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DENDRITES, DIMENSION, AND THE
INVERSE ARC FUNCTION

JOHN JOBE

In this paper, the concept of an inverse arc function is
introduced. An inverse arc function f is a function such
that for each arc L in the range of f, there exists an arc
L; in the domain of f such that f(L;)= L. It is proved
that a dendrite D is the continuous image of an inverse arc
function f with domain an arc L if and only if D has only
a finite number of endpoints. Other results are obtained
telling what dendrites can be ranges of continuous inverse
arc functions having dendrites as domains.

The dimension raising ability of a continuous inverse arc
function whose domain is a dendrite is questioned. It is
proved that if D is a dendrite with only a countable number
of endpoints, then there does not exist a continuous inverse
arc function f with domain D such that dim f(D)=2. If a
dendrite D has uncountably many endpoints, then the ques-
tion is left unanswered.

Basic theorems and definitions used are as stated in [3], [4],
[5], and [6]. In particular, a continuum M is a dendrite provided
it is locally connected and contains no simple closed curve. A con-
tinuum is a compact closed connected set. Other characterizations of
a dendrite are also used. Topological spaces considered are all
separable metric spaces. If # and y are distinct points, then ay will
denote an arc with end points  and y.

DEFINITION. Let f: X— Y be a function from X onto Y. Then,
f is an inverse arc function if and only if for each arc L C Y there
exists an arc L, C X such that f(L,) = L.

In this paper the class < of all dendrites is partitioned into two
subclasses, .5~ and .9 such that

7 = {X: Xe < and there exists a continuous inverse arc
function, f, with domain an arc 4 and f(4) = X}

and
K =D - .
Then, it is shown that
o7 ={X: Xe = and X has only a finite number of endpoints} .
and
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2% ={X: Xe <z and X has infinitely many endpoints} .

Further related results are found by studying the question:
“Can each member X e &7 be the domain of a continuous inverse are
function, f, with dim f(X) = 2”? It is shown that each member, X,
of the class of all dendrites with only countably many endpoints
cannot be the domain of a continuous inverse arc function, f, with
dim f(X) = 2. Thus, there remains open an interesting question for
further study. That is, if D is a dendrite with uncountably many end-
points, then does there exist a continuous inverse arc function, f, with
domain D such that dim f(D) = 2? This function, if it exists, would
necessarily be a dimension raising function since the dim D = 1.

The following examples point out that there are continuous in-
verse arc functions that do raise dimension.

ExampLE 1. Let n be any natural number. Professor Bing [1]
has shown that there are n-dimensional hereditarily indecomposable
continua in FE,;,. Let M, be such a hereditarily indecomposable
continuum in F,,,. Let P, be a locally connected continuum in ¥,
such that M, c P,. By the Hahn-Mazurkiewicz theorem there exists
a continuous function, %, with domain the unit interval I such that
h(I) = P,. Let f be the restriction of % to A *(M,). The domain of
f has dimension less than or equal to 1 since diml =1 and the
dimension of M, (the range of f) is n. Thus, f is a dimension rais-
ing continuous function when n = 2. Since M, contains on arcs,
then vacuously f is a continuous inverse arc function that does raise
dimension when n = 2.

ExAmMPLE 2. Let S be any n-dimensional space such that each
point of S is contained in some arc in S. Let

7 ={L: Lc S and L is an arc}.
Let
T={(x, L): Le. o xelL}

and P: T— S be the projection function such that P(x, L) = x. A
basis, o, for a topology for T can be defined using P. Let

g={A; Less;, A,cTn(S x{L}), P(A4;) N L
is an interval on L that is open relative to L}

and 7 bo the topology for T generated by o. The function P: T —S
is a continuous inverse arc function from T onto S where the topology
for T is z. By observing that the boundary of each member of ¢ has
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at most two points, it then follows that dim 7=1. Since dim T=1,
then for any natural number » = 2, P is a dimension raising con-
tinuous inverse arc function.

Example 2 points out that given any n-dimensional space S such
that each point of S is contained in some arc in S, then there exists

(1) a 1-dimensional space 7 and

(2) a continuous inverse arc function, P: T— S, onto S.

2. Inverse arc functions onto dendrites. A simple property
about inverse arc functions is stated first as Theorem 1.

TueEOREM 1. If f: X—Y and g: Y—Z are two inverse arc
functions, then gf: X — Z is an tnverse arc function.

