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AN ABEL-MAXIMAL ERGODIC THEOREM
FOR SEMI-GROUPS

RYoTARO SATO

The purpose of this paper is to prove a maximal ergodic
theorem for Abel means of a strongly measurable semi-group
I'={T,;t = 0} of linear contractions on a complex L,-space
satisfying | 7.f| < ¢ a.e. for any ¢ =0 and any integrable f
with |f]| <c a.e. Applying the obtained maximal ergodic
theorem, individual and dominated ergodic theorems for Abel
means are also proved. These results extend results obtained
by D. A. Edwards for sub-Markovian semi-groups.

2. The maximal ergodic theorem. Let (X, <Z, tt) be a o-finite
measure space and L,(X) = L(X, <z, t), 1 < p < oo, the usual (com-
plex) Banach spaces. Let I" = {T,;t = 0} be a strongly measurable
semi-group of linear contractions on L,(X) with || T.f |l.. = || f]l.. for
any fe L(X)N LX) and any ¢t = 0. By the Riesz convexity theorem
I' may be considered as a strongly measurable semi-group of linear
contractions on L,(X) for each p with 1 < p < «. Itis then known
(cf. [4], p. 686) that for each fe L, (X) with 1 < p < oo, there exists
a scalar function 7T,f(x), measurable with respect to the product of
Lebesgue measure and p, such that for almost all ¢, T,f(x), as a
function of =z, belongs to the equivalence class of T.f and such a
measurable representation is uniquely determined except for a set of

the product-measure zero. Moreover, since the integral ”e‘“Tt fdt

exists for any ) > 0, it follows from Theorem III.11.17 oof [4] that

there exists a g-null set E(f), dependent on f but independent of A,

such that if x ¢ E(f) then ¢ #T,f(x) is integrable on [0, =) for each

A > 0 and the integral re‘“Tt f(z) dt, as a function of z, belongs to
0

the equivalence class of re““T, f dt. Thus if we denote the integral
0

Sme‘”Tt fdt by R,f then re““Tt f(z)dt gives a representation of

0 0

R,f, and hence, from now on, we shall write R,f(x) for re““Tt f(x) dt.
0
Let fe L,(X) and a > 0. Following Chacon [1], we define

f* (@) = [sgn f(x)] min (a, | f()]) ,
f* (@) = [sgn f@)]( f(@)| — min (a, | f(@)]) ,
f*@) = sup [ME:f ()]
and
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E*(a) = {o; f*(x) > a} ,

where sgn f(z) = f(z)/| f(z)] if f(x) == 0 and sgnf(x) = 0 if f(x) = 0.
We are now in a position to state the main theorem of this paper.

THEOREM 1. If fe L(X), 1 £ p < o, then for any a > 0 we have

SE*(a)(a — 17 hde = SlfaJr de .

For the proof of Theorem 1 we shall need the following lemma,
whose proof is given in [7].

LEMMA. Let v be a positive linear contraction on L(X) satisfy-
ing 12 llo < 1 £ Il for any fe L(X) N Lu(X), let fe L(X) with 1 <

p < o and let a > 0. Define
e*(a) = im; sup ’(1 —-7) i‘, r"‘c"f(m)\ > a} .
0<r<1 k=0
Then we have

SM(“ = fmhde = Slf” lde .

Proof of Theorem 1. For each A > 0 and each positive integer
n, define

Ryf= L% omrmy f
n

k=0
We shall first prove that for any fixed » > 0,
(1) lingsz—Ré.”)przo-

In fact, if ¢ > 0 then choose a positive real number a such that

—2ia

< €.

