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A CONSTRUCTIVE STUDY OF MEASURE THEORY

YUEN-KWOK CHAN

In this paper we study measures on locally compact metric
spaces. The constructive theory of a nonnegative measure has
been treated in Bishop’s book ‘‘Foundations of Constructive
Analysis”’. Unfortunately, there is no constructive method to
decompose a general signed measure into a difference of two
nonnegative ones. In analogy to the classical development,
we shall consider two ways to look at a signed measure,
namely, as a function function (an integral) and as a set
function (a set measure). From an integral on a locally
compact metric space X we obtain compact subsets of X to
which measures can be assigned. The set measure thus arrived
at is shown to be in a weak sense additive, continuous, and
of bounded variation. Next we study a set measure having
these three properties defined on a large class of compact sub-
sets of X. From such a set measure we derive a linear func-
tion on the space of test functions of X. This linear function
is then shown to be an integral. Finally it is demonstrated
that the set measure arising from an integral gives rise in
this manner to an integral which is equal to the original one.
In particular, every integral is the integral arising from some
measure (Riesz Representation Theorem).

We shall make use of concepts and results in Bishop’s book (reformed
to hereafter as C.A.), in which one can find a presentation of the
constructive viewpoint and the constructive methods.

1. Compact subsets of a boundedly compact metric space. A
metric space (X, d) is said to be totally bounded if, given any ¢ > 0,
there is a finite, possibly empty, sequence of points in X which forms
an e-net for X. A metric space (X, d) is said to be compact if it is
totally bounded and complete. A boundedly compact space' is one in
which every bounded subset is contained in some compact subset.
Hereafter let (X, d) denote such a space. For each compact subset 4
of X, and each ze X, we let d(x, A) stand for the number min (1, inf
{d(x, y): ye A})). Here the infimum is easily proved to exist (C.A.) if
A is nonempty, and :is taken to be < if A is empty. Given any
compact subsets 4 and B of X, write

d'(A, By=max (0, sup{d(x, B): x e A}, sup {d(x, 4): =, B}) .

Here the supremum of an empty set is taken to be — . d’ can easily
be shown to be a metric on the family of compact subsets of X.
1 Called locally compact space in C. A.
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The proof of the following theorem is almost a verbatim reproduc-
tion of one in C.A., and so will not be given here.

THEOREM 1.1. Assume (X, d) is compact. Let f be a continuous
function on (X, d). Then we can find a countable subset A = A; of
the real line, with the following properties.

(1) Theset (o< f<b) ={xeX:a= f(x) < b} is compact when-
ever the mumbers a and b are in —A with a < b.

(2) Suppose a and b are in —A with a < b. Then for numbers
a and b in —A which are close enough to a and b respectively, the
distance d'((a < f £ b), (@ £ f £ b)) is arbitrarily small.

DEFINITION 1.2. Let A and B be subsets of X. We call the
closure of ANB (resp. AUB) in X the closed intersection (resp. union)
of A and B, and denote it by AAB (resp. AV B).

Let K and L be compact subsets of X. We say K and L are
compatible if K A L is compact, and if for each ¢ > 0, there exists
€ > 0 such that

d(x, KA\ L) < ¢ for every xe X with d(x, K) < 6 and d(x, L) < 6 .

We say K well contains L, and write K D L, if there is a positive
constant a such that d(z, L) > a whenever d(x, K) > 0.

PROPOSITION 1.3. Assume that K, L, and H are compact subsets
and that the sets gemerated from them by the operations N\ and \/ are
compact and pairwise compatible. Then the following equalities hold.

(i) KVL=LVK,KANL=LAK.

(ii) KVL)VH=KV(LVH),(KANLANH=KANLANH).

(i) KVIOANH=EKANH)YVLAH), KALYVH=(KVH)A
(LVH) .

The proof is straightforward and is omitted.

DEFINITION 1.4. For any ‘pair of continuous functions f and g on
X we shall let f Ag (resp. fV g) denote the function min (f, g) (resp.
max (fy g))‘

Suppose f, -+, f, are continuous functions on X. We shall let
U =¥, -, f.) denote the (finite) family of functions generated from
fi +++, f. by the operations A and V. We shall say a (Lebesgue)
null subset A of R is exceptional for the functions f,, «--,f, if the
following three conditions are satisfied.

