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EXTENSION OF CONGRUENCES AND HOMOMORPHISMS
TO TRANSLATIONAL HULLS

N. R. REILLY

L. M. Gluskin has shown that if a is an isomorphism of
a weakly reductive semigroup S onto a semigroup T, if V is
a dense extension of S and T is densely embedded in W
then a extends uniquely to an isomorphism of V into W. P.
Grillet and M. Petrich have shown that this result can be
interpreted in terms of extending a to certain subsemigroups
of the translational hull Ω(S) of S. Here the problem of
extending homomorphisms between inverse semigroups is con-
sidered. As a preliminary to the main results the problem
of extending congruences from S to Ω(S) is considered and
various classes of congruences are shown to be extendable.
The main result shows that any homomorphism θ of an inverse
semigroup S into an inverse semigroup T such that the ideal,
in the semilattice E of idempotents of T, generated by the
image of the idempotents of S intersects any principal ideal
of Eτ in a principal ideal extends naturally to a homomorphism
of Ω(S) into Ω(T). The extension described is unique with
respect to certain natural restrictions.

1* Introduction and extensions of congruences* We first recall

some standard notation (cf. [2] and [5]). For any semigroup S, let

Λ(S) = {λe ^~s: \{xy) = \(x)y, for all x, y e S} ,

P(S) = {pe JTS': (xy)p = x(yp) , for all x, y e S)

where, for any set X, J7~χ{^7~ί) denotes the full transformation semi-
group on X with functions written on the left (right). Then Λ{S)
and P(S) are subsemigroups of ^"s and ^ 7 , respectively. Let

Ω(S) - { ( λ , p ) e Λ ( S ) x P ( S ) : x(X(y)) = {{x)p)y , f o r a l l x f y e S } .

Then Ω(S) is a subsemigroup of the direct product ^ s x J7~l, called
the translational hull of S. For basic properties of Ω(S), the reader
is referred to [5].

For any aeS, let λα 6 Λ(S)(ρa e P(S)) be such that

Xa(x) = ax, (x)ρa — xa , for all xe S .

Then (λα, pa) e Ω(S) and Πs: α -+ (λβ, ρa) is a homomorphism of S into
Ω(S). If Πs is an isomorphism, then S is said to be weakly reductive.
Thus S is weakly reductive provided that ax = bx and xa = xb, for
all x G S, implies that a = b.

Let S be an ideal of a semigroup V and /rbea congruence on S.

209



210 N. R. REILLY

Then tc is compatible with V if (a, b) e tc, implies that (va, vb) e tc and
{av, bv) e tc, for all ve V. Let A be a subsemigroup of i2(S) containing
ΠS(S). Then £ is compatible with A if (α, 6) e Λ: implies that (λ(α),
λ(6)) G /c and ((α)^, (b)p) e tc, for all (λ, p) e A. If S is weakly reductive
then ΠsιofcoΠs is a congruence on ΠS(S), which we denote by tcπ,
and tc is compatible with A if and only if tcπ is compatible with A.
Now suppose that τ is a congruence on A (alternatively, V) such
that τ n (ΠS(S) x i7*(S)) = tcπ (alternatively, τ f] (S x S) = tc) then we
say that tc extends to τ and that τ extends k.

For each veV, let Xv(pυ) denote the mapping λv(α) = va((a)ρv =
αv), for all aeS, ot S into itself. Then (Xv,pv)eΩ(S) and α>:i;-*
(λv, ^v) is a homomorphism of F into Ω(S). Clearly the restriction of
ω to S is just Πs. The following lemma is straightforward.

LEMMA 1.1. Let S be an ideal of V and tc a congruence on S.
Let S be weakly reductive. Then k extends to a congruence on V if
and only if tc is compatible with (θ{V). Moreover, if K is compatible
with o)(V) then

tce = {(u, v) e V: for all ae S, (ua, va) e tc and (au, av) e tc}

is the maximum congruence on V such that tce Γ) (S x S) = tc.
The smallest congruence τ that will extend tc when tc is compatible

with ω(V) is just

τ — {(u, v)e V xV: either (u, v)e S x S and (uf v)e/c or u — v) .

Consequently, if we are interested in studying those congruences
on an ideal S of a semigroup V which extend to congruences on V
then we should consider those congruences on S that are compatible
with subsemigroups A of Ω(S) which contain ΠS(S) and therefore,
in particular, those that are compatible with Ω(S).

NOTATION. For any semigroup S we write ^(S) for the lattice
of congruences on S. For a subsemigroup A of Ω(S) containing ΠS(S)
we write ^A(S) for the set of congruences on S that are compatible
with A.

LEMMA 1.2. Let A be a subsemigroup of Ω(S) containing ΠS(S).
Then ^Λ(S) is a complete sublattice of the lattice of all congruences
on S containing the identity and universal congruences.

We now consider ^A(S) for certain classes of semigroups and
for the most restrictive case A = Ω(S).