LEMMA 1. Let D be a dendrite, p € D, and K the set of endpoints
of D. Then
D= px.

zeK

Theorem 2 says that a dendrite with only a finite number of
endpoints is a member of S#

THEOREM 2. If D is a dendrite with only a finite number of
endpoints, ze€ D, and A = ab an arc, then there exists a continuous
inverse arc function, f, with domain A, range D, and

fla) = f(b) ==.

Proof. Without loss of generality consider the arc A as the unit
interval I = [0, 1]. Suppose that D has n endpoints and denote these
endpoints as K = {«,, -+, 2,}. Lemma 1 implies that

n
D=Uuxz;.
=2

This proof can be done by induction. If % = 2 and we assume that
z¢ K, then partition I with the partition P = {a,, a,, a,, @;} Where
a =0, a, =1/3, a, = 2/3, and a, = 1.

Define

(1) fi:[0,1/8] — D such that f, is a homeomorphism and f,(0) =
2z, f1(1/3) = =, and £([0, 1/3]) = 2z,

2) f::[1/3, 2/3]— D such that f; is a homeomorphism and f,(1/3) =
%, f:(2/3) = x,, and fy([1/8, 2/3]) = »2,, and

(8) f::[2/8, 11— D such that f, is a homeomorphism and f,(2/3) =
%, f(1) = 2, and f,([2/3, 1]) = =:2.
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Now, let f:[0,1] — D be the function defined such that f(x) =
fi(x) for the appropriate natural number <. Clearly, f is a continuous
inverse arc function with domain I such that f(I) = D and f(0) =
f@) = =z

If ze K then partition [0, 1] with P = {a,, a,, a;} where a, = 0,
a, = 1/2, and a, = 1. Without loss of generality suppose z = x,.

Define

(1) fi:[0,1/2] — D such that f, is a homeomorphism and f,(0) =
x, = 2, fi(1/2) = x,, and f([0, 1/2]) = @, and

(2) fi:[1/2,1] — D such that f, is a homeomorphism and f,(1/2)=
%, f2(1) = &, = 2, and f([1/2, 1]) = 22,

Now, let f:[0,1] — D be the function defined such that f(x) =
fi(@) for the appropriate natural number 4. Clearly, f is a continuous
inverse arc function with domain I such that f(I) = D and f(0) =
FQ) = 2

Therefore, if n = 2, then the theorem is true.

Suppose that the theorem is true for n = k — 1. Now, let

k
D= =z .
=2
Let p be the first point on
k—1
T2 N <U xl%)
=2
from «, to x,. The induction hypothesis says that there exists
k—1
g: I — U z2;
i=2
a continuous inverse arc function onto
k—1
U z.;
=2

such that ¢(0) = g(1) = p. Let I, =[0,2] and partition [1,2] with
the partition P = {a,, a,, --+, @y} where a,=1, a, = 2k + 1/2k, ---,
a; = 2k + j/2k, -++, a,, = 2 and denote 4; = [a;_, a;],5 = 1,2, «+-, 2k.

Define

1) fi:4,— D such that f; is a homeomorphism, fi(a,) = p,
fila) = x;, and fi(4) = pa,,

(2) f;:4;— D such that f; is a homeomorphism, f;(a;_,) = %,
fila;) = x5, and fi(4;) = v, if 1 <J <2k and j is even,

(8) fjt 4;— D such that f; is a homeomorphism, f;(a;_,) = 2;_,p,
Sfi(a;) = x, and f3(4;) = x;_p2, if 1 <7 <2k and 7 is odd, and

4)  fu: 4y — D such that f,, is a homeomorphism, f,.(a_,) = %4,
fzk(a'zk) = p, and fzk(dzk) = X D.
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Let h: I, — D be the function defined such that
h(@) = g() if xe]0, 1]

or
h(z) = fi(x) for the appropriate natural number 7 if xze([1,2].

Again, h is a continuous function defined on the arc I, such that
h(I) = D. Let L be any arc in D. If

k—1
Lc U e
=2
then the induction hypothesis implies that there exists an are

L,c|o0, 1]

such that ¢g(L,) = L. Since & extends ¢g then A(L,) = L. Otherwise,
if L is an arc in D such that

k=1
L¢ e,
1=2

then there exists a natural number j such that L c z;x,. Now, note
that f,;(4.;) = #,%; and since f;; is a homeomorphism on 4,; then there
exists an arc L,C 4,; such that f,;(L,) = L. Since & extends f;,
then A(L,) = L. Therefore, h is an inverse arc function.