(i) For each aec —A, the sets

(fzo=keX:fl@=za (fe?)
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are compact.

(ii) For each ae —A and fe¥, by choosing the number be — A
near enough to a, we can make d'((f = a), (f = b)) arbitrarily small.

(iii) For each ae — A, the sets (f = a) (f e ¥) are pairwise com-
patible.

The following proposition and its corollary show the abundance of
compatible compact sets.

ProposITION 1.5. Assume (X, d) is compact. Given continuous
functions f,, «+-, f,, there exists an exceptional set A of real numbers

for fiy =y fae

Proof. Since ¥ = ¥(f,, ---, f,) is a finite family, using 1.1 we can
find a countable subset A of R such that conditions 1.4 (i)—(ii) hold.
Now let w be a common modulus of continuity for the functions in
¥. Consider any ae —A, and functions f and ¢ in ¥. Let e > 0 be
arbitrary. By 1.4 (ii) we can choose be — A with b < a such that

d(fAgza),(fAgzD) <e.

Let 6 = min (1, w(a — b)). Suppose z ¢ X is such that d(z, (f = a)) < 0
and d(z, (g = a@)) < 6. Then there is some y ‘n (f = a) with d(z, y) < J,
and so f(x) = b. Similarly g(x) >b. Consequently ze (fAg=0b) and
sod,(fAg=ae)<e. But (fAg=Za)=(f=a)A(@g=a). It fol-
lows that \

d, (f ZaA@=a) <e.

Therefore (f = a) and (¢ = a) are compatible. We have thus verified
1.4 (iii).

DEFINITION 1.6. A continuous function % on (X, d) is said to be
proper if for all real numbers a and b with a < b, the set («a £ h £ D)
is contained in some compact subset of X.

COROLLARY 1.7. Let f;, -+-f, be proper functions on X which are
bounded above. Then there is a null subset A of R which is exceptional

Jor fi, ey S

Proof. For each natural number k, choose a real number a, such
that a, < —k, and such that the set L, = (f,V---Vf, = a,) is compact.
Choose a compact set K, which well contains L,. Then by 1.5 there
is a null set A, of real numbers which is exceptional for the functions
filKy, ++-, fu| K. Since compact sets in L, which are compatible as
compact subsets of K, are also compatible in X, the set of real numbers
Ur-: 4, can easily be verified to be exceptional for the functions

fl’ "'fn°
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ProprosITION 1.8. Suppose the null set A is exceptional for the
functions fi, <+, fue Then for all f and g in T(f,, +++,f.) and ac —A,
we have (fAgza) = (fZza)A(g=a) and (fVg=a) = (fza)V(g=a).

Proof. The first equality is easily verified. Take any z in (f\Vg=
a). For every natural number k& choose b, in —A with b, < a and
d'((f = b)), (f = a)) <k*. Theneither ze(f <a)orze(f =b). In
either case d(z, (f = @) V (g = a)) is less than k. Thus ze (f = a)V
(9g=a). So (fVg=a) is contained in (f = a) V(g = a). Contain-
ment in the other direetion is obvious.

2. Measure induced by an integral. Hereafter C(X) will denote
the space of test funections on (X, d), namely, continuous functions on
X with compact supports.

DEFINITION 2.1. A (signed) integral ¢ on X is a linear function
on C(X) whose value at an element f of C(X) is written S fdu, such
that for each feC(X) there is M, = 0 with thﬂ’ < M, whenever
heC(X) and |B]| Z | f].

DEFINITION 2.2. A sequence {f,} of test functions is said to belong
to a compact subset K of X if for all =,

(i) 0=fu=1,

(ii) fu(@) =0 if d(x,K) =2,
and (iii) f,(x) =1 if zeK.

In the following, let £ be a given integral on X.

DEFINITION 2.3. A compact subset K of X is said to be strongly
measurable with respect to g if there is a sequence {f,} of test func-

tions belonging to K such that \f,.g9dy converges for all test functions

g.
The following lemma is proved in C.A. (P. 173).

