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A NOTE ON THE MACKEY TOPOLOGY FOR (C*(X)*, C\X))

R. B. KIRK

Let τ denote a completely regular Hausdorff topology on
the point set X, let C\X) denote the continuous, bounded
real-valued functions on X and let C\X)* denote its Banach
dual. If each point of X is identified with the evaluation
functional at the point, then X may be treated as a subset
of C\XY. The restriction to X of the Mackey topology for
the pair (Cδ(X)*, C\X)) will be denoted by μ(τ). The purpose
of the paper is to study the topology μ(τ) and its relation to
τ. (Obviously, μ(τ) is finer than τ.) It is proved that τ = μ(τ)
if and only if τ is discrete. It is shown that μ(τ) is always
totally disconnected and that if τ is first countable, then μ(τ)
is discrete. An example is given to show that μ(τ) is not
discrete in general.

Finally a few results are proved about the stability of the class
of spaces for which μ(τ) is discrete. (This class is strictly larger
than the class of first countable spaces.)

1* The topology μ{τ).

PROPOSITION 1.1. Let T be compact Hausdorff. Every zero set in
(X, T) is open in μ(τ).

Proof. Let F be a zero set in (X, r) and let fe C(X) be such
that F = {xeX:f(x) = 0}. For each natural number n, define Un =
{xeX: |/(ί»)l < Vn) Let (gn) be a sequence of functions from C(X)
satisfying the following:

(1) 0 ^ gn ^ 1, for all neN,

(o\ π M _ ίl, x e Un ~ Un+1, for n = 2, 3,

Since the sequence (gn) is uniformly bounded and converges pointwise
to zero, it converges weakly to zero. Hence the set A = {gn: n 6 N}
is weakly relatively compact, and so A00 is a weakly compact convex,
balanced set by Rrein's Theorem ([5], p. 325). Hence A0 is a neigh-
borhood of zero for the Mackey topology for the pair (C&(X)*, Cb(X)).
(See [5], Theorem 2.) Let U be an open neighborhood of zero con-
tained in 1/2A0. Then W = \}{x + UixeF) is an open set for the
Mackey topology so that W Π X is open in μ(τ). But, as is easily
verified, W Π X = F. The proof is complete.
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PROPOSITION 1.2. Let τ be a completely regular Hausdorff topology
on X. Then every zero set in (X, τ) is open in μ(τ).

Proof. Let (βX, β) be the Stone-Cech compactification of X.
For fe Cb(X), let T(f) denote its unique continuous extension to βX.
Then Γ is a linear isometry of Cb(X) onto C(βX). Hence T is a
topological isomorphism for the weak topologies. Hence it follows
that μ(τ) is the relative topology of μ(β) on X. (Here X is assumed
to be a subset of βX.) Since every zero set in X is the trace of a
zero set in βX, the result follows from Proposition 1.1.

THEOREM 1.3. Let τ be a completely regular Hausdorff topology
on X. If τ is first countable, then μ{τ) is discrete.

Proof. If τ is first countable, then every point in X is a zero
set. It then follows from Proposition 1.2 that the points of X are
open in μ(τ). The proof is complete.

THEOREM 1.4. For any completely regular Hausdorff topology τ
on X, μ(τ) is totally disconnected.

Proof. Every point X is the intersection of the zero sets in τ
which contain it. Since the zero sets in τ are closed-open in μ(τ),
it follows that the points of Xare the components of X for μ{τ). The
proof is complete.

The statements and proofs of several of the results to follow are
heavily dependent on the theory of ordinal and cardinal numbers. For
a discussion of the general theory as it is used in the paper, the
reader is referred to [2], Chapter II. The following specific com-
ments, however, seem to be in order. The class έ? of ordinal numbers
satisfies the following conditions and is a subclass of any class which
satisfies these conditions: (1) 0 G ^ , (2) if α e ^ , then a+ = a{j{a}e
& and (3) if A c έ? and if A is set, then \J {a: a e A} e έ?. The class
of ordinal numbers is well-ordered by inclusion. As a matter of
notation, the Greek letters a, β, 7, d will be used to represent ordinals
unless otherwise specified.