Let zeD. If z= p then A is the desired function since % is a
continuous inverse arc function with domain an arc, range D, and
h(0) = h(2) = z. Otherwise, suppose z # p and & > 0. Consider the
closed interval [—e¢, 2 + ¢].

Define

1) h: [—¢,0]— D such that A, is a homeomorphism onto zp,
h(—¢) = 2, and h(0) = p, and

(2) hy:[2,2 + €] — D such that h, is a homeomorphism onto pz,
h(2) = p, and hy,(2 + &) = 2.

As before, let s: [—¢,2 + ¢]— D be the function defined such
that
s(x) = h(z) if xe]|0, 2]
or
s(x) = hy(x) for the appropriate natural number % if
xe[—e 0JUI2 2 + ¢].
Again, s is a continuous function defined on [—¢, 2 + €] such that

s([—e,2 + ¢]) = D. Since s extends h, then s is also an inverse arc
function. The function s is defined such that
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s(—e)=38(2+¢)=z.

Let A be any arc denoted A = ab. Let 7 A—[—¢,2+¢] be a
homeomorphism onto [—e¢, 2 4+ ¢]. Now define f to be the funection
rs: A— D and then f is the function desired to prove this theorem
by induction.

COROLLARY 1. If D is a dendrite with only a number of end-
points, A = ab an arc, and 2, 2,€ D, then there exists a continuous
inverse arc function, f, with domain A, range D, f(a) = z, and

f(b) = 2.

Proof. This corollary can be proved in a similar way to that
used to prove Theorem 2.

Lemma 2 can be easily proved and is an aid in the proof of
Theorem 3.

LEMMA 2. If f: X—Y is a continuous inverse arc function such
that f(X) =Y, then for each arc abC Y, there exists an arc ab,CX
such that

(1) f(ah) = ab,

@) fla) = a, f(b) = b, and

3) if xeab, T+~ a, and % + by, then f(x) + a and f(x) = b.

THEOREM 3. Let D be a dendrite with infinitely many endpoints
and I the unit interval. Then there does mnot exist f: I—D a con-
tinuous inverse arc function such that f(I) = D.

Proof. Let y be a cut point of D and D —y= AU B sep.
Without loss of generality suppose that B contains infinitely many
endpoints of D. Pick a point z€ A and a countable infinite subset
of endpoints contained in B and name this subset, {y,}. Now sup-
pose that there exists f: I— D a continuous inverse arc function
such that f(I) = D. Define

K = D Y »
Using Lemma 2 we can obtain for each # an are p,r, < I such that
f(p,.x,) = 2y, having the properties stated in Lemma 2. Let
N ={p, 2 m=1,2, -}

and define .4 C . such that p.x, €.94. Suppose that for some = it
has been decided for each k& < m whether or not p,x,€.%. Then
0., € .5 if and only if p,x, N p.%, = @ for each k < » such that
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Vi, € . By induction .97 is defined.

We show that no more than one member of .&7 intersects another
member of .94. Suppose that p,x; and p;x; are distinet members of
7 such that p;x; N p;x; # @. Since for each k, no point of

D — {Dry Ti}

maps onto either z or y,, then the only way that pux; N p;z; = @ is
for p; = p; and without loss of generality z; < p; < #;. (Note that if
pi=p; <w;<x; or if ;< < p;,=9p; we we will reach a con-
tradiction by again arguing as is in this paragraph below.) That is,
the arcs p;x; and p;x; are the the closed intervals [x;, ;] and [p;, «;]
respectively with p; = p;. The case is, that no other p,x,€.97 is
such that p,x, N p:2; = @, for if we assume so, then without loss of
generality p,%, = [%, p.] and p;x; = [x;, ;] is true which implies
either [z, p;] C [%, D] or [, ] C 2, . If [, ] C [2, pi], then
@) = 2y; < f(x,p) = 2y, This says that y; is contained in an
arc of D and is not an and point of that arc. This is a contradiction
to the definition of y; being an endpoint of D. Similarly, a con-
tradiction can be reached if we assume that [z, p.] < [x;, p;]. Thus,
no more than one member of .97 intersects another member of .o/,