LEMMA 2.4. Let K be a compact subset of X. Suppose {f,} belongs
to K and suppose S fady converges. Then the limit is independent of
the sequence {f,}. Thus if {f,} s wn addition such that S fagdpt con-
verges for all ge C(X), then, for given g, the limit limg faodp is in-
dependent of {f.). T

DEFINITION 2.5. Let K be strongly measurable and let ge C(X).
Define #(K) = lim S fadp andg gdp = Iimg f.gdp, where {f,} is some
n—o0 K N—o00
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sequence of test functions belonging to K such that these limits exist.
(By 2.4 these are well defined). p(K) is called the strong measure of

K.

PROPOSITION 2.6. Let K be strongly measurable and g a test func-
tion. From every sequence {f)} of test functions belonging to K, we
can select a subsequence {f,} such that

limS gy = S gay .
n—00 K

Proof. Let {f,} be a sequence of test functions belonging to K
such that Sf,,hd/z converges for all he C(X). Since |f, — f.| vanishes
on K and on {xe X:d(x, K) = n™'}, we can select a sequence of integers
{n;} such that n; < n;, and

[fay = Sul 4+ oo + | fu; = fr, | =2 for all 4.

By abuse of notation we again write f; for f,, and f; for f,. Let
hi=f:—fi(t=1,2,--.). Then clearly for every choice of integers
jand ¢, <%, < +++ < %; we have

|hiy + <+« + hi;| =2  on X.

Therefore
|hig + ++« + hig| <2]g] on X,

and so, by the definition of an integral, there is M = 0 such that
[ ghilgd# b gh,-jgd;z { <M

for all integers j and 4, < %, < +++ < ¢, Thus, by passing to a sub-
sequence, we may assume

Sk,gdy—»() as i— oo .

If follows that Sf{gdy—»lim S fagde.

Thus \f.gdp¢ convergggwin a weak sense toS gy <Given any sub-

sequence of | f.gdut we can select a subsequencgI which converges to

gdg). This is the strongest result we can expect to get, as is
shown by the following example.

Let {a,} be a given sequence of 0 or 1’s, containing at most one

1, but it is not known whether there is a 1. For each » write », for

n~'. Define integrals p, on the real line by p, = ¢, — &,,,, Where ¢,
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denotes the integral defined by S fde, = f(ry) for all feC(R). Let
¢ be the integral on R defined by

S fip=3 anS fdp,  for all FeC(R) .

The last series converges by the continuity of f. For each n, let f,
be a continuous function on R, having values in [0, 1], supported by
[ =71y Tsn], and equal to 1 on [—7,, r,,]. Let f, be a continuous
function on R, having values in [0, 1], supported by [—7u,, 72.], and
equal to 1 on [—7usy, Temis]. Clearly f, and f, belong to the compact
set K = {0}. For each n and m it is also clear that Sf,,d;zm = 0. Thus
f.dpe = 0 for all n. Given any test function g, since g behaves like
a constant near 0, we can prove \f,9d¢— 0. Thus K is strongly
measurable with respect to p#. On the other hand for any n and m
we have S frdtt, = —06,, (6., the Kronecker delta). Hence S frdp =

—a,. We cannot, however, tell whether —a, converges in the ordinary
sense.

LeEmMMA 2.7. If K s strongly measurable, and g and ¢’ are test
Sumnctions which coincide on K, then S gdp = S g'd.
K K

Proof. Let {f,} be a sequence of test functions belonging to K
such that S Jahdp converges for all e C(X).
There exists a compact set L outside which ¢ and ¢’ vanish. Let
f Dbe a test function which equals 1 on L. Then by the definition of
an integral, there is M; = 0 such that
([ran| < i

wherever e C(X) is supported by L. Now g — g’ vanishes on K and
80 |[(g — ¢")f.]| is arbitrarily small if » is large enough. But

o = orr.de| = M0 = 008 -

The desired result follows.

DEFINITION 2.8. Let K be strongly measurable. For each con-
tinous function § on K, write

@) = \gdpes = gdp
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where ¢ is some test function on X which extends g. px is a func-
tion by 2.7. Clearly p, is an integral. We call p; the restriction of
¢ to K.

PROPOSITION 2.9. Suppose K is a compact subset of X which 1is
strongly measurable with respect to p. Suppose L is a compact sub-
set of X which is well containd in K and strongly measurable with
respect to ttx. Then L is strongly measurable with respect to t, and

ML) = px(L).