For any left zero band S (i.e., xy — x for all x, yeS), Ω(S) =



EXTENSION OF CONGRUENCES AND HOMOMORPHISMS 211

{(λ, c): λ is a function S9 t the identity on S} and therefore ^{S)(S)
consists of only the identity and universal congruences.

In general, however, there are many congruences on S which are
compatible with Ω(S) as the following lemmas indicate.

We shall denote by Sίf, Green's relation ^f (see [2]).

LEMMA 1.3. Let S be a semigroup and tz a congruence on
'such that tz g £ίf. Then tze

Proof. Let (a, b)e/c and (λ, p) e Ω(S). Then (a, b) e ^ T and so
there exist elements x, y e S such that a = xb, b — ay. Then b = xby
and so

(X(a) = X(x)b

(X(b) = X(x)by .

Since (a, b)eιc we must have (6, by) = (ay, by) e tz and therefore, by
(1), (λ(α), λ(δ)) G K. Similarly ((a)ρ, (b)ρ) e tz and so K e ctfoΛS){β).

LEMMA 1.4. [7] Let B be an ideal of a semigroup S such that
B2 = B. Then tz e ^ΏiS)(S) where

tz = {(a, b)eS x S: either a}beB or a = b} .

A semigroup S is a regular semigroup if a e aSa for all elements
ae S and a regular semigroup S is an inverse semigroup if all idem-
potents commute. If S is an inverse semigroup then, for each element
ae S there is a unique element x in S, which is usually denoted by
or1, such that axa = a and xax — x. For the basic properties of
inverse semigroups the reader is referred to [2].

LEMMA 1.5. Let S be a semigroup and tz be a congruence on S

such that S/tz is an inverse semigroup. Then tz e C^Ω{S)(S).

Proof. Let (a, b)eκ and (λ, p) e Ω(S). Let x(y) be elements of S
such that (x)tz = (X(a))tz~1 and {y)tz = (Xφtytz'1. For any element ue S,

( 2 )

(u)tz(X(a))tz = (uX(a))tz = {(u)pa)tz

= ((u)ρ)fz(a)tz = {{u)p)tz(b)tz

= ((u)ρb)ιc = (uX(b))tc

Hence
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(X(a))fc = (X(a))/c(x)fc(X(a))fc ,

= (X(a))φ)tc(X(b))fc , by (2) ,

= (X(a))φ)κ(X(b)yX(b))/c

= (X(a))φ)fc(X(b)y)fc(X(b))/c

= (X(b)y)κ(X(a))φ)/c(X(b)y)/c(Xφ))/c ,

since Sjtc is an inverse semigroup and therefore idempotents commute,

- (X(b)y)φ(b))fc(X(a))fc-\X(b)y)fc-\X(b))tc , by (2) ,

= (Mb)M(X(b)y)fc(X(a))tc]-\X(b))fc ,

= (Hb))κl(X(b)yMx(b))x]-\Hb))x: , by (2),

Thus (λ(α), X(b))e/c. Likewise ((a)ρ, (b)ρ)eκ and tee ^Hs)(S).

2. Extensions of homomorphisms• If S is an ideal of a semi-
group V then a question closely related to that regarding which con-
gruences extend to V is the question of which homomorphisms extend
to V. Naturally, one would not expect to be able to say very much
in such a general situation. A context in which the question is more
meaningful is indicated in Theorem 2.2.

First, some relevant terminology.
Let S be an ideal of a semigroup F. Then V is a dense extension

of S if, for any nontrivial congruence σ on F, σ Π (S x S) is nontrivial.
(By a nontrivial relation we mean one which is not equal to the
identity relation.) Furthermore, S is said to be a densely embedded
ideal of V if V is a maximal dense extension; that is, if W is a dense
extension of S and V C W then V = W. These concepts can be charac-
terized for weakly reductive semigroups in terms of subsemigroups
of Ω(S) as follows. Let ω: v-+ (V, pv) be the homomorphism of Finto
Ω(S) introduced in §1.

From [5], we have the following result that illuminates Gluskin's
theorem below.

LEMMA 2.1. Let S be an ideal of the semigroup V and let S
be weakly reductive.

(1) V is a dense extension of S if and only if (o is an iso-
morphism of V into Ω(S).

(2) S is a densely embedded ideal of V if and only if ω is an
isomorphism of V onto Ω(S).

Gluskin [3] ([5], §4, Theorem 1) established the following.

THEOREM 2.2. Let a: S—> T be an isomorphism between weakly
reductive semigroups. Let V be a dense extension of S and let T be
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a densely embedded ideal of W. Then a extends to a unique iso-
morphism of V into W.

In other words, if S and T are weakly reductive and a:S—>T
is an isomorphism then a will "extend" uniquely to an isomorphism
of any subsemigroup of Ω(S) containing ITS(S) onto a subsemigroup
of Ω(T) containing ΠT(T).

We formalize this notion of extension not only for isomorphisms
but also homomorphisms as follows.

If A is a subsemigroup of Ω(S) containing ΠS(S) and a is a
homomorphism of S into a semigroup T then we say that a extends
to a homomorphism β of A into Ω{T) or that β extends a if β is a
homomorphism of A into Ω(T) such that

β(K, Pa) = (λff(α), ρa{a)) , for all a e S .