The class c^ of cardinal numbers is then a subclass of d7. An
ordinal a is an element of ^ if and only if it is the least element
in the set of ordinals which are equipotent with it. Let y$0 denote
the smallest infinite cardinal. If ŷ * is any infinite cardinal, then
the set {y$ e c^\ y$0 ̂  fc$ < fc$*} is a well-ordered set; and hence
there is a unique ordinal a such that this set is order isomorphic to

?\ β < a}. The ordinal >$* is then denoted by ^ α . In this way
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each ordinal a is assigned a unique infinite cardinal #a, and each
infinite cardinal is of the form fc$α for a unique ordinal a. (This
relation between a and #a is essential in the formulation of Proposi-
tion 1.7 below.) If \ξa is to be regarded as an ordinal, we will write
it as Q)a.

LEMMA 1.5. Let a be an ordinal and let £S — {Sβ: β < a) be a
family of subsets of X which satisfy the following conditions:

(1) for each β < a, Sβ is closed-open for τ,
(2) for each 7 < β < a, Sβ c Sr9

(3) if β is a limit ordinal, then Sβ ~ f\{Sr: Ί < β}. Then f\S^
is open in μ(τ).

Proof. Assume without loss of generality that a is a limit ordinal
and that So = X. For each β < a define fβ = ^%β — ^%β+1 where
£fs denotes the characteristic function of the set S. Since Sβ is
closed-open for each β < a, it follows that the set A = {0} U {fβ' β<a}cz
Ch(X). Furthermore, A is relatively weakly compact as will now
be shown. If T is the linear transformation which maps each / in
C\X) to its unique continuous extension Tf in C{βX), then T is a
topological isomorphism for the weak topologies. Hence it is enough
to show that T[A] is relatively weakly compact, or, equivalently by
the Eberlein-Smulian theorem ([5], p. 313), that T[A] is weakly sequen-
tially compact. Hence let (TfβJ be a sequence in T[A\; and, by
passing to a subsequence if necessary, assume that βn Φ βm for all
n,meN. (If this were not possible, (TfβJ would contain a constant
subsequence which, of course, would be weakly convergent.) Since
{fβ> /3 < α} is a set of disjoint idempotents (i.e., fβ = fβ and fβfr = 0
for β Φ 7) in Cb(X) and since T is a ring isomorphism, T[A] is a set
of disjoint idempotents in C(βX). From this it is clear that (TfβJ
converges pointwise to zero. Since the sequence (TfβJ is uniformly
bounded, it follows that (TfβJ converges weakly to zero. Thus T[A]
is weakly sequentially compact.

By Krein's theorem ([5], p. 325), the bipolar A00 of A is weakly
compact so that A0 is a Mackey neighborhood of zero. Let U be an
open Mackey neighborhood of zero such that U c 1/2AΌ, and define
W= \J{x + U:xe Π ^ } Then W is open in the Mackey topology
and so W Π X is μ(z) open.

It will now be shown that W Π X = Π *5f &nd the proof will be
complete. It is clear that Π ^ c W Π X. Now assume that y e
X— Π SK Let β0 be the least ordinal such that y g Sβo. Then β0 is not
a limit ordinal since otherwise the assumption that Sβo = Γ\{Sβ' β<βo}
would imply that y&Sβ for some β < β0. Hence y e SβQ^ — Sβo so
that fβ^iy) = 1. It then follows that yίW. Indeed, if ye W, then
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y e x + U for some xeΓ\& But then y - x e 1/2A0 so that for all
β < a, \fβ(y) I = \fβ(y) - fβ(%) I ̂  1/2. This implies that fβ(y) = 0 for
all β < a which contradicts the fact that fβQ-i(y) = 1. The proof is
complete.

THEOREM 1.6. Let τ be a completely regular Hausdorff topology
on X. Then τ = μ(τ) if and only if r is discrete.

