THE RANGE OF A CONTRACTIVE PROJECTION ON AN L_{p}-SPACE

S. J. Bernau and H. Elton Lacey

Abstract

Suppose (X, Σ, μ) is a measure space, $1 \leqq p<\infty$ and $p \neq$ 2. Let $L_{p}=L_{p}(X, \Sigma, \mu)$ be the usual space of equivalence classes of Σ-measurable functions f such that $|f|^{p}$ is integrable. A contractive projection on L_{p} is a linear operator $P: L_{p} \rightarrow$ L_{p} such that $P^{2}=P$ and $\|P\| \leqq 1$. In this paper we give a complete description of such contractive projections in terms of conditional expectation operators. We also show that a closed subspace M of L_{p} is the range of a contractive projection if and only if M is isometrically isomorphic to another L_{p}-space. Another sufficient condition shows, in particular, that every closed vector sublattice of an L_{p}-space is the range of a positive contractive projection.

Most of our results are known. The case of finite μ was treated, for $p=1$, by Douglas [2] and for $1<p<\infty$ by Ando [1] who showed how to reduce this case to that of $p=1$. These authors obtained our necessary and sufficient condition. Grothendieck [4] considered $p=1$ and general μ and showed that the range of a contractive projection on L_{1} is isometrically isomorphic to another L_{1}-space. Wulbert [11] showed that a positive contractive projection on L_{1} which is also L_{∞} contractive is a conditional expectation, and pointed out that his proofs applied for $p>1$. Tzafriri [10] showed that for general μ the range of a contractive projection on L_{p} is isometrically isomorphic to another L_{p}-space. In [5] we gave an outline, based on Tzafriri's, of another proof of this fact.

We obtain complete generalizations of the Douglas-Ando results to the case of an arbitrary measure μ. We have chosen to give our proofs in detail. It seems easier not to reduce the case $p>1$ to the case $p=1$. The proofs for $p>1$ often use duality arguments which are just not available for $p=1$. By giving such proofs, generalizations to reflexive Banach function spaces may be possible. Some such generalizations have been tried by Rao [8] but his reduction from arbitrary norms to the L_{1} case is faulty and his Theorem 2.7 is false in general (see Remark 4.4). Duplissey [3] considers Banach function spaces but requires $\|P f\|_{\infty} \leqq\|f\|_{\infty}$ as well as P contractive. We also avoid reducing to the case of finite measures. This device turns out to be unnecessary, and needlessly complicated.

We have deliberately omitted the cases $0<p<1$, except in the appendix, and the case $p=2$. A contractive projection on Hilbert
space is an orthogonal projection and every closed subspace is the range of a unique one. For $0<p<1$ the arguments for $p=1$ will work or can be modified to work. We no longer have a norm, however, and it seemed best to ignore this case.

We have included a section in which we discuss the proof of the famous theorem that if $1 \leqq p<\infty$, a Banach space is an $L_{p^{-}}$ space, if and only if it is an $\mathscr{L}_{p, \lambda}$ for all $\lambda>1$, if and only if it contains an increasing set of finite dimensional subspaces whose union is dense and each of which is isometrically isomorphic to a finite dimensional l_{p}-space of appropriate dimension. This result is a combination of work of Zippin [12] and of Lindenstrauss and Pelczynski [7]. We discussed the real case in [5]. There seems to some value in going over the results again here because both [5] and [7] really consider only the real case. The extensions to the complex case are technically more difficult than is admitted in [7]. Also we have had many questions about some of the details omitted in [5].

In our final appendix we have given two technical results used by Ando [1] and Tzafriri [10]. Our proofs seem a little easier and Ando's result has been generalized to arbitrary measure spaces.

1. Notation and definitions. We consider complex L_{p}-spaces throughout. Our proofs are valid, with obvious modifications in the real case too. We use, for complex z, the version of the signum function, $\operatorname{sgn} z$ defined by

$$
\operatorname{sgn} z=\left\{\begin{array}{lll}
z /|z| & \text { if } & z \neq 0 \\
0 & \text { if } & z=0 .
\end{array}\right.
$$

We modify some standard vector lattice terminology to apply in the complex case. A closed vector sublattice of L_{p} is a closed subspace M such that if $f \in M$, Re $f \in M$, and if $f \in M$ and f is real-valued, $f^{+}=f \vee 0 \in M$.

If $f \in L_{p}$ write $S(f)=\{x \in X: f(x) \neq 0\}$ and call $S(f)$ the support of f. This only determines the support of f to a set of μ-measure zero. However, this will either not matter, or we will want all possible determinations for the support of f. If $M \subset L_{p}$, the polar of M, M^{\perp}, is defined by

$$
M^{\perp}=\left\{g \in L_{p}:|g| \wedge|m|=0(m \in M)\right\}
$$

(By $|g| \wedge|m|=0$ we mean μ-almost everywhere of course.) If $M=$ $M^{+\perp}$ we call M a band (or polar subspace). If M is a band $L_{p}=$ $M \oplus M^{\perp}$, and the, natural, band projection J_{M} of L_{p} onto M is given, for positive $h \in L_{p}$, by

$$
J_{M I} h=\sup \{g \in M: 0 \leqq g \leqq h\}
$$

If $f \in L_{p}$, and $M=f^{\perp \perp}$, we write J_{f} for the band projection on $f^{L \perp}$ and note that, if $0 \leqq h \in L_{p}$

$$
J_{f} h=\sup \{h \wedge n|f|: n=1,2, \cdots\}
$$

(indeed, by dominated convergence, $h \wedge n|f| \rightarrow J_{f} h$ in L_{p}-norm) while for any $h \in L_{p}, J_{f} h=\chi_{S(f)} h$. The following lemma is easy to prove.

Lemma 1.1. If M is a subspace of $L_{p}(X, \Sigma, \mu), h \in L_{p}$, and J is the band projection on M^{-1}, then there is a sequence $\left(f_{n}\right)$ in M such that $J h=\lim \chi_{s}\left(f_{f_{n}}\right) h$.

Proof. Choose a sequence $\left(f_{n}\right)$ in M such that

$$
\left\|\chi_{S\left(f_{n}\right)} h\right\|_{p} \longrightarrow \sup \left\{\left\|\chi_{S(f)} h\right\|_{p}: f \in M\right\}
$$

We omit the remaining details.
Remark 1.2. This lemma can be strengthened, in case M is closed, to say that for each $h \in L_{p}$ there exists $f \in M$ such that $J h=$ $J_{f} h=\chi_{S(f)} h$. This depends essentially on the fact that the set of supports of functions whose equivalence classes are in M is closed under countable union. This is proved by Ando [1, Lemma 3] for finite μ, and we give a rather easier alternative proof in our appendix.
2. Preliminary results. In this section the cases $p=1$, and $1<p<\infty, p \neq 2$, are treated separately. Our first lemma is based on an argument of Douglas [2, p. 452].

Lemma 2.1. Let P be a contractive projection on $L_{1}(X, \Sigma, \mu)$ and suppose $f \in \mathscr{R}(P)$; then
(i) $P J_{f}=J_{f} P J_{f}$;
(ii) $P(h \operatorname{sgn} f)=|P(h \operatorname{sgn} f)| \operatorname{sgn} f\left(0 \leqq h \in L_{1}\right)$;
(iii) $\|P(h \operatorname{sgn} f)\|=\left\|J_{f} h\right\|\left(0 \leqq h \in L_{1}\right)$.

Proof. Suppose $0 \leqq h \leqq|f|$, then

$$
\begin{aligned}
\|f\|-\|h \operatorname{sgn} f\| & =\|f-h \operatorname{sgn} f\| \\
& \geqq\|P(f-h \operatorname{sgn} f)\| \\
& =\|f-P(h \operatorname{sgn} f)\| \\
& \geqq\|f\|-\|P(h \operatorname{sgn} f)\| \\
& \geqq\|f\|-\|h \operatorname{sgn} f\|
\end{aligned}
$$

This gives equality throughout so (iii) is valid for $0 \leqq h \leqq|f|$. In
addition we have $0 \leqq|f-P(h \operatorname{sgn} f)|=|f|-|P(h \operatorname{sgn} f)| \mu$-almost everywhere, and (ii) also follows for $0 \leqq h \leqq|f|$. We extend immediately to $h \in L_{1}$ such that $0 \leqq h \leqq n|f|$ for some n, and since linear combinations of such h are dense in $f^{\perp \perp}$ we have (ii) and (iii) for $0 \leqq h \in f^{\perp \perp}$. If $h \in L_{1}$ and $h \geqq 0,\left(J_{f} h\right) \operatorname{sgn} f=h \operatorname{sgn} f$ so (ii) and (iii) are proved.

For (i) take $g \in L_{1}$ and put $h=(\operatorname{Re}(g \operatorname{sgn} \bar{f}))^{+} \operatorname{sgn} f$, by (ii) $P h \in$ $f^{\perp \perp}$ so $P h=J_{f} P h$. We conclude easily that

$$
P\left(J_{f} g\right)=P((g \operatorname{sgn} \bar{f}) \operatorname{sgn} f)=J_{f} P J_{f} g
$$

and (i) is proved.
Suppose $1<p<\infty$; then identify the dual of $L_{p}(X, \Sigma, \mu)$ with $L_{q}(X, \Sigma, \mu)$ in the usual way $(1 / p+1 / q=1)$. Let P be a contractive projection on L_{p}. The conjugate operator P^{*} is defined uniquely on L_{q} by the equation

$$
\int P f \cdot g d \mu=\int f \cdot P^{*} g d \mu \quad\left(f \in L_{p}, g \in L_{q}\right)
$$

Clearly P^{*} is a contractive projection on L_{q}.
Lemma 2.2. [1, Lemma 1]. Suppose $1<p<\infty$ and let P be a contractive projection on $L_{p}(X, \Sigma, \mu)$, then $f \in \mathscr{R}(P)$ if and only if $|f|^{p-1} \operatorname{sgn} \bar{f} \in \mathscr{R}\left(P^{*}\right)$.