LEMMA 2.3. [7] Let Abe a subsemigroup of Ω(S) containing ΠS(S)
and let K be a congruence on S compatible with A. Let T — S/κ and
a denote the natural homomorphism of S onto T. Then a extends
to a homomorphism β: A —> Ω(T). Moreover, if T is weakly reductive
then β is unique. If S and T are both weakly reductive then β ° /3"1 Π
(ΠS(S) x ΠS(S)) = tc* and βoβ~λ is the largest congruence on A
extending tc.

The homomorphism β is defined in the obvious way by /S(λ, p) =
(λ', pr) where

χ'(a(x)) = a(X(x)) and (a(x))ρr = a({x)p)

for all xeS.
We can use this result to make some further observations regard-

ing r^Ω(S)(S). The reader is referred to [7] for applications of Lemma
2.3 to the translational hull of a semisimple semigroup.

LEMMA 2.4. Let tc, τ be congruences on a semigroup S such that
rgic. LetT^ S/τ. If τ e ^Ω{S){S) and κ\τ e ^(T){T) then K e ^Ω

Proof. Let (a, b)e/c and (λ, p) e Ω(S). Then (αr, bτ) e K/T. Since
?"£ C^Q{S){S) the natural homomorphism a: S—> T extends to a homo-
morphism β: Ω(S) -* Ω{T). Let β(\ p) = (λ', p'). Then

)τ, (λ(6))τ) - (V(αr), V(6r)) 6

Hence

(λ(α), λ(6)) e R .
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Similarly ((a)p, (b)ρ) e K and fc e
This enables us to say a little more about ^Ω{S){S) when S is a

regular semigroup.
For any regular semigroup S the relation θ is defined on the

lattice of congruences of S as follows [10]

(ic, τ) e θ <=> K n ( ^ x £ s ) - n ( ^ x E8)

where, for any semigroup S, Es denotes the set of idempotents of S.
The relation θ is a complete congruence on ^(S) and each #-class is
a complete modular sublattice of

PROPOSITION 2.5. Let S be a regular semigroup. Then
is a union of θ-classes.

Proof. Let θ be any #-class in r^{S) such that θ Π ^[S){S) is
nonempty. Since ^ΩΛS){S) and θ are both complete sublattices of
^(S), so is F = θ Γ) ̂ Ω{S){S). Hence F has a smallest member τ,
say. Let Γ = S/τ. Let Λ: G 61 and fc^τ. Since (Λ:, τ) € ̂ , Λ:/Γ g ^ t
Hence fc/τ e ^Ω{T)(T), by Lemma 1.3. Therefore tc e ^Ω{S)(S), by Lemma
2.4. Thus fceF.

Now let Λ: be any element of θ and σ ~ tc y τ. Then /c ̂  σ and
o G ί7. Also O /Λ: g 2ίf.

Let (λ, />) G Ω(S) and (α, 6) G Λ:. Then (α, 6) G σ. Since σ is compatible
with Ω(S), (λ(α), λ(δ)) G σ and ((λ(α))Λ:, (λ(&))Λ:) e σ//c. Therefore, ((λ(α))Λ:,
(λ(δ))Λ:) G .^^ and so there is an element ce S such that (c)κ(X(a))/c —
(Xφ))fc. Hence,

ί(λ(6))/r = (cX(a))ιc - ((c)pα)/r

I = ((c)p)Φ)(fc) - ((c)iθ)Λ:(δ)Λ = (c\(b))fc = (c)ιc(X(b))κ .

Consequently, left translation by (c)tc induces the identity mapping on
the right ideal generated by (λ(δ))Λ;. In particular, (c)/c(X(a))κ =
(X(a))fc. Therefore (λ(α))/c = (X(6))A:. Similarly, ((a)pf (b)p) e K and so
fee <ϊfΩ{S)(S). Thus θ g <g (̂s)(S) and the result follows.

We shall call a semigroup S fundamental if there are no nontrivial
congruences on S contained in β^. We conclude this section with a
result which is a consequence of some of our observations regarding
the extension of congruences and of some independent interest.

PROPOSITION 2.6. Let S be a regular semigroup. Then S is
fundamental if and only if Ω(S) is fundamental.

Proof. For the purposes of this proposition, we identify S with
ΠS(S). First suppose that S is not fundamental and let p be a non-
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trivial congruence on S contained in 3ίf. Then p e ^?(5)(S), by Lemma
1.3. Let σ be the minimum extension of p to a congruence on Ω(S)
described in Lemma 1.1. (Here S = ΠS(S) and V = Ω(S).) Clearly
o S ^ Green's relation on £?(£), and σ is nontrivial. Therefore Ω(S)
is not fundamental.

Conversely, suppose that σ is a nontrivial congruence on 0(8),
such that <τ g < ^ By Lemma 2.1, p = σ f] (S x S) is a nontrivial
congruence on S. Since S is a regular ideal of Ω(S), the restriction
of Sίf on β(S) to S is just Green's relation £ίf on S. Hence ,o is
a nontrivial congruence on S and <o § ^ ^ Therefore S is not funda-
mental.