Proof. Since r c μ(τ) is always valid, it is clear that r = μ(τ)
if r is discrete. Hence assume thar τ — μ(τ). It will be shown that
every closed set for r is also open for r. Since r is completely regular
Hausdorff, every r-closed subset of X is the intersection of the zero
sets which contain it» If F is a closed set in r, let c(F) be the least
cardinal for which there is a family of zero sets which has that cardi-
nal number and which is such that the intersection over the family
is F. The proof will be by induction on c(F). If c(F) = 1, then F
is a zero set; and hence open in μ(τ) by Proposition 1.2. Since r =
μ(τ), F is open in r. Now assume for some cardinal ^ that if F is
a r-closed set with c(F) < y$, then F is r-open. Let F be a r-closed
set with c{F) — ^ . Let a be the least ordinal whose cardinal is ^ ,
and let {Fβ: β < a} be a family of r-closed zero sets such that F ~
Π{Fβ: β < a) Define So = X and for each ordinal β with 0 < β < a,
define Sβ = ΓK^V 7 < β} Note that for each β < a, Sβ is r-closed
and ί(S )̂ < ^ so that Sβ is closed-open for r by the induction assum-
ption. Also if β is a limit ordinal, then Sβ — f\{Sr: 7 < β}. Indeed,
it is clear that Sβ c Sr for 7 < /5 so that Sβ c Π{Sr: 7 < /S}. Now let
xe Sr for all r</3. Now take 70< β arbitrarily. Then 70 + 1 < β since
β is a limit ordinal. Hence x e SΪQ+1c:Fro. Thus x e Πί^ro' rγo<β} = Sβ.

The family {Sβ: β < a} thus satisfies the conditions of Lemma 1.5
so that F = Πί-PV β < a) — Γ\{Sβ: β < a) is open in μ{τ). But r =
μ{τ) so that î 7 is open in r and the proof is complete.

Define μ\τ) = r, and if a is not a limit ordinal, define μa(τ) =
μ(μa~\τ)). If a is a limit ordinal, let μα(r) be the topology generated
by the base \J{μβ(τ): β < a). Note that μa(τ) c /^(r) whenever α <Ξ
/9. Since X is a set, there is clearly an ordinal a of cardinal less
than 22* such that μa(τ) = μa+1(τ). But then by Theorem 1.6, it fol-
lows that μa(τ) is discrete so that μβ(τ) is discrete for all β ^ a. Let
a(τ) denote the least ordinal with the property that μaiτ)(τ) is dis-
crete. Then the next theorem gives an upper bound for the ordinal
a(τ). First we prove the following. (See the discussion preceding
Lemma 1.5 for the definition of ^ α .)

PROPOSITION 1.7. Let the set X and the topology r be fixed, and
let a be an ordinal. If F is a τ-closed subset of X and if there is
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a family J^ of τ-zero sets such that F = f\{Z: Ze J^} and such that
the cardinal of ^" is less than or equal to \ξa, then F is open in

Proof. The proof is by transfinite induction. The statement is
true for a — 0 by Proposition 1.2 and the fact that the intersection
of a countable set of zero sets is a zero set. Now assume that the
result is true for all a! < a. Let F be r-closed and let J^ be a
family of zero sets such that F — f\{Z\Ze^} and such that the
cardinal number of j ^ ~ is y$α. Let j ^ ~ — {Zβ: β < ωa) be an enumera-
tion of j^7 (Recall that coa = ^a. See the discussion preceding
Lemma 1.5.) For each β < ωa, define Sβ = Γ\{Zr: 7 < β}. Then the
cardinal of β is ^ α , for some a! < a. Hence by the induction assump-
tion, Sβ is closed-open in μa'+1(τ). Hence Sβ is closed-open in μa(τ)
for all β < ωa. Furthermore, it can be shown in the same manner
as in the proof of Theorem 1.6 that Sβ = Π{Sr: 7 < β} for each limit
ordinal β<ωa. Hence by Lemma 1.5, it follows that F = Γ\{Sβ: β <ωa}
is open in μΛ+1(τ). The proof is complete.

DEFINITION. Let (X, r) be a completely regular Hausdorff space.
For each point x e X, the index i(x) of the point x is the least cardinal
number for which there is a family j ^ ~ of r-zero sets with that
cardinal such that {x} — f\{Z: ZeJ^). Let β(τ) be the least ordinal
in the set {β: VxeX, i{x) g tfβ and )&β ̂  22^}. Then the ordinal β(τ)
is called the local index of r.

