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CATEGORY THEORY APPLIED TO PONTRYAGIN DUALITY

Davip W. ROEDER

A proof of the Pontryagin duality theorem for locally
compact abelian (LCA) groups is given, using category-theo-
retical ideas and homological methods. The proof is guided
by the structure within the category of LCA groups and does
not use any deep results except for the Peter-Weyl theorem.
The duality is first established for the subcategory of ele-
mentary LCA groups (those isomorphic with 7 Z? @ R*D F,
where T is the circle group, Z the integers, R the real num-
bers, and F a finite abelian group), and through the study
of exact sequences, direct limits and projective limits the
duality is expanded to larger subcategories until the full
duality theorem is reached.

Introduction. In this note we present a fairly economical proof
of the Pontryagin duality theorem for locally compact abelian (LCA)
groups, using category-theoretic ideas and homological methods.
This theorem was first proved in a series of papers by Pontryagin
and van Kampen, culminating in van Kampen’s paper [5], with
methods due primarily to Pontryagin. In [10, pp. 102-109], Weil
introduced the simplifying notion of compactly generated group and
explored the functorial nature of the situation by examining adjoint
homomorphisms and projective limits. Proofs along the lines of
Pontryagin-van Kampen-Weil appear in the books by Pontryagin
[7, pp. 235-279] and Hewitt and Ross [2, pp. 376-380]. A different
proof based on abstract Fourier analysis was given by Cartan and
Godemont [1]; similar methods are also used by Rudin [9, pp. 27-29]
and Heyer [3, pp. 148-161]. Negrepontis [6, pp. 239-252] presented
the theorem in light of category theory, but for the most part used
different methods and more structure theory than is used here.

The proof we present is based on ideas used previously by
Hofmann [4, pp. 109-117] and the author [8]. It rests neither on
the structure theorem for compactly generated LCA groups (see [2],
[6], [7]) nor on the structure of the L'-algebra of G (see [6] and [9]).
The only deep result we require is the classical Peter-Weyl theorem,
applied in our case to compact abelian groups, of course.

Definitions and preliminaries. L is the category of LCA groups,
with continuous homomorphisms as morphisms. Groups will be written
additively. Pointwise addition of functions makes each Hom (G, H)
an abelian group and L an additive category. R denotes the additive
real numbers with the usual topology, Z is the subgroup of R con-
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sisting of the integers with the induced (discrete) topology, T' is the
compact quotient group R/Z, and Z, is Z/nZ. If Ge L, then the
character group of G is X(G) = G* = Hom (G, T), taken with the
compact-open topology, which makes G* an LCA group. For fe
Hom (G, H), the adjoint homomorphism x(f) = f* e Hom (H*, G*) is
defined by f*(a) = aof for « ¢ H*. Thus x is a contravariant functor
from L to L. There is a natural transformation p from the identity
functor 7 in L to the covariant functor y* = yox; we specify o;: G —
G** by [p;(x)](a) = a(x) for xe G, «c G*. The Pontryagin duality
theorem is now the statement that o is a natural isomorphism; i.e.,
that each o, is an isomorphism between G and its second character
group G**. The method of proof will be to show that o restricted
to a suitable subcategory is an isomorphism, and then enlarge the
subcategory in successive steps until we have the theorem proved.
We indicate this schematically in the following diagram, where each
name stands for the full subcategory of L with the named property,
and the labels on connecting lines indicate the methods used to
extend the duality to the larger category.

L
/ \exactness
VAN

exactnesz/S/ COMPACTLY GENERATED

7/

\exactness
/ N

/
DISCRETE exactness COMPACT

im|  BLEMENTARY i
1

/ | AN

DISCRETE ELEMENTARY !ea COMPACT ELEMENTRY

T Z, R, Z,

First, T =~ Z* with ze T corresponding to the character »i— nx
of Z. Conversely, Z ~ T* with ne Z corresponding to the character
x> nx of T. Also R ~ R* with ¢ R corresponding to the character
y—xy+ Z of R. And Z, =~ Z¥ by corresponding xz¢ Z, to the
character y+— oy of Z,. Thus the relation G = G** holds in a natural
way for G = T, Z, R, or Z,, respectively, and in each case the iso-
morphism obtained is precisely the map p, defined earlier.