Proof. Suppose $f \in \mathscr{R}(P)$; by Hölder's inequality

$$
\begin{aligned}
\|f\|_{p}^{p}=\int|f|^{p} d \mu & =\int P f \cdot|f|^{p-1} \operatorname{sgn} \bar{f} d \mu \\
& =\int f \cdot P^{*}\left(|f|^{p-1} \operatorname{sgn} \bar{f}\right) d \mu \\
& \leqq\|f\|_{p}\left\|P^{*}\left(|f|^{p-1} \operatorname{sgn} \bar{f}\right)\right\|_{q} \\
& \leqq\|f\|_{p}\left\||f|^{p-1} \operatorname{sgn} \bar{f}\right\|_{q} \\
& =\|f\|_{p}\|f\|_{p}^{p / q} \\
& =\|f\|_{p}^{p} .
\end{aligned}
$$

The conditions for equality in Hölder's inequality lead to

$$
P^{*}\left(|f|^{p-1} \operatorname{sgn} \bar{f}\right)=|f|^{p-1} \operatorname{sgn} \bar{f}
$$

as required. This proves necessity. Sufficiency follows dually.
We next generalize an argument in Ando's Theorem 1 [1].
Lemma 2.3. Suppose $1<p<\infty, p \neq 2$; and let P be a contractive projection on $L_{p}(X, \Sigma, \mu)$; if $f \in \mathscr{R}(P)$ then,
(i) $|f| \operatorname{sgn} g \in \mathscr{R}(P) \quad(g \in \mathscr{R}(P))$,
(ii) $P J_{f}=J_{f} P$,
(iii) $P(h \operatorname{sgn} f)=|P(h \operatorname{sgn} f)| \operatorname{sgn} f \quad\left(0 \leqq h \in L_{p}\right)$.

Proof. (i) Suppose first that $p>2$, let $\lambda \in R, 0<|\lambda|<1$, and let $g \in \mathscr{R}(P)$. By Lemma 2.2,

$$
g_{\lambda}=\lambda^{-1}\left(|f+\lambda g|^{p-1} \operatorname{sgn} \overline{(f+\lambda g)}-|f|^{p-1} \operatorname{sgn} \bar{f}\right) \in \mathscr{R}\left(P^{*}\right)
$$

Since $p>2$,

$$
\begin{aligned}
g_{\lambda} & \left.=\lambda^{-1}\left[\left(|f+\lambda g|^{p-2}-|f|^{p-2}\right) \overline{(f+\lambda g}\right)+|f|^{p-2} \cdot \lambda \bar{g}\right] \\
& \left.=\lambda^{-1}\left[\left(|f+\lambda g|^{p-2}-|f|^{p-2}\right) \overline{(f+\lambda g}\right)\right]+|f|^{p-2} \bar{g}
\end{aligned}
$$

Recall, that for real λ and complex $w, z, d /\left.d \lambda|w+\lambda z|\right|_{\lambda}=$ $\operatorname{Re}[z \operatorname{sgn} \overline{(w+\lambda z)}]$, provided $w+\lambda z \neq 0$. It follows that as $\lambda \rightarrow 0$,

$$
g_{\lambda} \longrightarrow(p-2)|f|^{p-3} \operatorname{Re}(g \operatorname{sgn} \bar{f}) \cdot \bar{f}+|f|^{p-2} \bar{g}
$$

at all points of X where $f \neq 0$.
If $2|\lambda g|<|f|$ we have $|f| / 2<|f+\theta \lambda g|<2|f|$ if $0<\theta<1$; and, by the mean value theorem there exists $\theta, 0<\theta<1$ such that

$$
\begin{aligned}
\left|g_{\lambda}\right| & \leqq(p-2)|f+\theta \lambda g|^{p-3}|\operatorname{Re}(g \operatorname{sgn}(\overline{f+\theta \lambda g}))||f+\lambda g|+|f|^{p-2}|g| \\
& \leqq(p-2) 2^{\mid p-3}|f|^{p-3}|g| 2|f|+|f|^{p-2}|g| \\
& \leqq\left((p-2) 2^{p}+1\right)|f|^{p-2}|g| \in L_{q} .
\end{aligned}
$$

If $2|\lambda g| \geqq|f|,|f+\lambda g| \leqq 3|\lambda g|$ and

$$
\begin{aligned}
\left|g_{\lambda}\right| & \leqq \lambda^{-1}\left[(3|\lambda g|)^{p-1}+(2|\lambda g|)^{p-1}\right] \\
& =\left(3^{p-1}+2^{p-1}\right)|g|^{p-1}|\lambda|^{p-2} \\
& \leqq\left(3^{p-1}+2^{p-1}\right)|g|^{p-1} \in L_{q}
\end{aligned}
$$

The penultimate line above shows that $g_{\lambda} \rightarrow 0(\lambda \rightarrow 0)$ if $f=0$.
This shows that g_{λ} converges to

$$
g_{0}=(p-2)|f|^{p-2} \operatorname{sgn} \bar{f} \operatorname{Re}(g \operatorname{sgn} \bar{f})+|f|^{p-2} \bar{g},
$$

pointwise almost everywhere on X and that the convergence is dominated by an element of L_{q}. Hence $\left\|g_{\lambda}-g_{0}\right\|_{q} \rightarrow 0$ and $g_{0} \in \mathscr{R}\left(P^{*}\right)$ because $\mathscr{R}\left(P^{*}\right)$ is closed.

By the same argument, applied to $-i g$, we have, using $\operatorname{Re}-i z=\operatorname{Im} z$,

$$
k_{0}=(p-2)|f|^{p-2} \operatorname{sgn} \bar{f} \operatorname{Im}(g \operatorname{sgn} \bar{f})+i|f|^{p-2} \bar{g} \in \mathscr{R}\left(P^{*}\right)
$$

Now,

$$
\begin{aligned}
g_{0}-i k_{0} & \left.=(p-2)|f|^{p-2} \operatorname{sgn} \bar{f} \cdot \overline{(g \operatorname{sgn} \bar{f}}\right)+2|f|^{p-2} \bar{g} \\
& =(p-2)|f|^{p-2} \operatorname{sgn} \bar{f} \cdot \bar{g} \cdot \operatorname{sgn} f+2|f|^{p-2} \bar{g} \\
& =p|f|^{p-2} \cdot \bar{g} \in \mathscr{R}\left(P^{*}\right) .
\end{aligned}
$$

(Note that this last is valid in the real case too.)
Using Lemma 2.2 again, we conclude that $\left||f|^{p-2} \bar{g}\right|^{q-1} \operatorname{sgn} \mid \overline{\left.f\right|^{p-2} \bar{g}}=$ $|f|^{1-(q-1)}|g|^{q-1} \operatorname{sgn} g \in \mathscr{R}(P)$. Set

$$
k_{n}=|f|^{1-(q-1)^{n}}|g|^{(q-1) n} \operatorname{sgn} g \quad(n=1,2 \cdots)
$$

We have just shown that $k_{1} \in \mathscr{R}(P)$ and the same method, applied inductively, gives $k_{n} \in \mathscr{R}(P)$ for all n. Since $0<q-1<1$,

$$
\left|k_{n}\right| \leqq \max \{|f|,|g|\} \leqq|f|+|g| \in L_{p}
$$

so $\left(k_{n}\right)$ is dominated in L_{p}. Since $k_{n} \rightarrow|f| \operatorname{sgn} g \mu$-almost everywhere on X, we have $\left\|k_{n}-|f| \operatorname{sgn} g\right\|_{p} \rightarrow 0$ and since $\mathscr{R}(P)$ is closed $|f| \operatorname{sgn} g \in$ $\mathscr{R}(P)$ which proves (i) for $p>2$.

Suppose $1<p<2$; as we have already stated P^{*} is a contractive projection on L_{q}, and $q>2$. By Lemma 2.2, $f_{1}=|f|^{p-1} \operatorname{sgn} \bar{f}$ and $g_{1}=|g|^{p-1} \operatorname{sgn} \bar{g}$ are in $\mathscr{R}\left(P^{*}\right)$. By our proof above $\left|f_{1}\right| \operatorname{sgn} g_{1}=$ $|f|^{p-1} \operatorname{sgn} \bar{g} \in \mathscr{R}\left(P^{*}\right)$, and, by Lemma 2.2 again, $|f| \operatorname{sgn} g \in \mathscr{R}(P)$.