Suppose that .94 is finite. The method of definition of .o
implies that there exists N such that for each n > N,

pnxn € VQ/1 - L% .
For convenience, denote .4 = {p.x,, + -+, D,®,}. Since
Py iy, €7 — %,

then there exists only one member of .24 intersecting py. %y, If
there were more than one, then this would contradict the argument
in the preceding paragraph. Likewise, py..%yi. intersects only one
member of .&4. The member of .94 that py..%y., intersects is distinct
from the one that py. %y, intersects for if not, then again the
argument in the preceding paragraph would be contradicted. After
k considerations, the set of arcs L = {pys1®yi1, ** s Dysslysis), has the
property that each member of L intersects one and only one distinct
member of .&4;. This exhausts %% and implies that Dy i ®yips iD-
tersects no member of .94. This contradicts the definition of .4 and
therefore .o is infinite.

Since we know that .97 is an infinite set of mutually exclusive
arcs in I, then we can pick a null sequenc .7 C.%;. Denote .o~ by
& = {p.;%.;} and let z, be a member of the limit set of . Assume
that f(z,) # 2. Let U be any open set such that f(z,) e U and z¢ U.
Since f is continuous, then there exists an open set V such that
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2,€ V and f(V)c U. Because .o is a null sequence and z, is in the
limit set of .o/ then there exists an 4 such that p,®,,CV. Thus,
z = f(p,) C f(V)C U which contradicts the definition of U. Thus,
S(zo) = 2.

The set A is an open set containing z and since f(2,) = z there
exists an open set V such that z,€ V and f(V)CA. Again, because
&7 is a null sequence and z, is in the limit set of .7 there exists
an ¢ such that p,x, < V. Therefore,

Yny =fl@ ) (V)T A

which contradicts y,, € B. This final contradiction completes the
proof of the theorem.

THEOREM 4. The subclasses 57 and ¢ of & are characterized
as

oZ ={X: Xez and X has only a finite number of endpoints}
and
% ={X: Xe =z and X has infinitely many endpoints} .

Proof. The proof of theorem is a consequence of Theorems 2 and

Theorem 4 classifies dendrites into the class of all dendrites that
are the range of an inverse arc function whose domain is an arc and
the class of all those dendrites that cannot be the range of an inverse
arc function with domain an arc. The remaining theorems in this
section tell us what dendrites can be ranges of continuous inverse
arc functions having dendrites as domains. In addition, Theorem 5
will be used as a tool to prove Theorem 8 in § 3.

LemMMA 3. If D is a dendrite and H 1is an uncountable collection
of arcs, each contained inm D, them there exvists ze D such that z is
contatned in uncountably many members of H.

THEOREM 5. Let S be a topological space that contains a sub-
space M where

M=Uopy,
yelL

L is an uncountable subset of S, pe S, and if y, and y, are distinct
members of L, then y,¢ py, and y, & py,.. If D is a dendrite with
only countably many endpoints, then there does not exist f: D— S,
a continuous inverse arc function such that f(D) = S.
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Proof. If we assume the contrary, then for each arc py, ye L,
there exists an arc L, = o,8,C D with the properties given by
Lemma 2. That is, f(L,) = py, f(0o,) = », and f(x,) = y. Let H=
{L,syeL}. Lemma 3 implies that there exists a point z€ D such
that z is contained in uncountably many members of H. Let

K={L,;:L,eH, zecL,}.
Note that K is uncountable and that for each
L,=omx,¢K, ze,CL,.

If we denote the endpoints of D as {d,}, then Lemma 1 allows
us to denote

2d, .

C:s

D =

n

1

Since K is uncountable there will exist L, , L,, € K, a natural number
N, and y, # y, such that », and 2, are points on the arc zd,.
Without loss of generality suppose #, < @,, on zd, from z to d,.
Thus, 2z, Cz22,, and

f(zxyl) - f(zxﬂg) c f(Lyz) = DY: -

This says that f(x,) = y,€ py. which contradicts hypothesis of the
theorem.

COROLLARY 2. If D is a dendrite with uncountably many end-
points and D, a dendrite with only countably many endpoints, then

there does not exist f: D,— D, a continuous inverse arc function such
that f(D, = D.