It is easy to show that y is additive (that is, for f, g€ Hom (G, H)
we have x(f + 9) = x(f) + x(9)); as a consequence ) preserves direct
sums. (See Lemma 2, p. 162, in [8].) From this we see that
Pontryagin duality holds at least for the elementary groups in L;
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that is, groups isomorphic to TP Z/ P R* P F, where F' is a finite
abelian group. The full subcategory of elementary groups in L will
be denoted by E. Then we have the following:

THEOREM 1. o |E:7|E— *| E is an isomorphism.

Duality for compact groups in L. We define a morphism fe
Hom (G, H) to be proper if f is open considered as a function from
G to its image in H. (Thus a “proper morphism” as the term is
used here may not be a “proper map” as the term is used in general

topology.)

ProrosiTION 1. If f: G— H 1s proper and f(G) is open in H,
then f* 4is proper.

Proof. Let M bé a compact neighborhood of 0 in H and W a
closed neighborhood of 0 in 7 which contains no proper subgroups
of T. (M, W) denotes the set of all characters a in H* for which
a(M)c W. The set of (M, W) obtained from all possible such choices
of M and W forms a base of compact neighborhoods of 0 in H*.
Suppose now that M is chosen to be a compact neighborhood of 0
in f(G). Since f is proper and G is locally compact, we may find a
compact neighborhood N of 0 in G such that f(N) =M. Then
(N, W) is a neighborhood of 0 in G* and f*(M, W) = (N, W)N f*(H™)
is a compact neighborhood of 0 in f*(H*). The properness of f*
follows from the open mapping theorem [2, Theorem 5.29, p. 42]
applied to the open subgroup of H* generated by (M, W).

PROPOSITION 2. ¥ takes a short proper exact sequence 0 — K =

* YK
GLH—0ta sequence 0 —K*&G*LHg*—0 in which 7* 1s pro-
per and exactness holds at G* and H*. If in addition K is an open
subgroup of G, them the sequence induced by Y is also proper exact.

Proof. It is now easy to see that H* is isomorphic to the closed
subgroup of G* consisting of those characters of G which are trivial
on K, via the proper injection j*. The kernel of ¢* is also the set
of characters on G which are trivial on K. This proves exactness
at G* and H*. Now, because T is a divisible group, any character
on H extends to a homomorphism (not necessarily continuous) from G
to T. If H is an open subgroup, then any such extension will be
continuous on G, so the proper map 7* will be a surjection.

Using the (M, W) notation of the proof of Proposition 1, we see
that if G is discrete and M = {0} in G, then (M, W) = G*, so G* is
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compact. On the other hand, if G is compact and M = G, then
(M, W) = {0}, so G* is discrete. We now let A be the subcategory
of discrete groups in L and A, the subcategory of discrete elementary
groups (isomorphic to ZZ @ F'). C is the subcategory of compact
groups and C, the subcategory of compact elementary groups (iso-
morphic to T*@P F') in L.

We can make a directed set I into a category by declaring, for
%, je I, that Hom (7, j) consist of exactly one element if ¢ < j and
be empty otherwise. Then, for our purposes, a direct system in A4,
is a covariant functor U from a directed set to A,, We shall often
write U; for U(t) and u;; for UHom (7, 7)). We let DA, be the col-
lection of direct systems in A, whose morphisms are all injective.
DA, becomes a category when we define a morphism from U: I — A,
to V:J— A, to be a pair (m, ), where m: I —J is a functor (order-
preserving map) and ® is a natural transformation from U to Vom.