(2) [ rsil,dr <o and

Let k(n) be the positive integer such that

(3) K)o K@) +1
" (]

Then
1Bof = Bl || e T ar = L5 e
0 n k=0 p

+e+ L S e,

N k=kin)+1
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Since 1/n Sipiwmme ™™ Z1lme*/(1 —e*) by (3) and lim,n(l —
e %"y =, it follows from (2) that for N, sufficiently large enough
and » = N, we have

(4) 1 i e I < g,
n

k=k(n)+1

Let

A

t< k+1
n

9.(t) = e for L3
n

and

TWf = Tyof for £ <i< kBl
n w

Since I" = {T; t = 0} is strongly continuous on (0, <) (cf. [4], Lemma
VIII.1.3), lim, || ¢,(¢) T¢"f — e *T,f ||, = 0, from which it follows that
lim, S:[]e‘“th — ¢.@)Tf|l, dt = 0, and hence (1) follows.

Since lim, n(l — e™*") =\, (1) implies at once that lim, [|[AR,f —
1 —e™>r e T, fll,=0. Let @ be the set of all positive

rational numbers. By the Cantor diagonal argument there exists a
subsequence {n,} such that for any )¢ @,

AR, f (@) = Hm (L — ¢7i%) S, ey, f(2) a.e.
k3 k=0
Hence if we let

fi#(x) = sup (1 — e™) ge_lklmfﬂ fl@),

0<4<

where 7, denotes the linear modulus [2] of T}, then INRf(z)] =
lim inf, f*(x) a.e. for any M€ Q. Since the mapping A—\ Swe‘“T, f(x)dt
is continuous for almost all e X, it follows that sup0<;<: INRf(x)| =
SUD;eq ‘NS:e‘“th(x)dt a.e., and thus

f*(@) = liminf f*(») a.e.

Let ef(a) = {x; fi*(x) > a}. It is clear that E*(a) Climinf, ef(a), and
hence Fatou’s lemma and the above lemma imply that

[, @— 17 bde stiming | (@~ 1 pie s {17 iae,
and the theorem is proved.

3. Applications. It is known (cf. [3]) that () if 1 <p < e
and fe L,(X), then the function *f defined by
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*fla) = Sup ;% S: T.f (%) dt 1

isin LX) and ||*f I, < p/(p — V|| £ ll,; (ii) for every fe L,(X) with
1 < p < o, the limit

. 1(?
hm——S T.f(x) dt
bteo b Jo

exists and is finite a.e. In this section we shall prove the exact
analogues for Abel means.

THEOREM 2. If 1 < p < o and fe LX), then f* < < a.e. In
particular 1f 1 < p < oo, then f* is in Ly(X) and

Nl = —2—11 £l
p—1

Proof. It follows easily from Theorem 1 that for any a > 0,
mE@) == (flde< e,
a JE*a)

from which we observe that f* < o a.e. The second half of the
theorem follows from Theorem 2.2.3 of [6]. The proof is complete.

THEOREM 3. For any fe L,(X) with 1 < p < oo, the limit
(5) lim MR, f (%)
210

exists and is finite a.e.

Before the proof we note that if the semi-group I" = {T}; ¢t = 0}
is sub-Markovian (for definition, see [5]) and of type C,, then the
above theorem has been proved by Edwards [5].

Proof. For 1 < p < oo, LX) is reflexive and thus it follows
from Corollary VIIL.7.2 of [4] that the functions f of the form

F=h+ 3= T,

where T,h = h for all ¢t = 0, is dense in L,(X) in the norm topology.
Since

NSwG_ZtTt(I - Tti)gi(x)dt = \etti Stie—uTtQi(x)dt
0 0
0

ol — e“i)S e T,g(x)dt a.e.
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for each 1, and
|25
lim M“ig T, f(2)dt = 0 ae.
ilo 0
for each 4, it follows from Theorem 2 that

lim ”So e T(I — T,)g)dt = 0 a.e.
for each 7. Thus we observe that the limit (5) exists and is finite
a.e. for any function f in a dense subset of L,(X) in the norm to-
pology. Hence the Banach convergence theorem [3] and Theorem 2
imply that the limit (5) exists and is finite a.e. for any fe L,(X).
Since L, (X)N L(X) is dense in L,(X) in the norm topology, the
Banach theorem and Theorem 2 are also sufficient to prove that the
limit (5) exists and is finite a.e. for any fe L,(X). This completes
the proof of Theorem 3.
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