Proof. Pick a point pe D. Denote D by
D =Upy

yeL
where L is the set of endpoints of D. The hypothesis says that L
is uncountable. Theorem 5 then implies the desired result.

THEOREM 6. If D s a dendrite with an infinite number of
endpoints and D, 1s a dendrite with only a finite number of end-
points, then there does mot exist f: D,— D, a continuous inverse arc
Sumnction such that f(D,) = D.

Proof. Assume that such a function f does exist. Theorem 2
implies that there exists g: A—D,, a continuous inverse arc function
such that A4 is an arc and g(4) = D,. Then fg: A—D is a con-
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tinuous inverse arc function such that fg(4) = D, which contradicts
Theorem 3.

LEMMA 4. If D is a dendrite and A is any arc contained in
D, then D is retractible to A.

THEOREM 7. If S is a topological space that is retractible to an
arc L, and D is any dendrite with only a finite number of endpoints,
then there exists f: S— D, a continuous inverse arc jfunction such
that f(S) = D.

Proof. Since S is retractible to L, there exists a continuous
function g: S — S such that ¢g(S) = L, and ¢ is the identity function
on L,. Theorem 2 says that there exists h: L,— D, a continuous
inverse arc function such that A(L,) = D. Let f: S— D be the con-
tinuous function from S onto D such that f = hg. Let L be any
arc in D. Since & is an inverse arc map, there exists an arc L,C L,
such that &(L,) = L. The definition of f implies that

SLe) = Myg(Ls)) = W(Ly) = L .

Thus, f is an inverse arc map and the theorem is proved.

COROLLARY 3. If D, is any dendrite and D 1is any dendrite
with only a finite number of endpoints, then there ewxists f: D, — D,
a continuous inverse arc function such that (D)) = D.

Proof. The proof is obtained by using Lemma 4 and Theorem 7.

Let D and D, be dendrites with infinitely many endpoints. The
question that is interesting in this case is: “Does there exist f:
D,— D, a continuous inverse are function such that f(D,) = D?”
The only portion of this question that is answered in this paper is
when D, has countably many endpoints and D has uncountably
many endpoints. For this, Corollary 2 reveals the answer to be no.
Thus, there are three cases for further study.

3. A dimension related problem. This section gives a partial
answer to the dimension raising ability of a continuous inverse arc
function whose domain is a dendrite.

THEOREM 8. If D is o dendrite with only a countable number
of endpoints, then there does not exist a continuous inverse arc func-
tion, f, with domain D such that dim f(D) = 2.
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Proof. Let D be a dendrite and suppose that there does exist
a continuous inverse arc function, f, with domain D and dim f(D) = 2.
Pick a point pe f(D) at which f(D) has dimension larger than one.
The space f(D) has a convex metric o, [2]. Using this convex
metric to generate the topology of f(D) and using the definition of
dimension, there exists ¢ > 0 such that the boundary, B of the &-
sphere with center at p is uncountable. Again using the metric p,
we can construct an arc py for each ye B such that if vy, y,€ B,
Y, # Yo, then y, € py, and ¥, ¢ py,. Let
M=Upy
yeB
and then note that Theorem 5 says that f cannot exist and a con-
tradiction is reached.

COROLLARY 4. If S is a Peano continuum that is the continuous
inverse arc image of the unit interval I, then dim S < 1.

Proof. Since I is a dendrite with only two endpoints, then
Theorem 8 applies.

At this time I have not been able to discover whether or not
dimension can be raised on a dendrite with uncountably many end-
points by a continuous inverse arc function. However, Theorem 9
does answer this question in the special case when dim f(D) = » and
f(D) can be imbedded in FE,.

THEOREM 9. If D is a dendrite, f is an inverse arc function
with domain D, dim f(D) = n, and f(D) can be itmbedded in E,,
then n < 1.

Proof. If we suppose the contrary, then #» = 2. Thus, [3], f(D)
contains a nonempty open subset of E, and in particular contains an
n-cube, n = 2. Because of this, f(D) contains an uncountable col-
lection, G, of mutually exclusive ares. Since f is an inverse arc
function, we can pick an arc L,c f'(X) for each XeG. Thus,
H = {L;: XeG} is an uncountable collection of mutually exclusive
arcs contained in D which contradicts Lemma 3.
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