This completes the proof of (i).
For (ii) we have by (i), that $|f| \operatorname{sgn} P k \in \mathscr{R}(P)\left(k \in L_{p}\right)$. By (i) again,

$$
J_{f} P k=|P k| \operatorname{sgn}(|f| \operatorname{sgn} P k) \in \mathscr{R}(P)
$$

Thus $J_{f} P=P J_{f} P$. Further, since P^{*} is a contractive projection on L_{q}, and $|f|^{p-1}$ sgn $\bar{f} \in \mathscr{R}\left(P^{*}\right)$ we have $J_{g} P^{*}=P^{*} J_{g} P^{*}$ with

$$
g=|f|^{p-1} \operatorname{sgn} \bar{f}
$$

In addition $J_{g}=J_{f}^{*}$, since J_{g} and J_{f} are each multiplication by the same characteristic function. We conclude

$$
J_{f} P=P J_{f} P=\left(P^{*} J_{f}^{*} P^{*}\right)^{*}=\left(P^{*} J_{g} P^{*}\right)^{*}=\left(J_{g} P^{*}\right)^{*}=P J_{f}
$$

which is (ii).
(iii) The proof is like the proof of Lemma 2.1(ii). Suppose $0 \leqq$ $h \leqq|f| . \quad$ By (i), $|f| \operatorname{sgn} P(h \operatorname{sgn} f) \in \mathscr{R}(P)$, so by Lemma 2.2,

$$
\left.|f|^{p-1} \operatorname{sgn} \overline{P(h \operatorname{sgn} f}\right) \in \mathscr{R}\left(P^{*}\right)
$$

Hence,

$$
\begin{aligned}
\int|P(h \operatorname{sgn} f)||f|^{p-1} d \mu & \left.=\int P(h \operatorname{sgn} f) \cdot|f|^{p-1} \operatorname{sgn} \overline{P(h \operatorname{sgn} f}\right) d \mu \\
& =\int h \operatorname{sgn} f \cdot|f|^{p-1} \operatorname{sgn} \overline{P(h \operatorname{sgn} f)} d \mu \\
& \leqq \int h|f|^{p-1} d \mu
\end{aligned}
$$

Also $0 \leqq|f-h \operatorname{sgn} f|=|f|-h \leqq|f|$.

Hence,

$$
\begin{aligned}
\|f\|_{p}^{p} & =\int|P(|f| \operatorname{sgn} f)||f|^{p-1} d \mu \\
& =\int|P(h \operatorname{sgn} f)+P((|f|-h) \operatorname{sgn} f)||f|^{p-1} d \mu \\
& \leqq \int|P(h \operatorname{sgn} f)||f|^{p-1} d \mu+\int \mid P\left(\left.(|f|-h) \operatorname{sgn} f| | f\right|^{p-1} d \mu\right. \\
& \leqq \int h|f|^{p-1} d \mu+\int(|f|-h)|f|^{p-1} d \mu \\
& =\|f\|_{p}^{p} .
\end{aligned}
$$

We have equality at each stage and hence, (μ-almost everywhere),

$$
|f|=|P(|f| \operatorname{sgn} f)|=|P(h \operatorname{sgn} f)|+|f-P(h \operatorname{sgn} f)| .
$$

This proves (iii) for $0 \leqq h \leqq|f|$. The extension to $0 \leqq h \in L_{p}$ is the same as in the proof of Lemma 2.1(ii) and (iii) so we are done.
3. Contractive projections and conditional expectations. In this section we describe the contractive projections on $L_{p}(X, \Sigma, \mu)$ ($1 \leqq p<\infty, p \neq 2$) in terms of conditional expectation.

We first need the necessary σ-subring.
Lemma 3.1. Suppose $1 \leqq p<\infty, p \neq 2$, and let P be a contractive projection on $L_{p}(X, \Sigma, \mu)$. Define Σ_{0} to be the set of supports of all functions whose equivalence classes are in $\mathscr{R}(P)$; then
(i) $P J_{g} f=J_{g} f \quad(f, g \in \mathscr{R}(P))$;
(ii) Σ_{0} is a σ-subring of Σ.

Proof. (i) By Lemma 2.3(ii), (i) is valid if $p \neq 1$. We give a proof that uses only the identity $J_{g} P J_{g}=P J_{g}$ valid for $1 \leqq p<\infty$, $p \neq 2$ (Lemma 2.1(i) or 2.3(ii) weakened). Since $f-J_{g} f \in g^{\perp}$ and $J_{g} f-P J_{g} f \in g^{\perp \perp}$, we have

$$
\begin{aligned}
\left\|P\left(f-J_{g} f\right)\right\|^{p} & =\left\|f-P J_{g} f\right\|^{p} \\
& =\left\|f-J_{g} f\right\|^{p}+\left\|J_{g} f-P J_{g} f\right\|^{p} \\
& \geqq\left\|P\left(f-J_{g} f\right)\right\|^{p}+\left\|J_{g} f-P J_{g} f\right\|^{p} .
\end{aligned}
$$

Thus $P J_{g} f=J_{g} f$ which is (i).
(ii) By (i), $S(f) \sim S(g)=S\left(f-J_{g} f\right)=S\left(P\left(f-J_{g} f\right)\right) \in \Sigma_{0}$. Thus Σ_{0} is closed under differences. If $\left(f_{n}\right)$ is a sequence of nonzero elements in $\mathscr{R}(P)$ such that $S\left(f_{n}\right) \cap S\left(f_{m}\right)=\varnothing(m \neq n)$ then

$$
f=\Sigma 2^{-n}\left\|f_{n}\right\|^{-1} f_{n} \in \mathscr{R}(P)
$$

and $S(f)=\bigcup S\left(f_{n}\right)$. This proves (ii).

Corollary 3.2. Let P be a contractive projection on $L_{p}(X, \Sigma, \mu)$ $(1 \leqq p<\infty, p \neq 2)$. If $h \in \mathscr{R}(P)^{\perp \perp}$ there exists $f \in \mathscr{R}(P)$ such that $h \in f^{\perp \perp}$.

Proof. By Lemma 1.1 there is a sequence $\left(f_{n}\right)$ in $\mathscr{R}(P)$ such that $h=\lim _{n \rightarrow \infty} \chi_{S\left(f_{n}\right)} h$. Choose $f \in \mathscr{R}(P)$ such that $S(f)=\bigcup S\left(f_{n}\right)$, then $h \in f^{\perp \perp}$.

Observe now that if $f \in L_{p}$ the measure $|f|^{p} \mu$ restricted to any σ-subring, Σ_{0}, of Σ, is finite. By the Radon-Nikodym theorem we may define the conditional expectation operator, $\mathscr{E}_{f}=\mathscr{E}\left(\Sigma_{0},|f|^{p}\right)$, for the measure $|f|^{p} \mu$ relative to Σ_{0}. \mathscr{E}_{f} is uniquely determined by the equation

$$
\int_{A} h|f|^{p} d \mu=\int_{A}\left(\mathscr{E}_{f} h\right)|f|^{p} d \mu \quad\left(A \in \Sigma_{0}\right)
$$

for $h \in L_{1}\left(X, \Sigma,|f|^{p} d \mu\right)$, and the condition that $\mathscr{E}_{f} h$ is Σ_{0}-measurable.

Lemma 3.3. Suppose $1 \leqq p<\infty, p \neq 2$; let P be a contractive projection on $L_{p}(X, \Sigma, \mu)$ and let Σ_{0} be the σ-subring of Σ, consisting of supports of functions in $\mathscr{R}(P)$. If $M_{f}=f^{-1} J_{f} \mathscr{R}(P)=\left\{f^{-1} J_{f} g: g \in\right.$ $\mathscr{R}(P)\}$ then $M_{f}=L_{p}\left(S(f), \Sigma_{0}\left|S(f),|f|^{p} \mu\right)\right.$ where $\Sigma_{0} \mid S(f)=\left\{A \in \Sigma_{0}: A \subset\right.$ $S(f)\}$ and we make the obvious identification of functions on $S(f)$ and functions on X which vanish off $S(f)$. In addition the map $h \rightarrow f^{-1} h$ is an isometric isomorphism between $J_{f} . \mathscr{R}(P)$ and $L_{p}\left(S(f), \Sigma_{0}\left|S(f),|f|^{p} \mu\right)\right.$.

Proof. Observe that $|f|^{p} \mu$ is finite on $S(f)$, and that the isometry claim is obviously true. If $A \in \Sigma_{0} \mid S(f)$ then $A=S(g)$ for some $g \in$ $\mathscr{R}(P)$. By Lemmas 2.1 and 3.1 (if $p=1$) or 2.3 (if $p>1$) we have $J_{g} f=P J_{g} f$ so that $\chi_{A}=f^{-1} J_{g} f \in M_{f}$. Let h be a simple function with respect to $\Sigma_{0} \mid S(f)$. Then $h \in M_{f}$ and $h f \in \mathscr{R}(P)$. In addition

$$
\int_{S(f)}|h|^{p} \cdot|f|^{p} d \mu=\int_{X}|h f|^{p} d \mu
$$

We conclude that

$$
M_{f} \supset L_{p}\left(S(f), \Sigma_{0}\left|S(f),|f|^{p} \mu\right)\right.
$$

Conversely, let $h \in M_{f}$, then $h \in L_{p}\left(S(f), \Sigma\left|S(f),|f|^{p}!\right)\right.$ and it is enough to show that h is Σ_{0}-measurable. Let $g=(\operatorname{Re} h)^{+}$, then $g f \in L_{p}(X, \Sigma, \mu)$. By Lemma 2.1(ii) or 2.3(iii)

$$
P(g f)=P(|g f| \operatorname{sgn} f)=|P(|g f| \operatorname{sgn} f)| \operatorname{sgn} f
$$

so $f^{-1} P(g f)=|f|^{-1}|P(|g f| \operatorname{sgn} f)| \in M_{f}$. It follows that

$$
\operatorname{Re} h=f^{-1} P\left((\operatorname{Re} h)^{+} f\right)-f^{-1} P\left((\operatorname{Re} h)^{-} f\right) \in M_{f} .
$$

