given. Let a < ε be so small,
and m so large, that d(x, x') ^ m~~ι + a implies | g(x) — g{x') \ < ε.
Consider a point x in Kn. We have Σ?=i (̂ m(̂ ) — Λ"1^)) = ^i(») = 1.
(Here g°m = 0). Therefore

J7(») - Σ ^*)(Λ(a?) ~ fc'ix)) = Σ (flr(») - 0te))G7Ua) ~ Λ"1^))

If the ίth term is unequal to 0, then we must have d(x, x{) ^ m~ι + /S
and so \g(x) — g(x^ \ ̂  ε. Therefore the above sum is bounded in abso-
lute value by ε ΣίU (9m(%) — 9m~ι{v)) = ε- Next consider a point x with
d(x, Kn) > 0. Then | g(x) \ ̂  a < e. If the ith term in ΣΓ=i ΦiWΛx) -
g^itt)) is unequal to 0, then we must have d(x, Xι) < mrι + β and so
I g(Xi) I ̂  I flr(α?) I + ε < 2ε. Hence | g(x) - Σ?=i 9(Xi)(9l(x) - 9^(x)) I < 3e.

In view of the continuity of g and the functions gt, we conclude
that the function g — Σ?=i 9(%i)(9\* — 9m"1) is always bounded in abso-
lute value by 3ε. This function is therefore bounded in absolute value

by the function 3ε/. Its integral \gdμ — I Σ 9(%%)(9m — 9m~ι)dμ must

then be bounded in absolute value by 3εikf/β (Mf is the constant asso-

ciated to / in 2.1). Letting m—>oo, we have \\gdμ — S ^ SeMf.

Then, letting α—> 0, we have \gdμ — \gdv ^ 3εikf/. But ε was arbi-

trary. The integrals μ and V are equal.
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being done.
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