It is clear that the local index is a topological invariant and that
the local index of a first countable space is 0. The following theorem
gives an upper bound for α(τ) as promised above.

THEOREM 1.8. Let r be a completely regular topology on X, and
let β(τ) be the local index of τ. Then a{τ) <: β(τ) + 1. {That is,
μβ{τ)+1(τ) is discrete.)

Proof. By Proposition 1.7, {x} is open in μ^τ)+1(τ) for each x e X.

In general, if β(τ) is the local index of τ then β{τ) + 1 is strictly
larger than a(τ). Indeed, if (X, τ) is the Stone-Cech compactification
of the first uncountable ordinal with its order topology, then a(τ) =
β(τ) — 1. The author, however, would venture to conjecture that
the bound β(τ) + 1 is best possible in the sense that given an ordinal
β, then there is a space (X, τ) with β — β(τ) and a(τ) = β(τ) + 1.
A possible candidate for this space is [0, l]ωβ with its product topology.
It has local index β, although it is not clear what a(τ) is for this
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space. (See Corollary 2.5, however.)

2* A space for which μ{τ) is not discrete* It is natural to
conjecture that μ{τ) is always discrete. The goal of the present section
is to show that this is not the case (Corollary 2.5). We begin by
stating the following definition and theorem which may be found in
[3, p. 269].

DEFINITION. Let X be a compact Hausdorff space. A set A of
continuous real-valued functions on X is quasi-equicontinuous if for
every convergent net (#<), i e 7 on X with xt —> x, for every positive
number ε and for every i0 e 7, there are il9 , ine I with i0 <£ ίk for
k = 1,2, , n such that for every f e A,

mm Jf(xik) - f{x)\ < ε .

THEOREM 2.1. Let X be a compact Hausdorff space, and let A be
a set of continuous real-valued functions on X. Then A is relatively
weakly compact if and only if A is uniformly bounded and quasi-
equicontinuous.

In what follows, it will be necessary to have certain definitions
and notations which we will now formulate. Let {Xi. i e 7} be a family
of topological spaces. For each set Jc 7, Xs will denote the product
Π {Xi- isJ} with the product topology. The projection from XΣ onto
Xj will be denoted by Pj.

DEFINITION. Let X = Π {Xi- i € / } . A function / e C(X) is sup-
ported by the coordinates J c 7 if there is an / ' e C(Xj) such that / =
/'oPj. A set A c C(X) is supported by coordinates / c I if / is
supported by J whenever fe A.

LEMMA 2.2. Let {Xf.iel} be a family of compact Hausdorff
spaces, and let X = Π {^: i e I} Assume that A c C(X) is relatively
weakly compact and contains no constant functions. For each f e A,
let f be supported by the coordinates I(f) c 7. If S? — {/(/): / e i }
is a disjoint family of sets (i.e., for fl9f2eA, either 7(Λ) = 7(/2) or
7(/i) Π 7(/2) = 0), then &* is at most countable.

Proof. Without loss of generality, assume that if fu /2 e A and
/i Φfz, then 7(/0 Π 7(/2) = 0 . Also assume that A (and hence S?)
is not countable. For each / e A, there is / ' 6 C(XI(f)) such that
f = f o pnf). Since / is not constant, there are points xf, xf e XI{f)

such that f\x{p) Φ f'(xf) Since A is uncountable, there is a positive
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number e and an uncountable subset B c A of cardinal ^ x such that
e < I / W - /'(42))i for all feB.

Let {/Λ: α < ωj be an enumeration of 5. (Of course, α^ is the
first uncountable ordinal.) Let J — I — U WΛ): β < ωι}> a n d for each
i e J, let Xi e Xi be fixed. Now define a net (xa), a e ωι on X as follows:

xa(i) =

P { ί l(α#>), if / 8 < α and ie/(/ , )

P{1,(aj>2p, if α ^ / 5 and ίel(fβ)

Xi , i f i e j .