Since each of these functions is nonnegative it is sufficient to consider $0 \leqq h \in M_{f}$. Suppose $\alpha>0$ and put $k=h \vee \alpha \chi_{s(f)}$. Arguing as above, we have $f^{-1} P(k f) \geqq h$ and $f^{-1} P(k f) \geqq \alpha \chi_{S(f)}$ so that $f^{-1} P(k f) \geqq k \geqq$ 0 . Since P is contractive we have

$$
\begin{aligned}
\|k f\|^{p} & \geqq\|P(k f)\|^{p}=\|P(k f)-k f+k f\|^{p} \\
& \geqq\|P(k f)-k f\|^{p}+\|\left. k f\right|^{p}
\end{aligned}
$$

This gives $P(k f)=k f$, so that $k \in M_{f}$. This shows, incidently, that M_{f} is a lattice. For our purpose, however, we have

$$
\begin{aligned}
\{t \in S(f): h(t)>\alpha\} & =\left\{t \in S(f):\left(k-\alpha \chi_{S(f)}\right)(t) \neq 0\right\} \\
& =S(k f-\alpha f) \in \Sigma_{0}
\end{aligned}
$$

Thus M_{f} consists of Σ_{0}-measurable functions and we are done.
Theorem 3.4. Suppose $1 \leqq p<\infty, p \neq 2$ and that P is a contractive projection on $L_{p}(X, \Sigma, \mu)$. If $f \in \mathscr{R}(P)$ and $h \in f^{\perp \perp}$ then

$$
P h=f \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right) .
$$

Proof. Since $f^{-1} P h \in M_{f}$ we know $f^{-1} P h$ is Σ_{0}-measurable. Thus we have only to show

$$
\int_{A} f^{-1} P h|f|^{p} d \mu=\int_{A} h f^{-1} \cdot|f|^{p} d \mu \quad\left(A \in \Sigma_{0}\right) .
$$

Choose $g \in \mathscr{R}(P)$ such that $A=S(g)$. By Lemma 3.1(i), $u=J_{g} f \in$ $\mathscr{R}(P)$.

Suppose $p=1$ and $0 \leqq k \in L_{1}$. By Lemma 2.1(ii) and (iii),

$$
\begin{aligned}
\int_{A} k \operatorname{sgn} f \cdot f^{-1}|f| d \mu & =\int_{A \cap(f)} k d \mu=\left\|J_{u} k\right\|=\|P(k \operatorname{sgn} u)\| \\
& =\left\|\left|P\left(J_{g} k \operatorname{sgn} f\right)\right| \operatorname{sgn} f\right\| \\
& =\int_{A} f^{-1} P\left(J_{g} k \operatorname{sgn} f\right) \cdot|f| d \mu .
\end{aligned}
$$

Putting $v=f-u=f-J_{g} f \in \mathscr{R}(P)$, we have, by Lemma 2.1(i),

$$
P(k \operatorname{sgn} f)=J_{u} P\left(J_{u} k \operatorname{sgn} f\right)+J_{v} P\left(J_{v} k \operatorname{sgn} f\right) .
$$

Hence

$$
\int_{A} f^{-1} P\left(J_{g} k \operatorname{sgn} f\right) \cdot|f| d \mu=\int_{A} f^{-1} P(k \operatorname{sgn} f) \cdot|f| d \mu
$$

We conclude that

$$
\int_{A} h f^{-1} \cdot|f| d \mu=\int_{A} f^{-1} P h \cdot|f| d \mu
$$

for all $h \in f^{\perp \perp}$ and all $A \in \Sigma_{0}$ so we are finished for $p=1$.
If $p>1$ we have $P J_{g}=J_{g} P$ by Lemma 2.3(ii) and $|f|^{p-1} \operatorname{sgn} \bar{f} \epsilon$ $\mathscr{R}\left(P^{*}\right)$ by Lemma 2.2. Hence,

$$
\begin{aligned}
\int_{A} h f^{-1} \cdot|f|^{p} d \mu & =\int_{X} J_{g} h \cdot|f|^{p-1} \operatorname{sgn} \bar{f} d \mu \\
& =\int_{X} J_{g} h \cdot P^{*}\left(|f|^{p-1} \operatorname{sgn} \bar{f}\right) d \mu \\
& =\int_{X} P J_{g} h \cdot|f|^{p-1} \operatorname{sgn} \bar{f} d \mu \\
& =\int_{X} J_{g} P h \cdot f^{-1}|f|^{p} d \mu \\
& =\int_{A} f^{-1} P h \cdot|f|^{p} d \mu \quad\left(A \in \Sigma_{0}\right) .
\end{aligned}
$$

Thus

$$
P h=f^{-1} \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right) \quad\left(h \in f^{-1}\right)
$$

as claimed.
Our theorem has useful consequences.

Theorem 3.5. Suppose $1 \leqq p<\infty, p \neq 2$, let P be a contractive projection on $L_{p}(X, \Sigma, \mu)$ and let J be the band projection on $\mathscr{R}(P)^{\perp+}$; then PJ is the unique contractive projection on L_{p} which satisfies $\mathscr{R}(P J)=\mathscr{R}(P)$ and $P J \mathscr{R}(P)^{\perp}=\{0\}$. If $p \neq 1, P=P J$ so P is uniquely determined by its range. If $p=1$, and A is a linear contraction on L_{1} which satisfies $P A=A$ and $A J=0$, then $P J+A$ is a contractive projection on L_{1} with the same range as P.

Proof. Let Q be a contractive projection on L_{p} such that $\mathscr{R}(Q)=$ $\mathscr{R}(P)$ and $Q \mathscr{R}(P)^{\perp}=\{0\}$. Then $Q=Q J$ and if $h \in L_{p}$ there exists, by Corollary 3.2, $f \in \mathscr{R}(P)=\mathscr{R}(Q)$ such that $J h=J_{f} h$. By Theorem 3.4, $Q h=Q J h=f^{-1} \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(J h \cdot f^{-1}\right)=P J h$. Thus $Q=P J$. (It is clear that $P J$ satisfies the stated conditions.)

If $p \neq 1$ take h, f as above and put $u=P h-P J h=P h-P J_{f} h=$ $P h-J_{f} P h$, by Lemma 2.3(ii). Since band projections commute and $u \in \mathscr{R}(P) \cap f^{\perp}, J_{u} h=J_{u} J h=J_{u} J_{f} h=0$. By Lemma 2.3(ii) again,

$$
u=J_{u} u=J_{u} P h-J_{u} P J_{f} h=P J_{u} h-J_{u} J_{f} P h=0-0=0 .
$$

Hence $P=P J$ as required.
If $p=1, P A=A$, and $A J=0$, we have $A P=A J P=0$ and $A^{2}=$
$A P A=0 . \quad$ Also $(P J+A)^{2}=P J P J+P J A+A P J+A^{2}=P P J+$ $P J P A+0+0=P J+A$. Thus $P J+A$ is a projection. Observe that

$$
\begin{aligned}
\mathscr{R}(P J+A) & =\mathscr{R}(P J+P A) \subset \mathscr{R}(P)=\mathscr{R}(P J P+A P) \\
& =\mathscr{R}((P J+A) P) \subset \mathscr{R}(P J+A) .
\end{aligned}
$$

It remains to show that if A is contractive, $P J+A$ is contractive. If $h \in L_{1}$,

$$
\begin{aligned}
\|(P J+A) h\|_{1} & =\|P J h+A(h-J h)\|_{1} \\
& \leqq\|P J h\|_{1}+\|A(h-J h)\|_{1} \\
& \leqq\|J h\|_{1}+\|h-J h\|_{1} \\
& =\|J h+h-J h\|_{1} \\
& =\|h\|_{1} .
\end{aligned}
$$

4. Contractive projections and isometric isomorphisms. In this section we prove the equivalence of various conditions on a subspace of L_{p} so that it is the range of a contractive projection.

Let $\mathscr{S}(X, \Sigma)$ denote the set of Σ-measurable functions h such that $S(h)$ is σ-finite. By a multiplication operator on $\mathscr{S}(X, \Sigma)$ we mean a map $h \rightarrow k h$ defined for functions h in some subset of $\mathscr{S}(X$, Σ) and some fixed Σ-measurable function k. If k satisfies $|k|=1$ on $S(k)$ we will call k a unitary multiplication.

A multiplication operator on $\mathscr{S}(X, \Sigma)$ preserves equality almost everywhere and hence induces a multiplication operator on each $L_{p}(X$, $\Sigma, \mu)$ into $\mathscr{S}(X, \Sigma)$ modulo null functions $(1 \leqq p<\infty)$. Further, k_{1} and k_{2} will induce the same such multiplication operator on L_{p} if k_{1} and k_{2} agree locally almost everywhere.

Suppose that \mathscr{K} is a set of Σ-measurable functions such that if $k_{1}, k_{2} \in \mathscr{K}$ and $k_{1} \neq k_{2}, \mu\left(S\left(k_{1}\right) \cap S\left(k_{2}\right)\right)=0$. If $f \in \mathscr{S}(X, \Sigma)$ then, because $S(f)$ has σ-finite measure, $S(f)$ meets at most countably many $S(k)$, with $k \in \mathscr{K}$, in a set of positive measure. Enumerate these as $\left(k_{n}\right)$, then there is a unique set $N \in \Sigma$ such that, $N \subset S(f)$ and each $t \in S(f) \sim N$ lies in at most one set $S\left(k_{n}\right)$. (In fact $N=$ $\bigcup_{1 \leqq n<m<\infty}\left(S\left(k_{n}\right) \cap S\left(k_{m}\right)\right)$.) On $S(f) \sim N$ the series $\sum_{n=1}^{\infty} f(t) k_{n}(t)$ has at most one nonzero term. Thus \mathscr{K} determines a map $U_{\mathscr{X}}: \mathscr{S}(X, \Sigma) \rightarrow$ $\mathscr{S}(X, \Sigma)$ by taking, for f as above, $U_{\mathscr{x}} f(t)=\sum_{n=1}^{\infty} f(t) k_{n}(t)$ for $t \in$ $S(f) \sim N$ and $U_{\mathscr{K}} f(t)=0$ elsewhere. We call $U_{\mathscr{K}}$ the direct sum of the (disjoint) multiplication operators induced by the elements of \mathscr{K}. If $U_{\mathscr{X}}$ maps L_{p} to $L_{p}(1 \leqq p<\infty)$ it is not hard to check that the net of finite sums of the multiplication operators in \mathscr{K} is strongly convergent to $U_{\mathscr{C}}$.

