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ON THE DISTRIBUTIVITY OF THE LATTICE OF
FILTERS OF A GROUPOID

ORRIN FRINK AND ROBERT S. SMITH

In this note we present the results announced in the
Notices of the American Mathematical Society, January, 1969.
Algebraic lattices are interesting and important algebraic
structures. They occur in many branches of algebra, e.g. the
lattice of all subalgebras of a universal algebra, the lattice
of all filters of a groupoid, and the lattice of all ideals of a
ring are all algebraic lattices. Moreover there is a natural
connection between algebraic lattices and groupoids, since
every algebraic lattice is isomorphic to the lattice of all
filters of some groupoid, and in particular of the groupoid of
all compact elements of the lattice. If an algebraic lattice
is distributive, it is relatively pseudo-complemented and is a
complete Brouwerian lattice in the sense of Garrett Birkhoff
[1]. Hence it is natural to look for simple conditions on a
groupoid that will insure that the lattice of its filters is
distributive.

We show that the lattice of all filters is distributive if it
is a sublattice of the lattice of all subgroupoids, but this
condition is not always necessary for distributivity. If the
groupoid is a semilattice, this condition is both necessary and
sufficient. We then derive some conditions that are both
necessary and sufficient for distributivity for groupoids. One
of these is a modification of a condition given by Gratzer and
Schmidt for semilattices.

A groupoid is a pair (G, τ) where G is a set and τ is a binary
operation defined on G. We will use the following conventions:

( 1 ) The operation τ will be called multiplication, and we will

write ab for aτb.

( 2 ) We will write simply G for (G, τ)

(3) The symbol 1 will denote the identity element of G if there
is one.

( 4 ) Gι will denote the groupoid G with 1 adjoined if G has no

identity element; otherwise G = G1.

The operation in a groupoid G need not be associative or com-

mutative, hence the elements aly , an have in general many products

which can be distinguished from each other by means of parentheses.

We find it convenient to denote one of the products of elements a19

•• ,α Λ by P(aλ, •••, αn). We allow the elements to be used more

than once and in any order. For example P^a^ α2) might be {

while P2(aίf α2) could be a2{{a2a^.
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DEFINITION. An element a of G is called a factor of element b
if there exist elements al9 , an of G such that b = P(au , αn, α).

DEFINITION. A subset F of a groupoid G is called a ./liter of G
if F is a subgroupoid of G which contains all factors of each of its
elements.

PROPOSITION. A subset F of a groupoid is a filter if and only if
abe F is equivalent to ae F and be F.

We note that in the theory of algebraic semigroups filters have
been studied under the names of co-prime ideals and consistent sub-
semigroups in the commutative case, and under the names of faces
and p-semigroups in the general case [2, 5].

Let ^(G) denote the collection of all filters of a groupoid G,
and let S^(G) denote the collection of all subgroupoids of G. When
only one groupoid G is involved, we will write J^~ and £f for J^~{G)
and £^(G) respectively. Observe that S^ and Sf are algebraic
lattices; that is, they are complete lattices in which every element
is a join of compact elements. The empty set is the smallest element
of both j ^ ~ and £/*.

The lattices ^ and S? are families of sets, and their elements
are subsets of G. When A and B are sets, we shall use the notation
iU-B and A Π B to represent the set union and intersection of A
and B respectively. In the lattices Jf and Sf the lattice meet of
two elements A and B is always their set interesection; hence it will
be represented by A Π B. The lattice join operations in J#~~ and S*
are more complicated.

For the lattice of subgroupoids S^, we denote the join of two
subgroupoids A and B by A V B; it is the intersection of all sub-
groupoids which contain both A and B. It consists of all elements
of the union A U B together with all products involving elements of
A{jB.

For the lattice ^(G) of all filters of G, we denote the lattice
join by V and define for F, He^ the join F V H to be the inter-
section of all filters containing F and H. We later give a more
constructive way of obtaining the filter join of two filters, and more
generally of the filter generated by any subset of G.

An element a of a complete lattice L is said to be compact if
a tS: V {ar: je Γ} implies that there exists a finite subset F of Γ such
that a ^ V {ar: 7G JP}. A lattice is said to be compactly generated if
every element is a join of compact elements. Lattices which are
complete and compactly generated are called algebraic lattices. The
lattice of all subalgebras of an algebra with finitary operations is
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an algebraic lattice in which the compact elements are the finitely-
generated subalgebras. In particular the lattices £f(G) and J^iG)
of all subgroupoids and all filters of a groupoid G are algebraic lattices,
in which the compact elements are the finitely generated subgroupoids
and filters respectively. In the lattice ^"(G) every nonempty finitely
generated filter is a principal filter generated by a single element,
as we shall show.