Proof. Let {f,} be a sequence of test functions on X belonging to
K, such that S fagdpt converges for all ge C(X). Let {f.} be a sequence

of test functions on K bearing a similar relationship to L and p.
Since Ko DL, for each n we may assume that f, is the restriction
to K of some test function f,’ on X which is supported by K; indeed
we may assume that the sequence {f,’} belongs to L. Now, for any
ge C(X), let gx be the restriction of g to K. Then by assumption

the sequence S frgxdpt, converges. But, for each #,

Sf WI k= 71:12 Sfmfé'gd# = S v gdpe .

The first equality holds by the definition of fx; the second because
"'g is supported by K, and f, =1 on K. Thus S L gdp converges.
Moreover

ML) = Tim | frdpe = lim | Fidpee = (L) -

The following theorem, which is a generalization of one in C.A.,
shows that strongly measurable sets are abundant.

THEOREM 2.10. Let h be a proper function on X. Then there
exists a (Lebesgue) null set B of real numbers such that the set
(w < h < ) is strongly measurable for all w and v in —B with v < v.

Proof. In view of 2.9, we may assume that X is compact. It
suffices to show that for [0, 1] (and similarly for any interval) there
is a null set B such that the set (v < h < v) is strongly measurable
for all w and v in [0,1] —B with w < ». Without loss of generality,
assume that [Sfd;z’ < || £l for every feC(X).

For each natural number n write

G,={geCX):llgll £1 and |[g(®) — g(y)| < nd(z, y)},



70 YUEN-KWOK CHAN

and write for each kt (0 < k < »* — 1),

Su ={feCR):|fI|=1; f is supported by
[kn~, (k + Dn~*[; and [f(s) — fF@O)| =2(n + 1)°|s — t[}.

Then, by Ascoli’s Theorem (C.A.), the sets G, and S,. are compact
with respect to the supremum norms. Therefore, for given natural
numbers m, n, and k(0 £ k < n* — 1), the number

Guns = sup{|(Fol)gdps £ € Sy g € G

is well defined. For given m and =, let U,, and V,, be a partition
of {0,1, .-+, n* — 1} such that

Qe > N2 I K€ Upns Qe < 2n7% if ke V,,.

For each ke U,,, choose f,€8S,, and g,¢c G, with

[(Fiehgudps > n=s .

Let f = Suer,,(fich)g. Then [[f|| <1 by the definition of the fis.
Thus

1= Sfd# =ke; S(fkoh)gkd;z > n~? card (U,,) .

Or card (U,,) < n’. (card (U,,) is the number of elements in U,,).
Now construct a countable subset A4, of R which is related to &

as Ay is to f in 1.1. For all natural numbers m and =, let B,, be

the union of the set

U [kn™, (k+ Hn]

Umn

and the set
\ ([kn=* —n~° kn™ 4+ »~°] N[0, 1]) .

0=k=n

Then the Lebesgue measure of B,, is at most
n* card (U,, + 2n*n < 2n*.

Thus B = A,U(Un-. N7= Ur-; B..) has Lebesgue measure zero. Now
suppose #, v€[0,1] —B with © < v. We shall show that the set
(u £ h < v) is strongly measurable.

For each m, construct f,€ C(R) with support [u — n~% v + n™%
such that f, = 1 on [u, v] and f, is linear on each of the intervals
[u — n% u] and [v, v + n°]. Let m be an arbitrary natural number,
and g€ G,. There is a natural number j such that u, ve —B,, for
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all n = j. Fix any n with n = j. It follows from the definition of
B,., that

welfn* 4+ ns &K + )n~* — n°] for some k' e V,,;
velk'n* + n5 k" + )n~* — n~] for some k'€ V,.(K < k") .

Since f, — fa+: is supported by [u — »n % u]U[v, v + »~°] and since
w < v, we can write f, — foe = Jf + f"” where f’ equals f, — f, On
[w — »~°% u] and zero elsewhere, and where f” equals f, — f,y, on
[v, v + n~°] and zero elsewhere. In particular, f’ is supported by
[K'n*, (K + 1)n~*]. For all real numbers s and ¢,

Lf7(s) — f'@) | = |Fal8) — Fa@) | + [fara(8) — Fra(®) |
=2(n+ 1)°s—t].