3* Extensions of homomorphisms between inverse semigroups*
From Lemmas 1.5 and 2.3, we see that, if a: S~+ T is an epimorphism
between inverse semigroups then a extends uniquely to a homomor-
phism β: Ω(S)—>Ω(T). In general [7], β is not an epimorphism.

Although it seems to be difficult, in the general case, to say much
about extending semigroup monomorphisms one might expect to be
able to say something when the semigroups concerned are inverse
semigroups. To do so, however, it is not surprising that one needs
to know more about the translational hull of an inverse semigroup.

The first result in this direction appears to be the observation
due to Ponizovski.

LEMMA 3.1. (Ponizovski [6]). If S is an inverse semigroup then
Ω(S) is also an inverse semigroup.

Then J. Ault [1] considered those inverse semigroups S for which
ΠS(S) = β(S)\(Unit group of Ω(S)) and orthogonal sums of such
semigroups. Any inverse semigroup S for which Es is a chain is
such a semigroup.

For an arbitrary inverse semigroup S, J. Ault also characterized
those λ G Λ(S) for which there is a p e P(S) such that (λ, p) belongs
to the unit group Σ(S) of Ω(S). Since the mapping ΠΛ: (λ, p) —> λ is
an isomorphism of Ω(S) into Λ(S) it would seem natural to attempt
to characterize Σ(S) (and, indeed, Ω(S)) by characterizing ΠΛ(Σ(S)),
as J. Ault did (and ΠΛ(Ω(S)), as described below).

Throughout the remainder of this paper, for any inverse semi-
group S and any λ e Λ(S), θ2 will denote the mapping of Es into Es

defined by

θλ(e) = λ(β)λ(e)~1 , for all e e Es .
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In her characterization of Σ(S), J. Ault introduced these mappings
Θλ and observed that if (λ, p) e Σ(S) then Θx is an automorphism of
Es. These mappings are also valuable in discussing ΠΛ(Ω(S)).

Before stating the main result, we need one or two preliminary
observations.

For any semigroup A and any ae A the mapping a —> λα is a
homomorphism of A into Λ(A). If A is left reductive {ax = bx, for
all x e A, implies a = 6), for example, if A is an inverse semigroup,
then this mapping is an isomorphism. Let Γ(A) = {λα:αe4}.

For any mapping a, Δ{a) and V{a) denote the domain and range
of a, respectively.

If A is a semilattice then B is a P-ideal of A if B Π /* is a
principal ideal of A for all principal ideals Ix. Then Ω(A) and Λ(A)
are just (isomorphic to) the semilattice of all P-ideals of A [1]. The
element (λ, p)eΩ(A) or λeΛ(A) corresponds to the P-ideal F(λ) and
any P-ideal B corresponds to the element (λ,. p) e Ω(A) or λ e Λ(A) where

χ(e) = (e)ρ = f where Ae f] B = Af .

THEOREM 3.2. [9] jPor α% inverse semigroup S, ΠΛ(Ω(S)) can
variously be described as:

(1) the idealizer of Γ(S) in Λ(S);
(2) the unique maximal inverse subsemigroup of Λ(S) contain-

ing Γ(S);
(3 ) the unique maximal inverse subsemigroup of Λ(S) with the

idealizer of Γ(ES) in Λ(S) as its set of idempotents;
(4) the unique maximal inverse subsemigroup of Λ(S) with

Λ(ES) as its set of idempotents;
( 5) the set of all λ e Λ(S) such that
(a) V(θ}) is a P-ideal,

and
(b) θλ is a homomorphism;
( 6 ) the set of all X e Λ(S) such that
(a) P(θλ) is a P-ideal,

and
(b) Aλ = {Xfβ^Xίe): e e Es} is a P-ideal,

and
(c) the restriction of θ2 is an isomorphism of Δλ onto

Armed with these results we can now return to the problem of
extending homomorphisms. The reader is referred to [8] for a discus-
sion of some examples that indicate some limits to one's expectations.

We shall need some observations regarding idempotents in Ω{S).
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LEMMA 3.3. Let S be an inverse semigroup and let (λ, p), (I, r)
be idempotents of Ω(S). Then

( 1 ) λ2 = λ, p* = p;

( 2 ) MES)SE89(ES)PSE8;
(3) Δλ = X(ES) is a P-ideal of Es;
( 4 ) for any e e Es,

Ese Π Ax = EsX(e)

( 5 ) (λ, p) ^ (I, r) if and only if Δλ^ Δx.
Conversely, if P is any P-ideal of Es, then (X, p) e EΩ[S) where, for
any a e S,

X(a) = ea where Esaa~λ f] P — Ese ,

(a)p — af where Esa~ιa f] P = Esf .

Moreover, Δλ = P.

Proof. Observations (1) and (2) follow from [1] while (3) and (4)
follow from [9], Lemma 2.5. The assertion (5) follows from (3) and
the fact that elements of Ω(S) are completely determined by their
actions on Es.