Well-known properties of abelian groups include the fact that
each element U of DA, has a direct limit lim U(or lim U;) which will

be an object in D. In fact, a necessary and sufficient condition for
a discrete group G to be isomorphic to lim U is the existence of

injective morphisms g;: U; — G, one for each %, such that g;ou;; = g;
whenever 7 < j, and the union of the images ¢,(U,) is all of G. The
result is that lim: DA,— A can be regarded as a covariant functor,

since if (m, ®) is a functor from U to V in DA,, the universal property
of thguarantees existence of a unique morphism hm (m, P): hm U—

hmV making the following diagram commutative for every 1 ¢ I
U, — limU

l?i jlim (m,9)

Vm(,‘) — lim V.
—_—

Similarly, an inverse system in C, is a contravariant functor U
from a directed set to C,. The category of all inverse systems in C,
all of whose morphisms are surjective is denoted by IC,. A morphism
from U: I—C, to V:J—C, in IC, is a pair (m, $) where m:J — I
is a functor and @: Uom—V is a natural transformation. Also, any
inverse system in IC, has a projective limit lim U which will be an

object of C. Further, any object G of C is isomorphic to lim U if
and only if there exists a surjective morphism g,: G — U; for each %
such that w,°g; = g; whenever ¢ < j and the intersection of the

kernels of the g; is {0} in G. (The usual condition [10, p. 25] is
that every neighborhood of 0 in G contain Ker g; for some 1%, but if
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the intersection of the Ker g, is {0} and N’ is any open neighbor-
hood of 0 in G, then by compactness we can find a finite number
of g, the intersection of whose kernels is contained in N. Picking
an index j greater than these ¢ gives us Ker g; © N.) Again in this
situation lim(m, ) for a morphism (m, ) in IC, is defined by the
universal property, and lim becomes a covariant functor. We call
DA, and IC, convergence structures on A and C, respectively.

By Proposition 2, if Ue DA, then yoUe IC,. This correspondene

U yoU gives us a functor which we denote by Dy: DA,— IC,.
Similarly, ¥ induces the functor Iy: IC,— DA,.

PROPOSITION 3. ¥ is continuous on A with respect to DAy that
18, the two fumctors yolim and limoDy: DA,— C are naturally 1iso-

morphic.

Proof. Let Ue DA, and G = lim U, with g,: U, — G the associated
injections. We must show that G* = lim (U}). It is clear that each

gi:G* — U} is surjective. Let 0 = ac G*. We shall show the ex-
istence of an index 7 with gf(a) = 0. We know a(x) = 0 for some
ze G, and then x = g,(y) for some 7 and yeG,;,. Then for this 1,
g (@) (y) = alg(y)) = 0. So (lim U)* =~ lim (U}). The fact that we

have a natural isomorphism follows from the universal property.

PROPOSITION 4. ¥ is continuous on C with respect to IC, that
1s, the functors yolim and limoIy: IC,— A are naturally isomorphic.

Proof. Let Ue IC, and G = lim U, with g;: G — U, the associated

surjections. Clearly each ¢; is injective. To show that G* is iso-
morphic with lim (U¥), we must show that every ae G* is equal to

g¥(B) for some 7 and some Be Uf. Let W be a neighborhood of 0
in T containing no proper subgroups of 7. Let M be a neighborhood
of 0 in G with a(M)c W. Then we may find U; with Kerg,c M.
Then a(Kerg;) =0, so a factors; a = Bog; for some Re Uf. But
Bog; = g¥(B), so we are done.

We remark that Proposition 3 above could be proved as in [6]
by showing that x has a left adjoint functor, which implies that y
takes direct limits to limits. However, Proposition 4 does not admit
an analogous proof.