Therefore f'eS,... But ke V,,. Thus @,.. < 2" % Consequently,
‘S( f’oh)gdpt' < 2n~% Similarly we show H( f”oh)gdpei < 2n% Com-

bining, we see that
|[Femgdss — [(Frvioign

< |(romgan| + |{emgdp| < n mz ).

Therefore S(fnoh)gdpt converges for all ge G,. Since by the Stone-
Weierstrass Theorem (C.A.), the linear span of Jn_, G, is dense in C(X)
under the supremum norm, we see that S(f,,oh)gdﬂ convergers for all
g€ C(X). It remains to choose from the sequence {f,°h} a subsequence
which belongs to the set (v < h < v). For every natural number <,

by the definition of B and A,, we can find #' and +' in [0,1] —B
such that v < u < v < and

d(w=h=<v),w=h<v))=<i.

Let m; be a natural number greater than (w — %)™ and (v — v)~.
For every « such that d(z, (u < h £ v))>¢", we have h(zx) < or
h(z) = v'. It follows that f,,ch vanishes at this x. Clearly f, ch =1
on the set (v < h < v). Combining, we see that {f, -k} belongs to
v = h 0.

ProposITION 2.11. If {K,} is a sequence of strongly measurable
subsets of X, if K is a strongly measurable subset contained in each
K,, and if d'(K, K,) < n™" for each n, then p(K,) converges to p(K)
for some subsequence {K,} of {K,}.
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Proof. Choose a sequence {g,} of test functions such that 0<g,<1,
g.=1on K, 0.0) = 0 i dle, K;) = w, and |[gudpe — pK| < 0o
Since d'(K, K,) < n~*, the sequence {g,,} belongs to K. Hence by 2.7
we can choose a subsequence {g,} of {g.,} such that Sngp—» H(K) as
n— co. Take the corresponding subsequence {K,} of {K,,}. Obviously

UK;) — (K)-

LEMMA 2.12. Suppose K is strongly measurable. Then there
exists a constant A, = 0 such that

3 1#(L) — pK)| < Ax

for every sequence L, K, L., K, +++, L,, K,, of strongly measurable
sets with Ko>L,DDK, DD+ ODDL,DDK,.

Proof. By the definition of an integral, there exists a constant
Ay = 0 such that lgfdp! < Ax||f|| for each feC(X) supported by
K. Now let

(*) KooL,oDK >>---DDL,DDK,

be a sequence of strongly measurable sets. Choose sequences of test
functions {f}} and {¢.} belonging to K; respectively L, such that

lim {fidpe = pk); im (gide = p(L) @iz m.
Let 6 > 0 be arbitrary. Partition 1, ---, m into subsets P and @
such that
w(ly) — w(K;) <o if teP; mLy) — mMKy)> —0 if 1e@.
Then

2 |(L) — (KD | = 35 | (L) — MK |+ ZQ | (L) — 1(K5) |
gig {— (ULy) — (Ky) + 26} + ZQ {UL;) — ((K;) + 26}

= 2ma + lim { 33 |8 - o + 3 (@ - ran}
But, from the well containment (x), it follows that if = is large enough,

the function Syicpr (fi — g2) + Slice (9% — fi) is supported by K and has
values in [—1, 1]. Therefore by the definition of Ak, the integral of

this function
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= [ - avap + 5 (0 - roaw
is at most Ay if » is large enough.
Consequently
L) = (K)| = 2md + Ag

But 6 was arbitrary. The desired inequality follows.

PROPOSITION 2.13. Suppose K s strongly measurable. Then there
exists a constant Br > 0 such that

5 1K) — t(Kei)| S Be
for every sequence of strongly measurable sets KO K, D «++ D K,.

Proof. Choose a positive real number a, such that the set
K ={zxeX: d K) < a,}

is strongly measurable. Such a choice is possible by 2.10. Let A, =0
be a constant associated to K’ as in the above lemma. Let By =
24 + 1. Now consider any sequence of strongly measurable sets
KoK oK,D -+ DK,. Inductively (on ¢ =1, .--, m), let a; > 0 be
so small that a; < a;,_, and such that

K ={xeX: d(x K, < a;}

is strongly measurable with |u(K;) — p(K;)| < (2m)~'. Then it can
easily be shown that

K>O0K >ooK, D>+« DDK,, .