Since {I(fβ): β < ωj is a disjoint family, #α is well-defined. It is clear
that the net (α?α), α e α^ converges in X (i.e., converges pointwise) to
the point x where,

«'K> ' i f i e UίίW: /9 < ωj
, if ie J

Since I? is relatively weakly compact, it is quasi-equicontinuous
by Theorem 2.1. Hence there are ordinals al9 a2, •••, an < α>L (take
i0 — 0 in the definition of quasi-equicontinuity) such that for all / e
B,

(*) min \f(x.k)-f(x)\<e.

Now let β < ωι be such that αfc < /3 for & = 1, , n. Then,

and

Hence for all Jc = 1, 2, , w,

This contradicts (*) and the proof is complete.

DEFINITION. A family {Z>ie/} of topological spaces has the
countable support property if for each / 6 C(X) where X— Π{^ί i e I}>
there is a set J c / which is at most countable such that / is sup-
ported by J.

The following theorem is a special case of some results of Engelking
[4] which are given in a much more general context. The theorem
below may be proved with an application of the Stone-Wierstrass
theorem.
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THEOREM 2.3. Let {Xi.iel} be a family of compact Hausdorff
spaces. Then the family has the countable support property.

The following theorem is of interest in its own right since it
gives some information about the weakly compact subsets of Cb(X)
when X if a product of compact metric spaces.

THEOREM 2.4. Let {X^. ie 1} be a family of compact metric spaces
and let X = Π i^S- ί e I}* If A is a relatively weakly compact subset
of C(X), then there is a set J a I of cardinal at most fc^ which sup-
ports A.

Proof. There is no loss in generality if we take I = ω (where
ω is an ordinal) and if we assume that A contains no constant func-
tions. Assume that A is not supported by any set of coordinates of
cardinal at most y^. (In particular it follows that ω1 < ω.) By
Theorem 2.3 and the axiom of choice, there is for each / e A a non-
empty set /(/) c ω such that /(/) is at most countable and such that
/ is supported by /(/).

Let Sf = {!(/): fe A}. (IfS^'czSI let \J^' = \J{I{f):I{f)eS^'}.).
We will define by transfinite induction a set S^a c S^ for each ordinal
a < ω1 such that if Ea = \J{\JSΊ: β < «}, ^ = {/(/): / e A and / is
not supported on Ea] and SC = {/(/) - Ea: /(/) e Si), then the follow-
ing conditions hold:

(1) SiΦ 0 ,
(2) Sζcz grβ,
(3) Ea is at most countable,
(4) Si* is a maximal disjoint subset of {/(/) - Ea: /(/) e g^J,
(5) ST is at most countable.

To begin, let S^ be a maximal disjoint subset of 6^. (Such sets exist
by Zorn's lemma.) Then Eo = 0 gf0 = ̂  and f̂* = S^ so that
Conditions (1)—(5) all hold. Of course, 6^ is at most countable by
Lemma 2.2. Now let a < ω1 be fixed, and assume that {^: β < a)
is a family of subsets of Sf such that Conditions (1)—(5) are satisfied
for each ^ with β < a. Now define Ea = U ί U ^ ? : /β < }̂ a n ( i ^ =
( ί ( / ) : / e i and / is not supported by Ea}. Let £ζ' be a maximal
disjoint subfamily of {/(/) - Ea: /(/) 6 g^}. (Such sets exist by Zorn's
lemma.) Finally define Sζ = {/(/) e g â: I(f)-Eae Si'}. Having now
defined <$£, we must now verify Conditions (1)—(5). First note that
&7 = Si'. Since \J^ί c: ̂  U U ^ % it follows from Conditions (3)
and (5) that \JS^β is at most countable for all β < a. Since α < ωx,
this means that Ea is at most countable so that Condition (3) holds.
Since A is not supported on any set which is at most countable, it
follows that ifα is not empty. Hence Si Φ 0 so that Condition (1)
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holds. Condition (2) holds by the definition of £fa. It is clear that
S/^ = S^a so that Condition (4) holds. It is also the case that ._9£*
is at most countable (i.e., that Condition (5) holds). However, the
proof of this fact is slightly involved. (We will assume it here and
prove it later.) It now follows by transfinite induction that there is
a family {£/*aι a < <yj of subsets of S^ satisfying Conditions (1)—(5)
above.