DEFINITION. A subset J of a groupoid G is an ideal of G if a e
I implies that αδ, ha e I for all 6 e G. An ideal I of G is said to be
prime if abel implies that ael or be I.

The following facts about the lattice ^(G) of all ideals of a
groupoid G are easily verified:

( i ) ^ ( G ) is a complete ring of sets, closed under arbitrary
union and arbitrary intersection.

(ii) A subset F of G is a filter if and only if its complement
G\F is a prime ideal.

(iii) The lattice ^~(G) of all filters of a groupoid G is distributive
if and only if the dual lattice of all prime ideals is distributive.
We find the following notation useful:

Fa will denote the filter generated by aeG.
Sa will denote the subgroupoid generated by aeG.
Ia will denote the ideal generated by aeG.
FΛ will denote the filter generated by A S G.
SA will denote the subgroupoid generated by A £ G.
If A is any subset of a groupoid G, then SA consists of the

elements of A together with all products of elements of A. From
this we see that if S and T are subgroupoids of G, then their sub-
groupoid join consists of all elements and all products of the elements
of the union S U T.

We now give a representation of the filter FA generated by a
subset A of G. This generalizes a result of Petrich for semigroups
[5], and will provide us with a representation for the filter join of
two filters.

THEOREM 1. // A is any subset of a groupoid G, then FA —
U {Nk: k ^ 1}, where Nλ — A, and Nk+1 is the subgroupoid generated
by {y eG:Iyf]NkΦ 0} for k ^ 1.

Proof. lΐxeNn then Ixf]NnΦ 0 . Hence x e Nn+ι and Nn £ Nn+1.
Each Nh is a subgroupoid for k Φ 1, and the chain union of subgroupoids
is a subgroupoid. Therefore the union U ^ is a subgroupoid.

We now show that this union is a filter. If xye\JNk then
xy e Nn for some n. But xy e Ix and xy e Iy, whence xy e Ixy £ Ix ΓΊ Iy-
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Theorefore 0 Φ Nn f] Ix Π Iy, and hence Nn Π Iy Φ 0 Φ Nn Π Iz, and
so α, 2/e iVw+1 £ U^b Hence this union is a filter.

To complete the proof we show that U Nk £ FA. We do this by
induction. Clearly A = iVΊ g i^ . Assume that JVW £ i ^ and show
that Nn+ί S FA. If zely Π iV̂ , then ?/ is a factor of 2 and since z e
Nn £ i*7 ,̂ all factors of 2 are in FA. Hence yeFA and thus {w e
G: IwΠNnΦ 0} £ i^ . Hence JVW+1, which is the subgroupoid generated
by this set, is a subset of FA, completing the induction. Therefore
\JNk £ jp7 .̂ This completes the proof.

Before giving a characterization of the filter join F V H of two
filters, we call attention to some facts about the lattice of filters ^
which are easily verified. First we note that Fxy = FXV Fy. It
follows that the join of any finite number of principal filters is a
principal filter. Hence every finitely generated filter is principal,
with the exception of the empty filter.

Let ^/ί(Gr) — {Fx: xeG} denote the set of all principal filters of
G. Then ^f(G) is an upper semilattice with respect to the operation
V of filter join. The mapping x —• Fx is a homomorphism of G onto
^€(G), and ^/ί{G) is the maximal semilattice homomorphic image of
G. The existence of such a maximal semilattice homomorph of a
groupoid is well known; see [2] page 18, [5] page 70. We state these
facts as a theorem.

THEOREM 2. Every groupoid G has a maximal semilattice homo-
morphic image ^f(G), consisting of the principal filters of G.

The semilattice ^/f(G) may not have an identity element, since
the empty filter is not a principal filter. If G has an identity element
1, then Fι is the identity element of ^€(G). In an upper semilattice
an identity element is usually denoted by 0, and a filter is called an
ideal. Our definition of ideal is that used in the theory of semigroups
and groupoids. Note that ^rfί(G) is not in general a lattice, since
the intersection of two principal filters need not be principal.

We now define two important binary relations in a groupoid.

DEFINITION. In a groupoid G we define α c δ to mean Fa £ Fb,
and a — b to mean Fa = Fb.