We can now state our theorem. The equivalence of (i) and (ii) generalizes [1, Theorem 4] and extends [10, Theorem 6].

Theorem 4.1. Suppose $1 \leqq p<\infty$ and $p \neq 2$ and let M be a subspace of $L_{p}(X, \Sigma, \mu)$. The following conditions on M are equivalent.
(i) M is the range of a contractive projection on L_{p}.
(ii) There is a measure space (Ω, Ξ, λ) such that M is isometrically isomorphic to $L_{p}(\Omega, \Xi, \lambda)$.
(iii) There is a direct sum of unitary multiplication operators $U: L_{p}(X, \Sigma, \mu) \rightarrow L_{p}(X, \Sigma, \mu)$ such that U is an isometry and $U M$ is a closed vector sublattice of $L_{p}(X, \Sigma, \mu)$.

Furthermore, in (ii) we can always choose $\Omega=X, \Xi$ a σ-subring of Σ, λ absolutely continuous with respect to μ, and the isometry a direct sum of multiplication operators.

If μ is σ-finite the direct sums of multiplication operators can be taken to be ordinary multiplications.

Proof. Assume (i). By Zorn's lemma there is a maximal subset \mathscr{K} of M consisting of functions $f \in M$, such that $\mu\left(S\left(f_{1}\right) \cap S\left(f_{2}\right)\right)=$ 0 if $f_{1} \neq f_{2}$. If $g \in M, S(g)$ is σ-finite and there is countable subset $\left\{f_{n}\right\}$ of \mathscr{K} such that if $f \in \mathscr{K} \sim\left\{f_{n}\right\}, \mu(S(f) \cap S(g))=0$. By Lemma 3.1, Σ_{0} is a σ-ring so, there exists $h \in M$ such that $S(h)=S(g) \sim \bigcup S\left(f_{n}\right)$ and by maximality of $\mathscr{K}, h=0$. Define a measure λ on Σ_{0} by $\lambda A=$ $\sum_{f \in \mathscr{A}} \int_{A}|f|^{p} d \mu$. This definition is meaningful since A has σ-finite μ-measure and at most countably many of the integrals are nonzero. For $f \in \mathscr{C}$ define f^{-1} by

$$
f^{-1}(t)= \begin{cases}1 / f(t) & t \in S(f) \\ 0 & t \notin S(f)\end{cases}
$$

and let V be the direct sum of the multiplications $f^{-1}(f \in \mathscr{K})$. By Lemma 3.3 $J_{f} h \rightarrow f^{-1} h(h \in M)$ is an isometric isomorphism of $J_{f} M$ with $L_{p}\left(S(f), \Sigma_{0}\left|S(f),|f|^{p} \mu\right)\right.$. It is routine to check that V is an isometric isomorphism of M with $L_{p}\left(X, \Sigma_{0}, \lambda\right)$. (M is the direct sum of its subspaces $J_{f} M(f \in \mathscr{\mathscr { C }})$ and similarly for the L_{p}-spaces.)

It μ is σ-finite \mathscr{K} will be countable, say $\mathscr{K}=\left\{f_{n}\right\}$ and we can find $f \in M$ such that $S(f)=\bigcup S\left(f_{n}\right)$. Then Σ_{0} consists entirely of subsets of $S(f)$ and sets of measure zero so that $M_{f}=L_{p}\left(X, \Sigma_{0},|f|^{p} \mu\right), J_{f} M=$ M, and V can be multiplication by f^{-1}.

Assume (ii) and let $T: L_{p}(\Omega, \Xi, \lambda) \rightarrow L_{p}(X, \Sigma, \mu)$ be a linear isometry with range M. Suppose $a, b \in L_{p}(\Omega, \Xi, \lambda)$ and $|a| \wedge|b|=0$, we claim that $|T a| \wedge|T b|=0$. This is essentially proved by Lamperti [6]. Since $|a| \wedge|b|=0,\|a+b\|^{p}+\|a-b\|^{p}=2\|a\|^{p}+2\|b\|^{p}$. Since T is an isometry, $\|T a+T b\|^{p}+\|T a-T b\|^{p}=2\|T a\|^{p}+2\|T b\|^{p}$. Since $p \neq 2$, the equality condition for Clarkson's inequality [6, Corollary 2.1] shows that $|T a| \wedge|T b|=0$.

Take a maximal subset of Ξ consisting of sets of nonzero finite
λ-measure which intersect pairwise in sets of λ-measure zero and let \mathscr{K} be the corresponding set of characteristic functions. Let $a \in \mathscr{K}^{\sim}$ and suppose $B \in \Xi$ and $B \subset S(a)$. Write $b=\chi_{B}$, then $T(a-b), T b$ are disjoint in M so we have $T b=|T b| \operatorname{sgn} T a$. This extends to nonnegative simple functions b in $a^{\perp \perp}$ and then to all nonnegative $b \in$ $a^{\perp \perp}$. Define $U: L_{p}(X, \Sigma, \mu) \rightarrow L_{p}(X, \Sigma, \mu)$ to be the direct sum of the unitary multiplications $\operatorname{sgn} \overline{T a}\left(a \in \mathscr{K}^{\prime}\right)$. It is easy to see that U is an isometry of M such that $U T$ is positive and hence $U M=U T L_{p}(\Omega, \Xi, \lambda)$ is a closed vector sublattice of $L_{p}(X, \Sigma, \mu)$ (compare the proof in Lemma 3.3 where we showed that functions in M_{f} were $\Sigma_{0^{-}}$ measurable).

Assume (iii) and let Σ_{0} be the set of supports of functions (whose equivalence classes are) in M. Then Σ_{0} is a σ-subring of Σ. (If (f_{n}) is a sequence in $M, S\left(f_{n}\right)=S\left(U f_{n}\right)=S\left(\left|U f_{n}\right|\right)$ so

$$
U S\left(f_{n}\right)=S\left(U^{-1} \Sigma 2^{-n}\left\|f_{n}\right\|^{-1}\left|U f_{n}\right|\right)
$$

If $f, g \in M, J_{g}=J_{U g} ; J_{g}|U f|=\lim |U f| \wedge n|U g| \in U M$ and $S(f) \sim S(g)=$ $S\left(U^{-1}\left(|U f|-J_{g}|U f|\right)\right)$.) Let $f, g \in U M$ and suppose f is real, $g \geqq 0$ and $f \in g^{\perp \perp}$, then $\{t \in X:(f / g)(t)>\alpha\}=S\left((f-\alpha g)^{+}\right) \in \Sigma_{0}$. Thus f / g is Σ_{0}-measurable. This extends to all $f \in U M \cap g^{\perp \perp}$ and hence $J_{g} f / g$ is Σ_{0}-measurable if $f, g \in U M$ and $g \geqq 0$. This now extends to all $f, g \in U M$ and, since $U^{-1} J_{g} f / U^{-1} g=J_{g} f / g$, we have f / g, Σ_{0}-measurable for $f, g \in M$ and $f \in g^{\perp \perp}$. It follows that M is the set of all elements in $L_{p}(X, \Sigma, \mu)$ which can be written in the form $h f$ with h, Σ_{0}-measurable and $f \in M$. (If $h=\chi_{S(g)}$ with $g \in M, h f=J_{g} f=$ $\left.U^{-1} J_{U g} U f \in U^{-1}(U M)=M.\right)$

Let J be the band projection on $M^{\perp \perp}$, let $h \in L_{p}(X, \Sigma, \mu)$, choose $f \in M$ such that $J h=J_{f} h$, (such an f exists by the arguments used in Corollary 3.2) and define

$$
P h=f \mathscr{C}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right) .
$$

Then $P h \in M$ and this definition is independent of the choice of f in M such that $h \in f^{\perp \perp}$. To see this suppose $g \in M$ and $h \in g^{\perp \perp}$. Then h is zero outside $S(f) \cap S(g) \in \Sigma_{0}$ and so is $\mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)$, μ-almost everywhere. Let $B=S(f) \cap S(g)$, then $f_{1}=\chi_{B} f \in M$ and

$$
\int_{A} h f^{-1}|f|^{p} d \mu=\int_{A \cap B} h f^{-1}|f|^{p} d \mu=\int_{A} h f_{1}^{-1}\left|f_{1}\right|^{p} d \mu \quad\left(A \in \Sigma_{0}\right),
$$

so that $f \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)=f_{1} \mathscr{E}\left(\Sigma_{0},\left|f_{1}\right|^{p}\right)\left(h f_{1}^{-1}\right)$. Thus we may assume $S(f)=S(g)$. Now

$$
g^{-1} f \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right) \in L_{1}\left(X, \Sigma_{0},|g|^{p} \mu\right)
$$

so we have, for $A \in \Sigma_{0}$,

$$
\begin{aligned}
& \int_{A} g^{-1} f \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)|g|^{p} d \mu \\
& \quad=\int_{A} g^{-1} f\left|f^{-1} g\right|^{p} \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)|f|^{p} d \mu
\end{aligned}
$$