COROLLARY 3.4. Let S be an inverse semigroup and (λ, p) be an
idempotent of Ω(S). Then

f (λ, p) = V {(λ., P.): e e Es and (λe, p.) ^ (λ, p)} ,

1
where V i , for a subset A of EΩ{S), denotes the least upper bound of
A in EΩ{S) which, of course, need not exist for all A.

Proof. That

{(λe, pe): eeEs and (λe, p.) ^ (λ, p)} = {(Xe, pe): e e Δχ)

is immediate from Lemma 3.3, (5) and observation that, for any e e ES'

Aλe - Ese .

Hence, (λ, p) ^ (λβ, ρe), for all ee Δλ. On the other hand, since Δλ is
an ideal of Es,

Δλ = \J {Ese: eeΔλ} = \J {Δλ;. e e Δλ)

and if (I, r) is any idempotent of Ω(S) such that (lf r) ^ (λe, ρe), for
all eeΔλ, we must have
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and, therefore, (I, r) ^ (λ, p). Thus (3) holds.
Finally,

LEMMA 3.5. ([9], Lemma 2.5). Let S be an inverse semigroup.
Let (λ, p) e Ω(S) and (/c, σ) be the inverse of (λ, p) in Ω(S). Then

(1) X&y'Xie) = Λ:λ(e), for all e e Es;
( 2 ) Ee n Δλ = EtcX(e) = EX{e)~ιX(e), for all e e Es.

We can now establish the main extension theorem for mono-
morphisms.

THEOREM 3.6. Let S and T be inverse semigroups and θ: S~>T
be a monomorphism such that the ideal

(β(Es)) = {feEτ:f ^ θ(e) , for some e e Es}

generated by Θ(ES) in Eτ is a P-ideal. Then θ extends to a mono-
morphism φ of Ω(S) into Ω(T) such that, for any (λ, p)eEoiS)

, 4 v <P{\ P)=V ί(λ^(e), Pew)- eeEs and (λe, pe) ^ (λ, p)}

= V{faθi.)9Pθω):eeJx} .

Moreover, φ is the unique extension of θ such that

( 5 ) φ{ι, t) = V {(λ*(β), PΘI.)Y e e Es} ,

where c denotes the identity left and right translation, and therefore
is the unique extension of θ satisfying (4). Thus iff is an extension
of θ such that ψ(c, ή = φ(tf c) then ψ = φ.

Proof. Let λ e Λ(S). Define a mapping λ' as follows. Let a e
T and aa~ι — e. Let

Eτe Π <Θ(E8)} - Eτe'

and e" e Es be such that eτ ^ θ{e"). Then define

λ'(α) = θ(X(e"))a .

Suppose that e", f"eEs are such that e' £ θ{e"), θ(f"). Then e'ί^
θ(e"f"). Also

h = θ(\{e")Yιθ(X{e"))aa'1 e Eτe
r .

Hence, h ^ e' ^ θ{e"f") and hθ{e"f") - h. Therefore,

θ(X{e"))a = θ{X(e"))ha = θ(X(e"))θ{e" f")ha

= θ{X{e"))θ(e"f")a = θ{X{e")e"f")a -



EXTENSION OF CONGRUENCES AND HOMOMORPHISMS 219

Similarly,

0(λ(/"))α - Θ(\{fi"f"))a

and λ' is well defined.
To see that λ' is in Λ(T) let a, b e T, e = aa~\ f = abb~ιa~\ Let

e' e Eτ, e" e Es be such that

Eτe n <Θ(ES)> = Eτe
r and e' ^ θ(e") .

Let / ' and / " be defined similarly. Then

X\a)b - θ{X{e"))ab ,

\'(ab) = θ(X{f"))ab .

Since f <> e, f ^ e' and so we may choose / " so that / " ^ e". (If
f" S e" take e"f" as a new /".) Clearly / ' = e'f.

Let x -

e")β';) = θ(X(e"))θ(e")

we have that

a = χθ{e")f - a(?(e>/ - xe'f = xf = xf'θ(f") =

Hence

λ'(α)6 =
- θ(X(e"))xθ(f")ab = θ{X{e"))θ{f")ab - θ(X(e")f")ab

Therefore λ'eΛ(Γ).
Now let λ, ί e ί̂(S) and λ', Γ be defined as above. Let a e T, e =

αα"1 and e', e" be defined as before. Then

and it is not difficult to see that X\θ{l(e"))) = θ(Xl{e")). Thus λT(α) -
(λϊ)' (a) and the mapping X —> λ' is a monomorphism of /ί(S) into ̂ (Γ).

We define a mapping p-+p' of P(S)—+P(T) similarly. Let αe

£7Γβ Π (Θ(ES)} = Eτe'

and e" e ^ be such that e' ^ 5(e") Define

(a)/o' = a{θ(e")p) .