Note that the relation a a b is reflexive and transitive and hence
a quasi-ordering. In general it is not a relation of partial order,
since from a c b and b c a follows only a — b but not always a = b.
We note that a c b is equivalent to a e Fb. We now give a charac-
terization of the join of two filters.

THEOREM 3. If F and H are two filters of G, then F\/H^=
{αeG α c P(bl9 , δn), where blf , bn e F (j H).
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Proof. Let a e F V H. Then Fa S V {Fb: b e F U H). But Fa is
a compact element of the lattice ^"{G). Hence there exist elements
δi, , δΛ in F{J H such that FaS FblV V Fbn. Hence α e Fc

where c = P{bu , bn), whence α c c .
Conversely, let a c P(δx, •••,&„), with bl9 , bn e F U H. Then

αG F c, where c = P(bu , bn), Fc ^ F V H, hence aeFy H. This,
completes the proof.

We note that ~ is a congruence relation on G, and that the
quotient G/~ is the semilattice ^/f(G). If α c δ , it does not follow
that α is a factor of δ; hut the converse is true. However, a sub-
groupoid T is a filter of G if and only if xczy and | / e T implies that
xe T.

Now that we have characterized the lattice operations in the
lattice of filters J^iG), we look for conditions for the distributivity
of this lattice. If G is a semilattice, it will be shown that ^"(G)
is distributive if and only if it is a sublattice of S^{G). For groupoids
in general, this condition is sufficient but not necessary.

DEFINITION. An element a of a lattice (L, Λ, V) is called meet-
distributive if a Λ (b V c) = (α Λ b) V (a A c) for all b, c in L.

THEOREM 4. Every filter of a groupoid G is a meet-distributive
element of the lattice ,S^(G) of subgroupoids of G.

Proof. Let F be a filter and S and T subgroupoids. It is
sufficient to show that FΠ (S V T) ̂  (F f] S)V (F Π T). Suppose
x e Ff] (S V T). Since xe Sv T, x = P(al9 , an) where aί9 , an are
in S U ϊ7. Since a e ί 7 and ί7 is a filter, each of the elements al9 ,
an is in F. It follows that a; e (F 0 S) V (^ Π T). This ends the
proof.

COROLLARY. If the lattice of filters J?" is a sublattice of the
lattice of subgroupoids S^, then ^ is distributive.

However, the condition that j ^ ~ is a sublattice of Sf is not
necessary for the distributivity of _^~, as is shown by the following
example of a groupoid G = {x, y, z, u], with multiplication table:
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Here the lattice of filters J^(G) is a well-known distributive
lattice with the four elements 0 , Fx, FyJ and Fz = Fu. The subgroupoid
join Fx V Fy is the set {x, y, z}, while the filter join Fx V Fy is the set
{x, y, zy u}. Hence the lattice J^~{G) is not a sublattice of 6^{G). Note
that G is a commutative semigroup, but not a semilattice, since u2 Φ
u. For semilattices it will be shown that the sublattice condition is
also necessary for distributivity.

We now give another characterization of the filter join of two
filters.

THEOREM 5. // A and B are filters of a groupoid G, then (1)
i V B = A U B\J {x: xaab, ae A, beB}.

Proof. The right side of (1) is a subset of the left side, since
A V B is a filter containing A\J B. To show the reverse inclusion,
suppose xeAv B. By Theorem 3, we have xaP(cί9 * , c j , where
tei, , cn} a A U B. Hence x e FP = V {Fe- c e {cly - , cn}}. If all the
elements c* are in A or in i?, then so is x, and *τ is a member of the
right side of (1). If not, then FP = Fa V Fb, where a is a product
of the elements C; in A, and 6 is a product of the elements c{ in β.
But Fa\/ Fb = Fα6, hence a? e jPα6 and x c α&, where α e i , δ e J S . Hence
x is in the right side of (1), which completes the proof.

We now give a necessary and sufficient condition for the distri-
butivity of ^~(G) in terms of a relation between the filter join and
the subgroupoid join of two filters.

THEOREM 6. The filter lattice J^iG) of a groupoid G is distri-
butive if and only if to each element x of the filter join A V B of
two filters there exists an element y of the subgroupoid join A\/B
such that x ~ y.