Let E = \J{Ea: a < ωj . Then by (3), E has cardinal at most
^ l β By assumption A is not supported on E so that there is a func-
tion ge A which is not supported on E. In particular, g is not sup-
ported on Ea for a < ωγ so that I(g) e c£a for all a < ωt. By (4) it
follows that for each a < ωly there is an / « G A such that /(/„) e Sζ
and

Π (I(fa) - Ea) = (I(g) - Ea) Π (I(fa) ~ Ea) Φ 0 .

Since I(fa) c JE^ whenever a < β, it follows that

(**) WΛ) - Ea) n (/(/,) - Eβ) = 0

for aφ β. From (*) and (**) it follows that I(g) has cardinal at
least ^ ! which contradicts the fact that I(g) was chosen to be at
most countable. As promised above, we now verify the following:

,9T is at most countable. Let Y1 = XEa and Y2 = Xω~Ea, and
indentify X with Yί x Y2 in the obvious way. Since Ea is at most
countable and since X{a] is a compact metric space for each a < ω,
the space Y1 is a compact metric space. Hence Y1 is separable. Let
{yn: ne N} be a countable dense subset of Ylm For ne N, define
An — {/ 6 A /(/) G ̂  and fy% is not constant}, where for each y e Y19

fy denotes the function on Y2 defined by fy(x) = f(y, x) for xe Y2.
Define Ao = {/ e A: I(f) e ^ } . Then Ao = Uί^^ ^ e ΛΓ}. Indeed, it
is clear by definition that U {An: n e N} c Ao. On the other hand,
let / e A - U ί ^ ^ e iV}. Then fVn is constant for all neN. But
since {2/w:tiGiV} is dense in Y1 and since / is continuous, it follows
that fy is constant for all y e Y^ This means that / is supported
by the coordinates Ea so that /(/) ί g*α. Since ^ c ^ α , /(/) g S^a

and so / 0 40.
Since Ao - Uί^»: weiV}, it follows that ,5/Γ = U»=iW/) - Ea:

f e An}. We will now show that {/(/) — Ea: f e An} is at most count-
able for each ne ^ . Define the space Xn = {α?e X: V/3G Ea, x{β) =
Vn(β)}i and let Bn — {/|x%: f £ An) where f\Xn denotes the restriction
of / to Xn. Then Bn is a relatively weakly compact subset of C(Xn)
which contains no constants since fy% is not constant if / 6 An. Let
Xn be identified with Xτ in the obvious way where I = ω — £7α; and
let ϊ7 be the norm preserving isomorphism from C(Xn) onto C(XT)
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induced by this identification. Then T is weakly continuous so that
T[Bn] is a relatively weakly compact subset of C(Xj) which contains no
constants. For each / 6 An, T(f \XJ is supported by the coordinates
/(/) — Eaa I. Indeed, this statement is equivalent to saying that if
xlf x2 e X are such that PEa(%d — Psjfy) a n ( i ®i(β) = χ*{β) for all β e
/(/) — Eaf then f(x^ — f(x2). But this is true since /(/) supports /.
Since {/(/) — Ea: f e An} is a disjoint family, it follows from Lemma
2.2 that it is at most countable. The proof is complete.

COROLLARY 2.5. Let X — [0, l ] ω 2 and let τ he the product tocology.
Then μ(τ) is not discrete.

Proof. Let x0 be any point in X. A base for the neighborhood
system at xQ for μ(τ) is {(x0 + 4 ° ) ί l I : A c C{X) is weakly compact}.
If A c C(X) is a weakly compact set, then by Theorem 2.4, there is
a set J c ω2 of cardinal at most fc^ on which A depends. Let xte
X be any point such that xQ(a) = x1(a) for all a e J. Then xx e (xo + A0) Π
X. Thus {x0} is not a neighborhood of x0 so that μ(τ) is not discrete.
The proof is complete.