As for the left translations, pf e P(T) and p—*pf is a monomorphism
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Of P(S)->P(T).
Suppose now that (λ, p) e Ω(S). We wish to show that (λ', p') €

Ω(T). It remains to show that λ' and p' are linked. Let a, b e T, e —
ar'a, f = bb"1 and let e', e", f, f" be defined as before. Then

x = eθ{X{f"))θ{\{f")Yι e Eτe n (Θ(ES))

and so x ^ e' ^ θ(e"). Similarly, if y = θ{(e")pyιθ{{e")ρ)f then y ^
Θ(J"). Hence

αλ'(6) = aθ(X(f"))b - axθ{X(f"))b

= axθ(e")θ(X(f"))b = aθ(e"X(f"))b = aθ((e")ρf")b

= aθ({e")p)θ(f")b = aθ((e")p)yθ(f")b = aθ((e")p)yb

= (a)p'b .

Thus (λ', p') e Ω(T) and clearly φ: (X, p) —* (λ', p') is a monomorphism.
We now show that φ extends θ. Let ae T, e = aa~x and e\ e"

be as before. Let xe S. Then

(λx)'(α) = θ(Xx{e"))a = θ(xe")a = θ(x)θ(e")a

, since θ(x)-ίθ{x)e ^ ^(e") .

Thus (λ,,.)' = Xβίx). Similarly (px)' = pff(x) and the monomorphism φ: (λ,
p) —* (λ', jθ') extends θ.

To see that (4) holds, let (λ, p) be an idempotent of Ω(S). Then
(λ', p') is an idempotent of Ω(T). Let e e i r . Then e = λ'(e). Let e',
e" be as in the definition of X'(e). Then

e = X'(e) = θ(X(e"))e .

Therefore, e ^ <?(λ(e")) where / " = X{e") e Aλ. Thus e 6 z/A/, where / ' =
θ(f"). Hence

(6) 4 , , S U { 4 . / ( : / ' = <?(/") and / " e ^ } .

Since the converse inclusion clearly holds, we have equality in (6)
and therefore

<λ', PΊ = V Vλr, PsY Γ = W") and f"eJx}.

Hence (4) holds. In particular we note from this that

(7) Δ« = <β(E8y>

and

( 8 ) (^,0 = V {^θ^Pθ^YeeEs) .

Let ψ be any other extension of θ that satisfies (5). For any
(λ, p) G Ω(S), let f (λ, p) = (λ", ^" ) . From (5) and (8) it follows that
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( 9 ) ( Λ <") = (<\ 0 •

Let (λ, p) be any element of Ω(S) and let (Λ:, σ) be the inverse of
(λ, p) in Ω(S). Then it follows, from Lemma 3.5, that

Δλ = Δκλ and z/;.- = Δκ.,r, .

Let α 6 T and ααΓ1 = e. Let e', e" be as before. Then

λ"(α) = λ"(e)α = V(V(e)-V(e))a - λ"(<?)α ,

where g = X"(e)-ιX'\e) e Δx., = Δκ..v, c Δt,.. Hence, from (7) and (9),
geΔλf/, for some / ' = θ{f") with f"eEs. Since # ^ β we therefore
have g e Eτe n (Θ(ES)) and so g ^ e' ^ (?(e") Hence g = gθ(e"). Also

), P*ie»)) = ^ ( λ ,

")f Pλie")) =

Therefore, since Γ is weakly reductive,

X Xθ{e") — Xθλίe")

Also, from Lemma 3.5,

Eτe Π ̂  .- = Eτg

while, for x = λ"(0(e")),

X~xXe G ΐ/yβ Π ^ /' .

Hence

(10) x~ιxeg = x~ιxe .

Therefore,

λ"(α) - λ"(g)α - X"(θ(e")g)a =

= a?α , by (10) - X"(θ{e"))a - V%(β,,,(α)

Thus λ" = λ', ψ(λ, /o) = φ(λ, p) and f = φ.
Combining Lemmas 1.5 and 2.3 with Theorem 3.6 we have the

following result.

COROLLARY 3.7. Let θ: S—> T be a homomorphism of the inverse
semigroup S into the inverse semigroup T such that (Θ(ES)} is a
P-ideal in Eτ. Then θ extends to a homomorphism φ:Ω(S)—>Ω(T)
which is unique with respect to the condition

<P(t, 0 = V {(λ*(βJ, P*ie)).eeEs}
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where i denotes the identity left and right translation of S.

Proof. Let θ = Θ1Θ% where θ2 is the natural epimorphism of S
onto S/θoθ'1 and θ1 is the embedding of Sjθoθ~ι into T such that
θ = tf^. Let φ be the composite of the natural extensions of θx and
#2 described in Lemma 2.3 and Theorem 3.6. Then ψ extends θ.

The uniqueness part does not follow immediately from the state-
ment of Theorem 3.6 but the proof of uniqueness in Theorem 3.6 will
carry over almost verbatim.

So far we have been concerned with extending a homomorphism
Θ:S—+T between inverse semigronps to a homomorphism φ:Ω(S)—>
Ω(T). Having done that we can easily generalize the domain of our
extension if we also liberalize our definition of an extension. Let S
be an ideal of a semigroup Fand θ: S—> The & homomorphism. Then
we shall say that a homomorphism ψ:V—* Ω{T) extends θ if

ψ { a ) = ( λ , ( β ) , ρ θ { a ) ) , f o r a l l a e S .