Therefore, by the definition of Ay,
S 1KY — (KL | S 245

But then

m-—1

S | (K — pKi)| S 245 + 1= By

7

PROPOSITION 2.14. If two strongly measurable sets K, and K, are
compatible, and K, N\ K, as well as K,V K, are strongly measurable,
then

#(Kl) + /"(Kz) = ﬂ(K1 A\ Kz) + #(K1 \/Kz) .
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Proof. Let {f.}, {9.} be sequences of test functions belonging to
K, and K, respectively. Clearly the sequence {f,V g.} belongs to
K,V K, Since K, and K, are compatible we can select a sequence
Ny < My < oo < Ny, < +++ of natural numbers such that d(z, K, A K,) >
k™ implies d(x, K,) > ni* or d(», K,) > n;'. Then the sequence {f, Ag.,}
belongs to K,AK,. Therefore, by 2.6 and by passing to a subsequence,
we have

HE N K) + (K, V K;) = lim (an,, A Ga, 3t + an,, \Y gnkd#)

= lim [ (£, + g)dpt = () + (KD -

PROPOSITION 2.15. The empty set @ 1s strongly measurable, and
@) = 0.

Proof. Just consider the sequence of test functions {f,} where
f. = 0 for each n.

3. Measure spaces and integration.

DEFINITION 3.1. Let (X, d) be a boundedly compact metric space.
Let F be a family of compact subsets of X such that, for every
proper function f on X, there is a (Lebesgue) null subset A; of R
such that the set (@ < f <b) is in F for all ¢ and b in —A; with
a < b. Suppose further y is a real valued function on F such that

(i) v is additive in the sense that

v(K) + v(K,) = v(K,\K,) + v(K,V K),)

whenever K,, K, € F are compatible and K, A K,, K,V K, are in F,
(ii) v is continuous in the sense that, given compact sets K, K, €
F(ne N) with Kc K, and d'(K, K,) — 0, we can choose a subsequence
{K,} of {K,} such that v(K,)— v(K),
(ili) v is of bounded variation in the sense that, for every K in
F there exists By = 0 such that for any sequence K DK, DK,D---DK,
of elements of F' we have

m—1

;‘1 [v(K;) — v(K;)| < By,
(iv) v(@) = 0, where ¢ is the empty set.
Then we say that v is a signed measure on (X, d) and (X, d, F,v) is
a signed measure space. When no confusion is likely, we call a signed
measure simply a measure, and a signed measure space simply a
measure space. Members of F are said to be measurable.
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In what follows, (X, d, F', v) will denote a given measure space,
unless otherwise is explicitly stated.

LEMMA 3.2. Let K and L in F be such that v(K) = v(L). Then
d'(K, L) > 0.

Proof. Construet a sequence {a,} of 0 or 1’s such that
dK,Ly<nt if a,=0; dK,L) >0 if a,=1.

For each natural number n such that a, = 0, choose a positive real
number b, with b, < n~' such that the set

K,=L,={zxecX: dx, K)<b,}

is compact and belongs to F. By the definition of F this choice is
possible. For each n such that e, = 1, let K, = Kand L, = L. Obvi-
ously d'(K, K,) < n* and d'(L, L,) < 2n~" for all n. Therefore by 3.1
(ii) we can find an » such that

[V(K,) — v(K)| <27 y(L) — »(K)]
and
|v(L,) — v(L)| < 27'|y(L) — v(K)]| .

For this », we cannot have a, = 0, because this would imply K, = L,,
contradicting the above inequalities. But then a, = 1 and so d'(K, L)>
0.

In the following let g be a test function and a > 0 be some real
number such that (Jg| = «) is compact. Suppose z,, ---, %, form a 3-
net for (|g| = a) where B is some positive real number such shat g < «
and K; = {z:d(x, ) A «++ Ad(z, z;) < B} belong to F for every i =
1, .-, n. If —p belongs to the complement of some exceptional set
for —d(-,2) (+ =1, «---, n), write

8 = S oE)(K) - (K.)) |

where for convenience we write K, for the empty set. We will show
that as « approaches 0, the sum S converges.