It would be interesting to know if there is a simpler example
than the one given above of a space with μ{τ) not discrete. Since
[0, l]ω° is metrizable, μ(τ) for this space is discrete by Theorem 1.3.
By Corollary 2.5 and Proposition 3.1 below, [0, l]ω is a space with
μ(τ) not discrete for ω2 ̂  ω. The question of whether [0, l] ω i is a
space with μ{τ) discrete or not remains open.

3* Topologies τ with μ{τ) discrete* A completely regular topolo-
gical space (X, τ) has property (M) if μ(τ) is discrete. It is clear
that property (M) is a topological invariant. As we have seen, all
first countable spaces have property (M). This does not exhaust the
class of spaces with property (ikf), however, as can be seen by applying
Lemma 1.5 to the Stone-Cech compactification of the first uncountable
ordinal with its order topology. It would be of some interest to charac-
terize topologically those spaces with property (M). In this section
we will prove a few theorems about such spaces.

PROPOSITION 3.1. If a space has property (M), then every sub-
space also has property (M).

Proof. Let (X, τ) have property (M) and let Y cz X have the
relative topology. Let T: Cb(X)—*Cb(Y) be the restriction mapping.
Then T is norm continuous and hence weakly continuous. In particu-
lar, if A c Ch(X) is weakly compact, convex and balanced, then so
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is T[A].
Let yeY he fixed. Since (X, r) has property (M), there is a

weakly compact, convex and balanced subset A c Cb(X) such that
{y} = (V + A0) Π X. But then {#} = (2/ + T[A]°) n Γ as is easily checked
so that {7/} is open in μ(σ) where σ is the relative topology on Y.
The proof is complete.

PROPOSITION 3.2. Let τ1 and τ2 be two completely regular Hausdorff
topologies on X, and assume that rx c r2. If (X, τt) has property (M),
then (X, τ2) has property (M).

Proof. By hypothesis Cb(X, τx) c Cδ(X, τ2). The identity map Γ
on Cb(X, rx) is norm continuous and hence weakly continuous from
Cδ(X, Tj) into Cδ(X, r 2). The remainder of the proof is the same as
the proof of Proposition 3.1.

THEOREM 3.3. Let (Xlf τλ) and (X2, r2) have property (M). If
(X, τ) is their Cartesian product, then (X, τ) has property (M).

Proof. Let (xu x2) e X be fixed. Since (Xi9 τ<) has property (M)
for i = 1, 2, there is a weak compact convex balanced set Aζ c Cδ(XJ
such that {ίcj = (Xi + A?) Π X, . Let P^: X—>X^ be the projection on
the ith coordinate, and define ϊ7,: Cδ(X,) ~> Cb(X) by Γ(/) = / O P < .
Then ϊ 7 is norm continuous and so weakly continuous. Set A =
TiJAJ U Γ2[̂ -2] Then A is weakly compact and so its bipolar Am is
weakly compact by Krein's theorem. Hence A0 is a Mackey neighbor-
hood of zero. It will now be shown that {(xly x2)} = ((xl9 x2) + A0) ΓΊ X
which will complete the proof. Let {yu y2) e ((xu x2) + A0) Π X. Then
2/i G (^ + A?) n Xi for i = 1, 2 so that ^ = xt for i = 1, 2.

COROLLARY. T/̂ e product of a finite number of spaces each of
which has property (M) also has property (M).

APPENDIX. We include here a simpler proof of Theorem 1.6 in
the special case that τ is compact HausdorfF. The idea was suggested
to the author by Professor James Crenshaw.

THEOREM 3'. Let τ be compact Hausdorff. Then μ(τ) — τ if and
only if X is finite.

Proof. If feC(X), then the range of / is finite. Indeed if /
has an infinite range, let a be a limit point of the range. Let Uo —
{x:f(x) = a}, Ux = X and Un = {x: \f(x) - a\ ^ 1/n} for n = 2, 3, .
Then by Proposition 1.1 Un is closed-open in μ{τ) for n = 0,1, 2, .
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Since τ = μ(τ), {Uo} U {Un — Un+1: n = 1, 2, •} is an r-open cover of X
which has no finite subcover. Hence every function in C(X) has a finite
range. But, as is easily shown for any completely regular Hausdorff
space, if every function in C(X) has a finite range, then X is a finite
set. The proof is complete.
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