Then we have the following result.

COROLLARY 3.8. Let θ: S —» T be a homomorphism between inverse
semigroups such that (β(Es)} is a P-ideal in Eτ. Let S be an ideal
of the semigroup V. Then θ extends to a homomorphism f: V-+Ω(T).

Proof. Let ω:V—+Ω(S) be the homomorphism introduced in §1.
Then the restriction of ω to S is just Πs. Let φ: Ω(S) -> Ω(T) be the
extension of θ described in Corollary 3.7. Then φ o ω: V—* Ω(T) and

Ω(T)

Hs(S)
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φoω(a) = φoΠs(a) = φ(Xa, pa) = (\${a), pna)) .

Thus ψ — φ o ω is an extension of θ. The situation is displayed in
the above diagram.

An interesting feature of the natural extension φ of θ in Theorem
3.6 is that it preserves convexity. Recall that a subset A of a par-
tially ordered set X is said to be convex if a ^ x ^ b, a, b e A, x e X
implies that xe A.

PROPOSITION 3.9. If,ίn addition to the hypothesis of Theorem
3.6, Θ(ES) is convex in Eτ then φ(EΩiS)) is convex in EΩ(T) and φ is
the unique extension of θ such that the image of EΩiS) is convex in

Proof. We wish to show that φ(EΩ{S)) is convex. Let (λ, p), {μ,
v) e EΩ{S) and (I, r) e EΩ{T) be such that

(λ', pO ̂  (ϊ, r) £ (μ?, J/) .

Then, from Lemma 3.3, we must clearly have

and therefore

(li) Δ V n Θ{ES) s Δ1 n Θ{ES) a Δμ. n Θ(ES) .

Let the three expressions in (11) be labelled Alf A2, and A3, respectively.
Note that

Δv = {e e Eτ\ e ^ Θ(J") for some / " e Δλ}

and similarly for Δμ*, Let e"eE8. Then

θ{Es)θ{e") n i 2 g Eτθ(e") n ΔX

= Eτf , for some feEτ.

Since Δx £ Δμ, we must have / ^ ^(/")» for some / " e Es. On^the
other hand,

Aμ n Ese" - E8g" ,

for some g" e Es, and so

θ(E8)θ(e") Γ)A2S θ{Es)θ{e") f)AS θ{Es)θ(g") .

Hence,

θ{g") ^ f S * ( / " )

and, since Θ{ES) is convex, feθ(Es). Since we also have feJly it
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follows that / 6 A2. Hence

θ{E8)θ(e") ΓΊ A2 = θ(Es)f

and A2 is a P-ideal of Θ{ES). Let A = Θ~\A2). Then A is a P-ideal
of Es. Let (ε, δ) be the element of E0i8)f as in Lemma 3.3, with Δt =
A. Then 9>(ε, δ) = (ε', δ') so that to show that <p(ε, δ) = (ί, r) it only
remains to be shown that Δ9, = Δt. But clearly

Let eeΔi. Since J, S Δμ,9 we have that e S θ(e"), for some e"6 Es.
Let / " 6 ^ be such that

A2 n θ{E8)θ{e") = θ(E8)θ{f") ,

and let geEτ be such that

Δ% n ^r^(e") - -&^ .

Then e ^ g while

* ( / " ) ^g^ θ(e") .

Therefore geθ(Es), since Θ(ES) is convex, and

g e Δι Π

Thus e 6 <A2>, Δx = ΔεΊ I = ε' and therefore (i, r) - (ε', δr).
Finally, to establish the uniqueness of φ, let ψ be any other

extension such that ψ(EΩ{S)) is convex. From Theorem 3.6,

Φ(t, ή = V ( W ^ ( # ) ) : β e £/5}

and clearly, since (c, ή :> (λe, pe), for all e e E8,

ψ(c, ή ^ (\θ{9), ρβ{e)), for all e e f t .

Hence

Since ψ{EΩ{S)) is convex in ^ ( D ' there is some element (λ, p) e EΩ{S)

with ψ(\ p) = 9>(̂ , 0 Then

\, p) ^ (λ,(e}, ^ ( # ) ) = f{\, ρe) ,

for all eeEs. Hence

(λ, p) ^ (λe, p.) ,

for all eeEs. But there is only one idempotent in Ω(S) with this
property, namely (c, ή. Hence ψ(c, ή — φ(c, ή and, by Theorem 3.6,
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φ = ψ.
In general, φ may not be the only homomorphism of Ω(S) into

Ω{T) that extends θ, even if Θ(ES) is convex in Eτ. An example to
illustrate this will be found in [8].

The knowledge that certain homomorphisms between inverse semi-
groups extend to their translational hulls can be useful in determining
the nature of the translational hull of individual inverse semigroups.
By relating an inverse semigroup $ via homomorphisms to other inverse
semigroups for which the translational hulls are known one can
again insight into Ω(S).