ProrosiTION 3.3.  With notation as above, the limit lim,_, S exists.

Proof. Consider two sums S = >, g(%,)¥(K;) — v(K,;_,)) where
@, + -+, @, form a g-net for (|g| = @), and 8" = 337, (9;)(¥(K}) — v(Kj-.))
where 27, - -+, 2;, form a g'-net for (J¢g| = ). In proving that |S — S'|
is arbitrarily small if « and &’ are small enough, we may assume that
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K,and K (¢ =1, -+, n; 5=1, .-+, m) are such that the compact sets
obtained from them via the operations A and \/ belong to F and are
pairwise compatible. (If necessary we can replace g and 5’ by 8+ 6
and B’ + 6 respectively, where ¢ is chosen according to the following
restrictions. Firstly —é@ belongs to the complement of some exceptional
set for the functions generated via A and Vv from the functions g —
(-, )N ==+ Ad(-, %) and B — d(-, @) A -+ ANd(-, @), G=1, -+, n
j=1, -+, m). Secondly, for every function f generated in this way,
the compact set (f = —06) belongs to F. Furthur, we know by assump-
tion that — g belongs to the complement of some exceptional set A for
the functions d(-, x,), +--, d(-, #,), and we choose 6 so that —p5 — @
belongs to —A also; a similar relation is to hold for — 8’ and — 5" — 4.
Then the compact sets K; = {x: d(x, ) A -++ Ad(®, 2) < B+ 0} ={v: g —
d(x, 2)NA -+ - Nd(x, x;)= — 06} and the compact sets K;={x: d(z, Z)A+++ A
d(x, o)) £ B + 0} = {=: g — d(z, 2) A -+ Ad(z, «}) = —60} will have the
desired properties; namely, compact sets generated from them via A
and V belong to F' and are pairwise compatible. From 3.1(ii) we see
that the numbers 4, |S — S|, and |S’ — S’| can be made arbitrarily
small.)

Let L be a compact set outside which g vanishes. Choose a number
v > 1 such that K = {x:d(x, L) < 7) belongs to F. Since we will be
concerned only with small values of @ and o/, we may assume K,c K
and K, c K. Now suppose ¢ > 0 is given. Let o€ (0, ¢) be so small
that d(z, «’) < 0 implies |g(x) — g(2')| < e. To estimate |S — S|, write

S = 3 g@)P(E) — v(Kin) — WEKAKS) + v(Ki NK)]
+ i‘;g(xi) é PKNAK)— (K NAK,-) — (B ANK) + (K, AK)]
with a similar expression for S’. Then, for a, & < §/2, we have

1S = 81 = 3 @)K — ¥(Ki) — WEAKL) + 3K, A

n

+ 303 (g — g@)PEAK]) — (K AK)

i=1 =1

— UK AK)) + 2K AKGL)]|

+ ,é [9@HI(KT) — »(K) — w(KIAK,) + V(K A K]

n

= 2 lg(@)[V(K:V Ky) — (K V K3)] |

t=1

n

+ 33 [(9@) — 9@)P(KAK)V (K AKL)

=1 g3=1

—V(K;AKj—) V(K AKW))
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+ S 10E)HE VK, — v(K VK] -

The equality follows easily from 8.1(i). Suppose the ith term in the
first sum is positive. Then, in view of 3.2, we can find z in K;V K,
with d(», K;_,VK,) > 0. Obviously d(z,z;) < and d(z, K,) > 0.
Since K, D(lg| = «’), we must have |g(z)| £ o’ < § and so |g(x;)]| <
0 + ¢ < 2¢. Hence the first sum in the bound for |S — S’| is no greater
than

2e 3 [9(K:V Ky) — w(Ki VL) | < 2B

where By is the constant associated to K as in 3.1(iii). Similarly, the
third sum is bounded by 2¢B;. As for the second sum, if the summand
indexed by (%, j) is positive, then 3.2 again implies the existence of
some y in (K;AK) V(K AK,) with d(y, (K;AKj-) V(K A\ K3)) > 0.
It follows from this that d(y, 2;) < 5 and d(y, ;) < &, and so d(z;, @) <
B+ B <2x < d. Therefore |g(x;) — g(x;)| < e. Hence the second sum
is bounded by