PROPOSITION 5. The category C, s dense in C. That s, there
is & functor S: C— IC, such that the functor limoS and the identity

Sfunctor on C are naturally isomorphic.
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Proof. This follows from the Peter-Weyl theorem [7, Theorem
33, p. 229], which says for our abelian case that the characters of any
G in C separate the points of G. Let Ge C and define S(G) ¢ IC, to
be the collection of quotient groups G/K of G which are in C,. We
order them by G/K < G/N if Nc K. Note that G/(K N N) is iso-
morphic to a subgroup of (G/K) @ (G/N), so we have a directed set.
We can define ggy: G/N— G/K to be the natural projection when
Nc K. For a morphism f:G— H in C, S(f) is defined as follows:
H/K in S(H) corresponds to G/f(K) in S(G), and the map G/f'(K) —
H/K is the natural one induced by f. Then if zeG, let e G* with
a(x) #0. Then G/K is in S(G), where K = Kera, and gx(z) = 0,
where gx: G — G/K is the natural map. The collection of gx exhibits
G as 13111 S(G).

We are now ready to consider our two covariant functors 7 and
X again.

THEOREM 2. Pontryagin duality holds in C; that s, 0| C:7|C—
x| C s an isomorphism.

Proof. p|C, is already an isomorphism. By Proposition 1.18 in
[4, p. 115], o| C, extends uniquely to a natural transformation be-
tween 7| C and %*|C. This extension must also be an isomorphism.
But 0| C already extends p|C, so o |C must be an isomorphism.

Duality of compactly generated groups in L. Let CG be the
full subcategory of the compactly generated groups in L.

LEMMA. Suppose Ge CG 1is generated by the compact mneigh-
borhood M of 0 in G. Then there is a subgroup K of G, K =~ Z™ for
some m, such that KN M = {0} and G/K is compact.

Proof. This is Lemma 2.42 in [9, p. 41].

PROPOSITION 6. If Ge CG, then 0; is injective.

Proof. This is an easy consequence of the above lemma. Let
xe@G, x %« 0. Apply the lemma to M U {x}, which is also a compact
neighborhood of 0 which generates G. The coset # + K is not the
identity element in the compact group G/K. Therefore, there is a
character a of G/K such that a(x + K) == 0. Composing « with the
natural projection G — G/K gives us a character on G which is not
trivial on . Therefore p,(x) = 0.

THEOREM 3. Pontryagin duality holds in CG.
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Proof. Let GeCG. Let M be a compact neighborhood of 0 in
G and let S~ Z"™ be a subgroup of G such that SN M = {0} and G/S
is compact, as guaranteed by the lemma above. Let @ = G/S and
p: G — @ the natural map. Let N be a compact symmetric neighbor-
hood of 0 in G such that N + N + NcM. Then p maps N homeo-
morphically onto p(N). Since @ is compact and p is proper, there
is a compact subgroup @, of@ such that Q,cp(N) and Q/Q, is compact
elementary, by Proposition 5. Then p~%(Q,) is a closed subgroup of G
contained in S + N. Letting K = p™(Q,) NN, we have by the choice
of N that K is a compact subgroup of G satisfying p(K) = Q..

Now let H = G/K; we shall show that H is an elementary group.
First, p gives rise to proper surjection H — Q/Q, with kernel S + K
which is discrete in H by the construction of K. Therefore H is
locally isomorphic with Q/Q,, wich in turn is locally isomorphic with
R" for some . This means we have an isomorphism f: B— V, where
B is an open ball about 0 in B" and V is a neighborhood of 0 in H.
Then we can extend f to a proper surjective homorphism ¢g: R*— H,,
whore H, is the open subgroup of H generated by V, by defining
g(x) = n- f(x/n), for 2 € B* and n large enough so that z/ne B. Thus
H, ~ R*@® T® for some integers a¢ and b (a quotient group of R").
Since H, is a divisible open subgroup of H, we can obtain a morphism
H— H, which is the identity on H,, so H~ H,{ H/H,. But H/H, is
an elementary group since it is discrete and compactly generated.
Therefore H is also elementary. Now we examine the following
commutative diagram:

0— K —ug 1.mg —o

o e e e

0-——>K**—>G**—g—+ﬂ**———>0 .