For instance, the Howie-Munn representation of an inverse semi-
group S is described as follows [4]. Let E be the semilattice of
idempotents of S. Let TE denote the inverse semigroup of all iso-
morphisms of principal ideals of E onto principal ideals and let UE

denote the inverse semigroup of all isomorphisms of P-ideals of E
onto P-ideals of E. Note that TE is a subsemigroup of UE. The
mapping θ\ a —> θa where

( 1 ) A{θa) = Ea~ιa

( 2 ) θa{e) = aea'1 , for all e e A{θa)

is a homomorphism of S into TE such that θ o θ~ι is the maximum
idempotent separating congruence on S.

Since θ maps E onto the idempotents of ΎEj θ extends to a
homomorphism φ: Ω(S)—> Ω(TE). This extension is considered in more
detail in [8] where it is shown that Ω{TE) — UE and φ°φ~ι is the
maximum idempotent separating congruence on Ω(S).

5. Composition of extensions* Let us call a homomorphism
a:S—*T between inverse semigroups a P-homomorphism if (a(Es))
is a P-ideal in Eτ.

In this final section we show that the extension of a composite
of P-homomorphisms is the composite of the extensions. Implicit in
this statement, of course, is the claim that the composite of two
P-homomorphisms is a P-homomorphism. We tackle this first.

LEMMA 5.1. // a: S—> T and β: T—+ U are P-homorphisms, then
so is βoa.

Proof. Let e e Ev. Then there exists an element e' e Eπ such that

(12) EΌe n (β(Eτ)) = Eve' .

Let f eEτ be such that e' ^ β(f) Then there exists an element / ' e
Eτ such that
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(13) Eτf n (a(Es)) = Eτf ,

Let geEs be such that / ' g a(g). Clearly

eβa(g) e EΌe n <β*(E8)> .

Let x be any element of Eve Π (βcc(Es)). Ther

(14) x ^ e ,

and, for some heEs,

(15) x ̂  βa(h)

and

α? e jE ê n (βa(Es)) S ^ e Π (β(Eτ)) .

Hence, by (12),

(16) α? ̂  e' g /3(/) .

From (15) and (16),

(17) x £ β{f)βa{h) = β(fa(h))

where

fa(h)eEτfn(a(Es)) .

Hence, by (13),

fa{h) ^ f ^ a{g) .

Therefore, from (17),

x ^ βa(g) ,

and, from (14),

x <; eβa(g) .

Thus

-Ê β n (β(x(Es)) = Eueβa(g) ,

and β ° α is a P-homomorphism.

NOTATION. For any P-homomorphism a:S—>T let Ω(a) denote
the extension of a to a homomorphism of Ω(S)-+Ω(T) described in
Corollary 3.7.

Let ^ denote the category of inverse semigroups and P-homo-
morphisms. Note that a homomorphism a:S~-+T between inverse
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semigroups where S has an identity is necessarily a P-homomorphism.
Hence Ω(a) e <g[ for all a e <ĝ .

THEOREM 5.2. Ω: <g[ —> ^ defined on objects and morphisms by

Ω:S->Ω(S)

Ω: {a: S • T) > {Ω{a)\ Ω(S) > Ω(T)}

is a covariant functor. Moreover, for any morphism a:S—>T in
^ , the diagram

I

commutes and therefore {Πs: S e objects of &[} is a natural trans-
formation from the identity functor: ^ —> ̂  to Ω.

Proof. To show that Ω is indeed a covariant functor it remains
to be shown that, for any P-homomorphisms a: S—> T, β: T—*Uf it
is the case that Ω(β o a) = Ω(β) o Ω(a). Since it is clear that Ω(β) o Ω{a)
is an extension of β<>a, by Corollary 3.7, all that is required is to
show that Ω(βoa)(c, c) = Ω(β) o Ω(a)(t, c).

Let ί3(α)0, 0 = (κ9 p), Ω(β)(tc, p) = (λ, σ) and Ω(βoa)(t, c) - (ft τ).
Then K, λ, /̂  are idempotents. Let e G ^ . Then, for e' e ̂  and / 6 J57Γ

such that

^ e Π <β(Eτ)) - ^ β ' and e' ^

we have

e - λ(e) - β(ιc(f))e

and, for / ' e Eτ, ge Es such that

Eτf n <α(J55)> - ^ / ' and / ' ^ a{g)

we have

/r(/) - a(c(g))f = a{g)f .

Thus

e = βW))e = βa(g)β(f)e

and

μ(e) = μ{βa{g))β{f)e = βa(c(g))β(f)e = βa(g)β(f)e -
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Thus e G Δμ. Conversely, let e e Aμ, e', e" be such that

Eve n (βa(Es)} = ELTe', ef ^ βa{e") .

Then

e = μ(e) = βa(c(e"))e = βa{e")e .

Hence

He) = X{βa{erf))e = β{z{a{e")))e = βa{c{e"))e = βa(e")e = e

and e e Δλ. Thus Δλ = Δμ, X = μ, (λ, σ) = (μ, r) and β(/3 ° a) = β(/3) o β(α).
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