Because $g^{-1} f$ and $f^{-1} g$ are Σ_{0}-measurable and the integrals are finite, the second integral is

$$
\int_{A} g^{-1} f\left|f^{-1} g\right|^{p} h f^{-1}|f|^{p} d \mu=\int_{-} h g^{-1}|g|^{p} d \mu
$$

Thus

$$
f \mathscr{C}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)=g \mathscr{C}\left(\Sigma_{0},|g|^{p}\right)\left(h g^{-1}\right)
$$

and our definition of $P h$ is unambiguous. If $h_{1}, h_{2} \in L_{p}$ we can take $f \in M$ such that $J h_{1}=J J_{f} h_{1}$ and $J h_{2}=J_{f} h_{2}$. Thus P is linear. Since $f^{-1} P h=\mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)$ we see $P^{2}=P$. Finally, if $p>1$, write $u=\mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)$, we have

$$
\|P h\|_{p}^{p}=\int|u|^{p-1} \operatorname{sgn} \bar{u} \cdot \mathscr{E}\left(\Sigma_{0},|f|^{p}\right)\left(h f^{-1}\right)|f|^{p} d \mu
$$

Since u is Σ_{0}-measurable, this is

$$
\begin{aligned}
\int|u|^{p-1} \operatorname{sgn} \bar{u} \cdot h f^{-1}|f|^{p} d \mu & =\int|P h|^{p-1} \operatorname{sgn} \bar{f} \bar{u} \cdot h d \mu \\
& \leqq\left\||P h|^{p-1}\right\|_{q}\|h\|_{p} \\
& =\|P h\|_{p}^{p / q}\|h\|_{p}
\end{aligned}
$$

(We used Hölder's inequality and q for the conjugate index to p.) We conclude that $\|P h\|_{p} \leqq\|h\|_{p}$.

Since $P h=h(h \in M)$ we have shown that M is the range of the contractive projection P.

Remark 4.2. The results (iii) implies (i) (with the same proof) and (i) is equivalent to (ii) are valid if $p=2$; in fact (i) and (ii) are equivalent for any Hilbert space. If we assume the projection P, is positive as well as contractive the proof in Lemma 3.3 that M_{f} is a lattice shows $\mathscr{R}(P)$ is a sublattice of L_{2} and Theorem 4.1 is valid for L_{2} with the projection and the isometry both required to be positive and in (iii) M required to be a closed vector sublattice. We use this remark in our next result.

Corollary 4.3. If M is a closed vector sublattice of $L_{p}(1 \leqq$ $p<\infty)$ then M is the range of a positive contractive projection.

Proof. Clearly M satisfies condition (iii) with $U=I$. In the definition of $P h$ we may always choose a positive $f \in M$ such that $h \in f^{\perp \perp}$. Positivity of P follows from positivity of conditional expectation.

Remark 4.4. In the introduction we referred to Rao's paper [8] and claimed that its treatment of contractive projections contained errors. In particular, his Theorem II. 2.7 asserts that if M is the range of a contractive projection P on a Banach function space $L^{\rho}(\Sigma)$ there is, under suitable conditions, a unitary multiplication U such that $U P U^{-1}$ is a positive contractive projection.

The conditions are all satisfied if M is the subspace of $l^{2}(3)=C^{3}$ spanned by ($1,1,1$) and ($1,2,-3$). Rao's theorem now claims the existence of a unitary multiplication, say by $u=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, such that $u M$ is a vector sublattice of C^{3}. This is impossible, as we show. First, $u M$ contains the elements $\left(0, \lambda_{2},-4 \lambda_{3}\right),\left(\lambda_{1}, 0,5 \lambda_{3}\right)$, and ($4 \lambda_{1}, 5 \lambda_{2}$, 0). If $\operatorname{Re} \lambda_{2} \bar{\lambda}_{3}=0$ we have $\lambda_{2} \lambda_{3}^{-1}=\lambda_{2} \bar{\lambda}_{3}= \pm i$ and $u M$ contains $\operatorname{Im}(0$, $\left.\lambda_{2} \bar{\lambda}_{3},-4\right)=(0, \pm 1,0)$; so that $(0,1,0) \in u M$, and $u M=C^{3}$. If all $\operatorname{Re} \lambda_{i} \bar{\lambda}_{j} \neq 0(i \neq j)$, then $u M$ contains $\operatorname{Re}\left(0,1,-4 \lambda_{3} \bar{\lambda}_{2}\right)$ and $\operatorname{Re}(1,0$, $5 \lambda_{3} \bar{\lambda}_{1}$); hence, taking a multiple of their infimum, $(0,0,1) \in u M$ and again $u M=C^{3}$.

Exactly the same counterexample vitiates the proof of Rao's Theorem II. 2.8 see p. 177 lines -15 to -11.

The error in both cases seems to be the reduction of the general case of $L^{\rho}(\Sigma)$ to the L_{1} situation. Vital to this reduction, but invalid, is the assertion that if $L^{\rho}(\Sigma) \subset L^{1}(\Sigma, G)$ and $\|\cdot\|_{1, G} \leqq \rho(\cdot)$ then a contraction on $L^{\rho}(\Sigma)$ for the ρ-norm can be extended to the closure of $L^{\rho}(\Sigma)$ in $L^{1}(\Sigma, G)$ with the $1, G$-norm and that the extension is contractive for the $1, G$-norm.
5. The theorem of Lindenstrauss, Pelczynski, and Zippin. We begin by recalling some definitions.

If E, F are isomorphic Banach spaces, $d(E, F)=\inf \left\{\|L\|\left\|L^{-1}\right\|:\right.$ L is a linear isomorphism between E and F \}.

A Banach space E is an $\mathscr{L}_{p, 2}$ space (for $1 \leqq p \leqq \infty$ and $\lambda \geqq 1$) if for each finite dimensional subspace F of E there is a finite dimensional subspace G of E such that $F \subset G$ and $d\left(G, l_{p}(\operatorname{dim} G)\right) \leqq \lambda$.

We shall say that a Banach space E is a Z_{p}-space (for $1 \leqq p \leqq \infty$) if there exists a set $\mathscr{\mathscr { Z }}$ of finite dimensional subspaces of E such that:
(i) \mathscr{Z} is upwards directed by set inclusion;
(ii) $\mathrm{cl} \cup \mathscr{Z}=E$;
(iii) each $F \in \mathscr{Z}$ is linearly isometric to $l_{p}(\operatorname{dim} F)$.

Our definitions apply, of course, over the real or complex number
fields.
We now state the theorem of Lindenstrauss-Pelczynski-Zippin, [5], [7], [12].

Theorem 5.1. Let E be a Banach space and suppose $1 \leqq p<\infty$, then the following are equivalent.
(1) There is a measure (X, Σ, μ) such that E is isometrically isomorphic to $L_{p}(X, \Sigma, \mu)$.
(2) E is a Z_{p} space.

As outlined in the introduction we discuss some details of the proof for the complex case.

Observe first that (3) is a trivial consequence of (1). Simply identify E with $L_{p}(X, \Sigma, \mu)$ and take for \mathscr{Z} the subspaces spanned by finite sets of (p th power)-integrable characteristic functions.

The proof that (3) implies (2). This result is certainly part of the folklore. It can be obtained quite efficiently as follows.

Lemma 5.2. Let x_{1}, \cdots, x_{n} be n linearly independent elements of a normed space E then there exists $\varepsilon>0$ such that if $y_{i} \in E$, and $\left\|x_{i}-y_{i}\right\|<\varepsilon(i=1,2, \cdots, n)$ then $\left\{y_{1}, \cdots, y_{n}\right\}$ is a linearly independent subset of E.

Proof. (This is standard but our proof may be novel.) Let K denote the scalar field and S the unit sphere in $K^{n}, S=\left\{\lambda \subset K^{n}:\|\lambda\|=\right.$ 1\}. The map $g: S \times E^{n} \rightarrow E$ defined by $g\left(\left(\lambda_{1}, \cdots, \lambda_{n}\right),\left(y_{1}, \cdots, y_{n}\right)\right)=$ $\lambda_{1} y_{1}+\cdots+\lambda_{n} y_{n}$ is continuous. By linear independence, the compact set $S \times\left(x_{1}, \cdots, x_{n}\right)$ does not meet the closed set $g^{-1}(0)$. Hence there are open neighborhoods U_{i} of $x_{i}, i=1, \cdots, n$, such that $\left(S \times U_{1} \times\right.$ $\left.\cdots \times U_{n}\right) \cap g^{-1}(0)=\varnothing$. If $y_{i} \in U_{i}(i=1, \cdots, u)$ it follows that $\left\{y_{1}\right.$, $\left.\cdots, y_{n}\right\}$ is linearly independent.

Lemma 5.3. Let E be a Z_{p}-space, then E is an $\mathscr{L}_{p, i}$-space for every $\lambda>1$.