Proof. To prove sufficiency, let xeAΠ(BvC), where A, B, C
are filters of G. We must show that x e (A Π B) V (A Π C). Now
x e A, and by the condition of the theorem there exists y in B V C
such that x ~ y. Note that x — y holds if and only if x and y are
in the same filters. Hence ye A, and ye A Π (B V C). By Theorem
4, A is a meet-distributive element of 6^{G). Hence A Π (B V C) =
(A n B) V (A Π C) a (A n £)~V (A n C). It follows that 2/, and hence
x, is in the filter (A Π I?) V (A Π C), which proves the sufficiency of
the condition.

To prove the necessity, suppose ^~ (G) is distributive and a? e
A~V B, where A and B are filters. We must show that x — #, where
yeAvB. Since a? e Fx Π (A V 2?), by distributivity x e (Fx Π A) V*
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(Fx (Ί B). By Theorem 5, either x e A U B, whence the conclusion would
follow with x = y, or xczab with ae Fx Π A and be Fxf) B. Then
a e A, b e B, hence abeAv B. Also α € Fx, b e Fx hence ab e Fx and
αδ c x. But also a? c ab. Hence x ~ ab. Let 7/ = αδ. Then y e A V
B and x ~ y, which was to be proved.

We now show that the sublattice condition is both necessary and
sufficient for distributivity of J^~(G) if G is a semilattice.

THEOREM 7. The filter lattice J^~(G) of a semilattice G is distri-
butive if and only if it is a sublattice of the lattice S^{G) of all sub-
semilattices of G.

Proof. The sufficiency of the condition follows from the Corollary
to Theorem 4. To prove the necessity, suppose J^~{G) is distributive
and A and B are filters of G. We must show that 4 v S i
Ay B. Suppose xeAvB. By Theorem 6 there exists an element
y in A V B such that x ~ y. It is well known that in a semilattice
the relation x c y is one of partial order rather than merely a quasi-
order. In fact, x c y if and only if xy = y, and yaxiί and only if
xy — x. If x ~ y, then x c y and y c x, hence x — y. It follows that
xeAvB, and hence A\7 B = Av B. Then J^~(G) is a sublattice
of S*(G), which was to be proved.

We now derive a necessary and sufficient condition for the distri-
butivity of J?~(G) which is somewhat similar to a condition of Gratzer
and Schmidt for upper semilattices (S, V). The original Gratzer-
Schmidt condition is:

If a S b V c, then there exist in S elements b\ cf such that bf ^
b, cf ^ c, and a — br V c'.

This condition is referred to in the paper [6] by E. T. Schmidt,
and is studied in the unpublished paper [3] by Gratzer and Schmidt.
It is sufficient for the distributivity of ^~(S), which is called the
lattice of ideals if S is a semilattice. If S has in identity element
0, the Gratzer-Schmidt condition is also necessary for distributivity.
Unfortunately it is not always necessary if S has no zero element,
as will be shown by an example.

For a groupoid G, the Gratzer-Schmidt condition takes the follow-
ing form:

If a c be, then there exist in G elements br, cr such that bf c 6,
c' c c, and a — bfcf.

Again this condition is sufficient for the distributivity of J?~(G),
and is also necessary if G has an identity element. The following
condition is more complicated, but is always both necessary and
sufficient for distibutivity of J?~(G):
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If a c be, then either α c δ , or α c c , or there exist elements 6',
d of G such that 6' c 6, c' c c, and α — δ'c'.

THEOREM 8. The lattice of filters J?~(G) is distributive if and
only if whenever a c be, then either aab, or adc, or there exist
elements 6', cr of G such that br c 6, c' c c, and a ~ b'c\

Proof. To prove sufficiency, suppose the condition holds, and
xeAv B, where A and B are filters of G. By Theorem 6 we must
show that x ~ y for some element y in A V B. By Theorem 5, either
x is in A U B, in which case y = x is in A V B, or x c ab with a e A
and b e B. In the latter case by the hypothesis of our theorem either
x c a or x c 6, in wτhich case # = & is in A V 5, or there exist ele-
ments a' aa and 6' c 6 such that E ~ α'6'. Since A and J3 are filters,
af e A and 6' e i?. Hence α'δ' e i v ΰ . Let # = α'δ'. Then a; — y and
ysA\/B. This proves the sufficiency of the condition.

To prove necessity, suppose the lattice J^{G) is distributive,
and a c 6c. Then Fα g Fό c = Fhy Fe. It follows that α G ^ Π
0P6 V jPβ). By distributivity, we see that ae(FaΠ Fb) V (i^α Π Fc).
Then by Theorem 5 either aeFb, whence α c 6 , or aeFc, whence
α c c , or αcδ'c', where b'eFaΠFb, and c' G fa Π F c . In the latter
case it follows that 6 ' c δ , c ' c c, and δ'c'c α. Since also we have
α c δ'c', it follows that a — δ'c'. But this is just the condition of the
theorem, and the proof ends.