15

(3

2L IY(KNAK)V (K ANKL)) — v(KGAK )V (K NKL)) | < €Bx -

3
=1 j=1

(Here we used the fact that for every %,

KiNK,D---D(K;NK)) V(Ko NK,) D (K;ANK )
\/(Kz—l/\K:n) DeeeD (K%—IAK;L) ')

Summing up, we have |S — §'| < 5eBx. Since ¢ > 0 was arbitrary,
the desired convergence follows.

PROPOSITION 38.4. If we define a function ¥ on C(X) by Y(g) =
Sgdﬂ = lim,_, S, then v is an tntegral.

Proof. The linearity of ¥ is obvious from the definition of S.
Suppose now f e C(X) is supported by the compact set L. Let K be
associated to L as in the proof of 3.3. Let g be any test function
such that |g| < |f|. Then g is also supported by L, and by the defini-
tion ot" S we have |S| < ||g]|Bx as soon as « is so small that K, c K.

Thus jggdv[ < |lgllBe < ||f||Bx. Therefore 2.1 is satisfied.

We now prove the following Riesz Representation Theorem for a
signed integral on (X, d). This theorem also shows that the family
of measure spaces as defined in 3.1 is not vacuous.

ProposITION 3.5. Let p be an itntegral on (X, d). Let F be the
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family of compact subsets of X which are strongly measurable with
respect to p, and let v(K) be the strong measure of K for each K in
F. Then (X, d, F,v) is a measure space, and for each g in C(X) we

have Sgd/x = Sgdﬁ, where U is the integral defined in 3.4.

Proof. That (X, d, F,v) is a measure space follows from 2.10,
2.11, 2.18, 2.14, and 2.15. To show that ¢ and Y coincide on C(X)
consider any continuous function g which vanishes outside some com-
pact set L. Consider a sum S = 37, g(x,)(¥(K;) — v(K;—,)) where
x, +++, %, form a B-net for (|g| = @) with 8 < @. For each 7 let g,
be a sequence of test functions belonging to K such that Sg;dp con-

verges to Y(K;) as m approaches infinity. We may assume that
gt < g, < f where f is a nonnegative test function with f(x) =1
whenever d(x, L) <1. Suppose ¢ > 0 is given. Let a < ¢ be so small,
and m so large, that d(z, ') < m™ + a implies |g(x) — g(x’)| < e.
Consider a point # in K,. We have >, (¢i(x) — ¢i7'(%)) = gr(x) = 1.
(Here ¢% = 0). Therefore

g(x) — é‘. g9(@)(gn(w) — gi'(®) = ; (g(x) — g(@))(gn(®) — g ()) -

If the ith term is unequal to 0, then we must have d(z, z;) <= m™ + g8
and so |g(x) — g(x;)| £ e. Therefore the above sum is bounded in abso-
lute value by ¢ 21, (¢i.(x) — gi7'(x)) = ¢. Next consider a point « with
d(z, K,) > 0. Then |g(z)| < a <e. If the ith term in >}, g(®;) (g% (x) —
gi—'(x)) is unequal to 0, then we must have d(z, ;) < m™ + 8 and so
lg(x)| < |g(x)| + ¢ <2e. Hence [g(x) — 3L, g(@)(9a(®) — g57'(x)) | < 3e.

In view of the continuity of ¢ and the functions g¢¢, we conclude
that the function g — >\, g(x;) (g%, — ¢57") is always bounded in abso-
lute value by 3¢. This function is therefore bounded in absolute value
by the function 3¢f. Its integral Sgd# — S 2 g(x:) (9%, — 9i7)dy must
then be bounded in absolute value by 3¢M;. (M, is the constant asso-
ciated to f in 2.1). Letting m— o, we have Hgd#— S. = 3sM;,.
Then, letting a— 0, we have Hgdﬂ — ggdﬁ' = 3¢M,. But ¢ was arbi-
trary. The integrals z¢ and U are equal.

The author wishes to thank Professor E. A. Bishop for his guidance,
advice, and encouragement during the time when this research was
being done.
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