Proof. Let F be a finite dimensional subspace of E. Let $\left\{x_{1}\right.$, $\left.\cdots, x_{n}\right\}$ be a basis for F, such that $\left\|x_{i}\right\|=1(i=1, \cdots, n)$. Let x_{1}^{*}, $\cdots, x_{n}^{*} \in E^{*}$ be such that $x_{i}^{*}\left(x_{j}\right)=\delta_{i j}$, and let $M=\sum_{i=1}^{n}\left\|x_{i}^{*}\right\|$. Choose $\varepsilon>0$ such that $M \varepsilon<1$ and $\left\|x_{i}-y_{i}\right\|<\varepsilon$ for $i=1, \cdots, n$ implies that $\left\{y_{1}, \cdots, y_{n}\right\}$ is linearly independent. By the Z_{p}-hypothesis there is a finite dimensional subspace H of E and points y_{1}, \cdots, y_{n} in H, such that H is isometrically isomorphic to $l_{p}(\operatorname{dim} H)$, and $\left\|x_{i}-y_{i}\right\|<$ $\varepsilon(i=1, \cdots, n)$. Then $\left\{y_{1}, \cdots, y_{n}\right\}$ is a linearly independent subset of
H. If

$$
\sum_{i=1}^{n} \alpha_{i} y_{i} \in \bigcap_{i=1}^{n} \mathscr{N}\left(x_{i}^{*}\right)
$$

then

$$
\begin{aligned}
\sum_{j=1}^{n}\left|\alpha_{j}\right| & =\sum_{j=1}^{n}\left|x_{j}^{*}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\right| \\
& =\sum_{j=1}^{n}\left|x_{j}^{*}\left(\sum_{i=1}^{n} \alpha_{i}\left(x_{i}-y_{i}\right)\right)\right| \\
& \leqq \sum_{j=1}^{n}| | x_{j}^{*} \|\left(\sum_{i=1}^{n}\left|\alpha_{i}\right| \varepsilon\right) \\
& =M \varepsilon \sum_{i=1}^{n}\left|\alpha_{i}\right|
\end{aligned}
$$

Since $M \varepsilon<1$ we conclude that $\alpha_{i}=0$ for each i. Thus we can extend y_{1}, \cdots, y_{n} to a basis, say $y_{1}, \cdots, y_{n}, x_{n+1}, \cdots, x_{p}$, of H with the property that $\left\{x_{n+1}, \cdots, x_{p}\right\} \subset \bigcap_{i=1}^{n} \mathscr{N}\left(x_{i}^{*}\right)$.

Let G be the subspace of E spanned by $x_{1}, \cdots, x_{n}, x_{n+1}, \cdots, x_{p}$. Then $F \subset G$. If $y=\sum_{i=1}^{n} \alpha_{i} y_{i}+\sum_{i=n+1}^{p} \alpha_{i} x_{i} \in H$ define $T y=\sum_{i=1}^{n} \alpha_{2} x_{i}+$ $\sum_{i=n+1}^{p} \alpha_{i} x_{i} \in G$. We have

$$
\begin{aligned}
\|y-T y\| & =\left\|\sum_{i=1}^{n} \alpha_{i}\left(y_{i}-x_{i}\right)\right\| \leqq \varepsilon \sum_{i=1}^{n}\left|\alpha_{i}\right| \\
& =\varepsilon \sum_{j=1}^{n}\left|x_{j}^{*}(T y)\right| \\
& \leqq M \varepsilon\|T y\| .
\end{aligned}
$$

This gives $(1-M \varepsilon)\|T y\| \leqq\|y\| \leqq(1+M \varepsilon)\|T y\|(y \in H)$; so that T is an isomorphism between F and H such that $\|T\|\left\|T^{-1}\right\| \leqq$ $(1+M \varepsilon) /(1-M \varepsilon)$. If $\lambda>1$ we can choose ε such that $(1+M \varepsilon) /(1-M \varepsilon)<$ λ. Thus E is an $\mathscr{L}_{p, \lambda}$-space for all $\lambda>1$.

The proof that (2) implies (1). Here the plan is first to embed E, isometrically, in an L_{p}-space, and then to use the theory of contractive projections of L_{p}-spaces.

This is carried out in detail for the real reparable case in [7] and for the real nonseparable case in [5]. The generalizations to cover the complex case are mostly obvious. For $1<p<\infty$ our Theorem 4.1 is used. For $p=1$, it follows as in the real case that E^{*} is a \mathscr{P}_{1} space whence by the complex version of Grothendieck's theorem [9] E is an $L_{1}(\mu)$ space.

There is an aspect of the construction which needs a little elaboration. At one stage of the proof we have a complex vector space, say V, consisting of complex valued functions on a set U. V is a vector sublattice of the space of all complex functions on U. There
is a seminorm π on V such that $\pi(f) \leqq \pi(g)$ whenever $|f| \leqq|g|$, and $\pi(f+g)^{p}=\pi(f)^{p}+\pi(g)^{p}$ whenever $|f| \wedge|g|=0$. We then need to embed the quotient V / N, where $N=\{f \in V: \pi(f)=0\}$, isometrically in a concrete, complex, L_{p}-space. For this, let V_{R} and N_{R} denote the spaces of real-valued functions in V and N respectively. The quotient V_{R} / N_{R} with the norm induced by π is then linearly and lattice isomorphic, and isometric, to a vector sublattice of real $L_{p}(X, \Sigma, \mu)$ just as in [7]. Let h_{1} denote the composition of the quotient map $U_{R} \rightarrow V_{R} / N_{R}$ and the isometric isomorphism into real $L_{p}(X, \Sigma, \mu)$. Then h_{1} is a linear and lattice homomorphism and $\left\|h_{1} f\right\|=\pi(f)\left(f \in V_{R}\right)$. We construct the required embedding of V / N into complex $L_{p}(X, \Sigma, \mu)$ by defining

$$
h(f+N)=h_{1}(\operatorname{Re} f)+i h_{1}(\operatorname{Im} f)
$$

Then h is clearly well defined. To verify that h is an isometry we need the next lemma.

Lemma 5.4. The map h constructed above satisfies $h|f|=|h f|$, $(f \in V)$.

Proof. For any real $\theta|f| \geqq \operatorname{Re}\left(e^{i \theta} f\right)$ so

$$
h|f|=h_{1}|f| \geqq h_{1}\left(\operatorname{Re} e^{i \theta} f\right)=\operatorname{Re} h\left(e^{i \theta} f\right)=\operatorname{Re} e^{i \theta} h f
$$

Hence $h|f| \geqq|h f|$. For the converse, let ω be a complex nth root of unity and observe that for any complex z

$$
\max \left\{\operatorname{Re} \omega^{r} z: r=1,2, \cdots, n\right\} \geqq \cos (\pi / n)|z|
$$

Hence,

$$
\begin{aligned}
\cos (\pi / n) h|f| & \leqq h\left(\sup \left\{\left(\operatorname{Re} \omega^{r} f\right): r=1, \cdots, n\right\}\right) \\
& =\sup \left\{\operatorname{Re} \omega^{r} h f: r=1, \cdots, n\right\} \\
& \leqq|h f|
\end{aligned}
$$

Letting $n \rightarrow \infty$ we have $h|f|=|h f|$ as required.
This completes our discussion of the proof of Theorem 5.1. We add a comment. It seems that a more elementary proof that a space which is an $\mathscr{L}_{p, i}$-space for all $\lambda>1$, is an $L^{p}(\mu)$ space, should be possible. Certainly the result should not depend on the entire theory of contractive projections for such spaces. Indeed if $p=2$ the $\mathscr{L}_{2, \lambda}$ condition already implies the parallelogram law and this makes the space a Hilbert space. For $p \neq 2$ we can see that the Clarkson inequalities are valid and these with enough finite dimensional $l_{p^{-}}$ subspaces might give a more elementary proof.
6. Appendix. We prove two technical results used in [1], [10]. The first is also an extension of that in [1].

Lemma 6.1. [1]. Suppose $0<p<\infty$ and let M be a closed subspace of $L_{p}(X, \Sigma, \mu)$. If $\left(f_{n}\right)$ is a sequence in M, then there exists $f \in M$ such that $S(f)=\bigcup_{n=1}^{\infty} S\left(f_{n}\right)$. In particular if μ is finite or M is separable there exists $f \in M$ such that $J_{f}=J_{M \Perp}$; that is, f is a function in M of maximum support.

Proof. If $f, g \in L_{p}$ and α is a scalar, the zero sets $\{t \in X:(f+$ $\alpha g)(t)=0\}$ have disjoint intersection with $S(f) \cup S(g)$ for differing values of α. Since $S(f) \cup S(g)$ is σ-finite, $\mu(S(f) \cup S(g) \sim S(f+\alpha g))=$ 0 except, perhaps for countably many values of α.

Assume, as we may, that $\int\left|f_{n}\right|^{p}=1$ for all n. We define, inductively, two sequences $\left(\alpha_{n}\right),\left(\varepsilon_{n}\right)$ of positive real numbers such that, if we write $g_{n}=\alpha_{1} f_{1}+\cdots+\alpha_{n} f_{n}, A_{n}=\left\{t \in X:\left|g_{n}(t)\right| \leqq \varepsilon_{n}\right\}$, and $B_{n}=$ $\left\{t \in X:\left|\alpha_{n+1} f_{n+1}(t)\right| \geqq \varepsilon_{n} / 2\right\}$, then
(i) $\alpha_{n+1}<2^{-n / p}$ and $\varepsilon_{n+1}<\varepsilon_{n} / 2$;
(ii) $\mu\left(S\left(g_{n}\right) \cup S\left(f_{n+1}\right) \sim S\left(g_{n+1}\right)\right)=0$;
(iii) $\int_{A_{n} \cup B_{n}}\left|f_{i}\right|^{p} d \mu<2^{-n} \quad(i=1,2, \cdots, n)$.