Now KeC and He E, so px and pp are isomorphisms, while o, is
injective by Proposition 6. Since ¢ is injective, we conclude that ¢**
is injective. Now briefly consider *:G* — K*. If ¢* were not
surjective, then there would be a nontrivial character on K*/i*(G*).
Composing with the natural projection K* — K*/i*(G*), we get a
character on K* which is trivial on ¢*(G*). This character would
then be in the kernel of ¢**, contradicting the injectivity of 4**.
Therefore, ¢* is surjective and Proposition 2 now tells us that the
induced sequence

0 K* G* H* « 0

is a proper exact sequence, since K* is discrete. Thus H* can be
regarded as an open subgroup of G*, and so the lower sequence in
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diagram (1) is also proper exact. The 5-lemma and the open mapping
theorem show that o, is an isomorphism, and we are done.

Duality for arbitrary locally compact groups. We begin with
discrete groups.

PROPOSITION 7. The category A, is dense in A. That s, there
18 a functor T: A— DA, such that limoT and the identity functor on

A are naturally isomorphic.

Proof. Every abelian group is the direct limit of its finitely
generated subgroups. The functor 7T assigns to each G in A the
direct system (U;) of finitely generated subgroups of G ordered by
1 =<jif U;cU;. A morphism f:G— H in A is carried by T to T(f),
in which each finitely generated subgroup of G is mapped via the
restriction of f to its image in H.

THEOREM 4. Pontryagin duality holds in A.
Proof. This is completely analogous to the proof of Theorem 2.

THEOREM 5. The Pontryagin duality theorem. p s a natural
epuivalence.

Proof. Let Ge L. Let M be a compact neighborhood of 0 in
G and let K be the subgroup of G generated by M. Let H = G/K.
Since K is open, the induced sequence

0 K* —G* H* 0

is proper exact by Proposition 2. Consider diagram (1) for this K, G,
and H. We have exactness at K** and G** in the bottom row. H
is discrete since K is open, so 0y is an isomorphism, and so j** is
surjective. Both rows of the diagram are proper exact and px is
also an isomorphism. Again the 5-lemma applies and p, is algebrai-
cally an isomorphism. But o, restricted to the open subgroup K is
the isomorphism %, so o, is also an isomorphism.

Had we extended the concepts of convergence to include direct
and projective limits of nondiscrete and noncompact groups, respec-
tively, and had we modified Propositions 3 and 4 and their proofs
accordingly, we could have proved Theorem 5 differently by showing
that CG is dense in L and yx is continuous on L with respect to the
modifind convergence. Theorem 3 may be treated similarly; in fact,
the proof of Theorem 3 already shows that E is dense in CG.



CATEGORY THEORY APPLIED TO PONTRYAGIN DUALITY 527

REFERENCES

1. H. Cartan and R. Godement, Théorie de la dualité et analyse harmonique dans les
groupes abélians localement compacts, Ann. Sci Ecole Norm. Sup., (3) 64 (1947), 79-99.
2. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume I, Academic Press,
New York and Springer-Verlag, Berlin, 1963.

3. H. Heyer, Daulitit Lokalkompakter Gruppen, Lecture Notes in Mathematics,
Volume 150, Springer-Verlag, New York, 1970.

4. K. H. Hofmann, Categories with convergence, exponential functors, and the
cohomology of compact abelian groups, Math Z., 104 (1968), 106-140.

5. E. R. van Kampen, Locally bicompact abelian groups and their character groups,
Ann. of Math., (2) 36 (1935), 448-463.

6. J. W. Negrepontis, Duality in analysis from the point of view of triples, J.
Algebra, 19 (1971), 228-253.

7. L. S. Pontryagin, Topological Groups, Second Edition, Gordon and Breach, New
York, 1966.

8. D. W. Roeder, Functorial characterizations of Pontryagin duality, Trans. Amer-
Math. Soc., 154 (1971), 151-175.

9. W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.

10. A. Weil, L’intégration dans les groupes topologiques et ses applications, Hermann,
Paris, 1941 and 1951.

Received August 22, 1972 and in revised form January 26, 1973. This research was
supported in part by the College Science Improvement Program of the National Science
Foundation (NSF grant GY-5700).

COLORADO COLLEGE