The Gratzer-Schmidt condition is not always necessary for the
distributivity of J^ even for semilattices, as the following example
shows. Consider the three-element semilattice G = {x, y, z} in which
xy = xz — yz — z\ note that G has no identity element. The lattice
J^{G) consists of the four elements 0, FXJ Fyi Fz and is distributive.
Now x c xy, but there do not exist elements xf c x and yf ay such
that x~x'y'. For if x'cx, then α/ = x, and if y'ay, then #' = ?/.
Hence x'y' = «, but .τ — z is false, and condition fails.

However, for groupoids with an identity element, and more
generally for groupoids which are lower-directed, the Gratzer-Schmidt
condition is both necessary and sufficient for the distibutivity of ^ .

DEFINITION. A groupoid G is said to be lower-directed if given
any two elements a and 6 of G, there exists an element x of G such
that x c a and x c 6.

Note that G is lower-directed if and only if the filter lattice
J^iG) has the finite intersection property, this means that the inter-
section of any two, and hence of any finite number of nonempty
filters is a nonempty filter. Note also that a groupoid with an identity
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element 1 is lower-directed, since the element 1 is a factor of every
element, hence l e a ; for all x in G.

THEOREM 9. The filter lattice ^{G) of a lower-directed groupoid
G, and hence of a groupoid with identity element, is distributive if
and only if the Gratzer-Schmidt condition holds, that is, if ad. be,
then there exist elements brcί) and c' dc in G such that a ~ b'c'.

Proof. The condition is sufficient, since the Gratzer-Schmidt
condition is stronger than and implies the condition of Theorem 8.
To show that it is also necessary in this case, suppose ^~(G) is
distributive and a c be. Then by Theorem 8 either elements b' and
c' with the required properties exist, or a a b or a a. c. The argument
is the same either way, so suppose a c t . Since G is lower-directed,
there exists an element x in G such that xaa and xac. Then
ax c aa. Let V — a and cr = x. Then bf c 6, cf c c, and b'c' — ax. But
α c α x c α α c α , hence a ~ ax and a ~ b'c'. Hence the conclusion of
the Gratzer-Schmidt condition holds, and the condition is also necessary,
ending the proof.

Note that a groupoid with the Gratzer-Schmidt property is neces-
sarily lower-directed. For if a and b are any two elements of G,
then a c ab, hence elements a' a a and b' czb exist with a ~ a'b'.
Then b' is a common lower bound of a and b, since b' c b, and b' c
aba a. Hence G is lower-directed.

We now apply Theorem 9 to obtain a necessary and sufficient
condition for the distributivity of an arbitrary algebraic lattice. This
result is not really new, since it was known some time ago to Gratzer
and Schmidt.

THEOREM 10. An algebraic lattice (L, Λ, V) is distributive if and
only if whenever a, 6, c are compact elements of L, and a ̂  b V c,
then there exist compact elements b' and c' such that b' g b, c' ̂  c, and
a = V V c'.

Proof. Since L is complete, it has a least element 0 which is
compact. The compact elements of L form an upper semilattice (G,
V) with identity element 0. It is well known that L is isomorphic
to J^iG), which is usually called the lattice of ideals of G. By
Theorem 9, L is distributive if and only if the Gratzer-Schmidt
condition holds in G. The condition of the theorem is the form this
condition takes in an upper semilattice. This ends the proof.

We now give another necessary and sufficient condition for the
distributivity of the lattice _^~(G).
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THEOREM 11. The lattice J^(G) of a groupoid G is distributive
if and only if the Grdtzer-Schmidt condition holds in G1.

Proof. If G has an identity element 1, then G — Gι and the
result follows from Theorem 9. If not, then Gι is formed by adjoining
to G a single element 1, which is a factor of every element of G1

and a member of every nonempty filter of G1. Hence ^~(G) is iso-
morphic to the lattice of all nonempty filters of G\ and is distributive
if and only if J7~(Gι) is distributive. By Theorem 9, this is true
if and only if the Gratzer-Schmidt condition holds in Gι.

Since every algebraic lattice, and hence every finite lattice, is
isomorphic to some filter lattice J/r(G), filter lattices in general are
neither modular or distributive.
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