Start with $\alpha_{1}=1$. Suppose $\alpha_{1}, \cdots, \alpha_{n} ; \varepsilon_{1}, \cdots, \varepsilon_{n-1}$ have been chosen. Note that $\mu\left(S\left(f_{i}\right) \sim S\left(g_{n}\right)\right)=0(i=1, \cdots, n)$ so if $C_{\varepsilon}=\left\{t \in X:\left|g_{n}(t)\right| \leqq\right.$ $\varepsilon\}, \int_{C_{\varepsilon}}\left|f_{2}\right|^{p} d \mu \rightarrow 0(\varepsilon \rightarrow 0+)$ for $i=1, \cdots, n$. Also if

$$
D_{\eta}=\left\{t \in X: \mid f_{n+1}(t) \geqq \eta\right\}, \int_{D_{\eta}}\left|f_{i}\right|^{p} d \mu \rightarrow 0(\eta \rightarrow \infty) \text { for } i=1, \cdots, n .
$$

Thus we choose ε_{n} such that $0<\varepsilon_{n}<\varepsilon_{n-1} / 2$, and $\int_{A_{n}}\left|f_{2}\right|^{p} d \mu<2^{-n-1}(i=$ $1,2, \cdots, n)$; then choose η such that $\int_{D_{\eta}}\left|f_{2}\right|^{p} d \mu<2^{A_{n}-1}(i=1,2, \cdots, n)$, and α_{n+1} such that $0<\alpha_{n+1}<2^{-n / p}$, (ii) is satisfied, and $\alpha_{n+1} \eta<\varepsilon_{n} / 2$. Since $B_{n} \subset D_{\eta}$ we also have (iii) satisfied.

By (i) $\left(g_{n}\right)$ converges in L_{p} to an element $f \in M$, and $S(f) \subset \bigcup S\left(f_{n}\right)$. Let $E=\lim \sup \left(A_{n} \cup B_{n}\right)=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty}\left(A_{n} \cup B_{n}\right)$. Fix i and let $N>$ i, then, by (iii)

$$
\begin{aligned}
\int_{E}\left|f_{2}\right|^{p} d \mu & \leqq \int_{C_{M\left(\Lambda_{n} \cup B_{n}\right)}\left|f_{2}\right|^{p} d \mu} \\
& \leqq \sum_{i}^{\infty} \int_{A_{n} \cup B_{n}}\left|f_{2}\right|^{p} d \mu \\
& \leqq \sum_{N}^{\infty} 2^{-n} \\
& =2^{1-N} \longrightarrow 0(N \longrightarrow \infty) .
\end{aligned}
$$

Thus $\mu\left(E \cap S\left(f_{i}\right)=0\right.$ for all i and $\mu\left(E \cap \bigcup S\left(f_{n}\right)\right)=0$. We complete our proof by showing that $X \sim E \subset S(f)$. If $t \in X \sim E$ choose the smallest integer n such that $t \notin \bigcup_{k=n}^{\infty}\left(A_{k} \cup B_{k}\right)$, then $\left|g_{n}(t)\right|>\varepsilon_{n}$ and $\left|\alpha_{k} f_{k}(t)\right|<\varepsilon_{k-1} / 2<\varepsilon_{n} / 2^{k-n}(k \geqq n+1)$. Hence

$$
\begin{aligned}
\left|g_{k}(t)\right| & \geqq\left|g_{n}(t)\right|-\left|\alpha_{n+1} f_{n+1}(t)\right|-\cdots-\left|\alpha_{k} f_{k}(t)\right| \\
& >\left|g_{n}(t)\right|-\varepsilon_{n}\left(2^{-1}+\cdots+2^{-(k-n)}\right) \\
& >\left|g_{n}(t)\right|-\varepsilon_{n} \quad(k>n) .
\end{aligned}
$$

Thus $|f(t)|=\lim _{k \rightarrow \infty}\left|g_{k}(t)\right| \geqq\left|g_{n}(t)\right|-\varepsilon_{n}>0$, and we are done.
Lemma 6.2. [10]. Let M be a separable subspace of $L_{p}(X, \Sigma, \mu)$ ($p \geqq 1$) and T a bounded linear operator on L_{p}. Then there is a σ-finite set $X_{0} \in \Sigma$ and a σ-subring Σ_{0} of Σ such that Σ_{0} consists of subsets of X_{0} and $L_{p}\left(X_{0}, \Sigma_{0}, \mu\right)$ is separable, T-invariant and contains M.

Proof. The subspace $M+T M$ is separable, T-invariant and generates a separable vector sublattice M_{1} of L_{p}. Inductively construct separable vector sublattices M_{n} such that $M_{n}+T M_{n} \subset M_{n+1}$. Then cl $\cup M_{n}$ is a separable T-invariant closed vector sublattice of L_{p}. Writing $K_{1}=\mathrm{cl} \cup M_{n}$ we have K_{1} closed under all band projections J_{x} with $x \in K_{1}$. Let $\Sigma_{1}=\left\{S(x): x \in K_{1}\right\}$ then Σ_{1} is a σ-subring of Σ and if $x, y \in K_{1}$ with $x \in y^{\perp \perp}$ then x / y is Σ_{1}-measurable. If $\left(f_{n}\right)$ is dense in $K_{1}, f=\Sigma 2^{-n}| | f_{n} \|^{-1}\left|f_{n}\right| \in K_{1}$ and $\mu(S(x) \sim S(f))=0\left(x \in K_{1}\right)$. Consider $L_{p}\left(S(f), \Sigma_{1}, \mu\right)$. It is easy to see that this is the closure of the vector sublattice spanned by K_{1} and the functions $\chi_{f^{-1}(x, \infty)}$ with α positive rational. Thus, writing $X_{1}=S(f)$ we have

$$
K_{1} \subset L_{p}\left(X_{1}, \Sigma_{1}, \mu\right)
$$

with $L_{p}\left(X_{1}, \Sigma_{1}, \mu\right)$ separable. Continue inductively, we obtain a sequence $X_{1} \subset X_{2} \subset \cdots \subset X_{n} \subset \cdots$ of σ-finite subsets of X and a sequence $\Sigma_{1} \subset \Sigma_{2} \subset \cdots \subset \Sigma_{n} \subset \cdots$ of σ-subrings of Σ, such that each Σ_{n} consists of subsets of $X_{n}, L_{p}\left(X_{n}, \Sigma_{n}, \mu\right)+T L_{p}\left(X_{n}, \Sigma_{n}, \mu\right) \subset L_{p}\left(X_{n+1}, \Sigma_{n+1}, \mu\right)$ and each $L_{p}\left(X_{n}, \Sigma_{n}, \mu\right)$ is separable.

Let $K_{0}=\mathrm{cl} \bigcup_{n=1}^{\infty} L_{p}\left(X_{n}, \Sigma_{n}, \mu\right)$. Then K_{0} is a separable T-invariant closed vector sublattice of $L_{p}(X, \Sigma, \mu)$. Define $\Sigma_{0}=\left\{S(f): f \in K_{0}\right\}$ and find, as for $K_{1}, f \in K_{0}$ such that $\mu(S(x) \sim S(f))=0\left(x \in K_{0}\right)$. It is routine to show that $K_{0}=L_{p}\left(S(f), \Sigma_{0}, \mu\right)$. This proves our lemma with $X_{0}=S(f)$.

Added in Proof (October 1974). In a manuscript, "A local characterization of complex Banach lattices with order continuous norm," submitted to Studia Math., the authors have given a necessary and sufficient condition for a complex Banach space to admit a lattice
structure so that it is a complex Banach lattice with order continuous norm. The condition is automatically satisfied if the Banach space is an $\mathscr{C}_{p, \lambda}$ space for every $\lambda>1$. This does provide an elementary proof that such spaces are L_{p}-spaces.

References

1. T. Ando, Contractive projections in L_{p}-spaces, Pacific J. Math., 17 (1966), 391-405. 2. R. G. Douglas, Contractive projections on an L_{1}-space, Pacific J. Math., 15 (1965), 443-462.
2. C. V. Duplissey, Contractive projections in abstract Banach function spaces, Ph. D. Dissertation, University of Texas at Austin, 1971.
3. A. Grothendieck, Une characterisation vectorielle metrique des espaces L^{1}, Canad. J. Math., 7 (1955), 552-561.
4. H. Elton Lacey and S. J. Bernau, Characterizations and classifications of some classical Banach spaces, Advances in Math., 12 (1974), 367-401.
5. J. Lamperti, On the isometries of certain spaces, Pacific J. Math., 8 (1958), 459466.
6. J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in \mathscr{L}_{p}-spaces and their applications, Studia Math., 29 (1968), 275-326.
7. M. M. Rao, Linear operations, tensor products, and contractive projections in function spaces, Studia Math., 38 (1970), 131-186.
8. S. Sakai, C^{*}-Algebras and W^{*}-Algebras, Ergebnisse der Mathematik, Bd 60, SpringerVerlag, 1971.
9. L. Tzafriri, Remarks on contractive projections in L_{p}-spaces, Israel J. Math., 7 (1969), 9-15.
10. Daniel E. Wulbert, A note on the characterization of conditional expectation operators, Pacific J. Math., 34 (1970), 285-288.
11. M. Zippin, On Bases in Banach Spaces, Ph. D. thesis, Hebrew University, Jerusalem, 1968 (Hebrew).

Received May 22, 1973. The first author's research was supported in part by NSF Grant GP 27916. The second author's research was supported by a joint grant from the National Academy of Sciences and the Polish Academy of Sciences.

University of Texas-austin

