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FIXED POINT THEOREMS FOR MULTIVALUED
NONCOMPACT ACYCLIC MAPPINGS

P. M. FitzPATRICK AND W. V. PETRYSHYN

Let X be a Frechet space, D a closed convex subset of X, and
T': D— 2¥ an upper semicontinuous multivalued acyclic mapping.
Using the Eilenberg-Montgomery Theorem and the earlier results
of the authors, it is first shown that if W O T(D) and f: W— Dis
a single-valued continuous mapping such that 7 : D — 2% is
®-condensing, then /T has a fixed point. This result is then used to
obtain various fixed point theorems for acyclic ®-condensing
mappings 7 : D — 2*under the Leray-Schauder boundary condi-
tions in case D = Int(D) and under the outward and /or inward
type conditions in case Int(D) = ¢.

Introduction. Let X be a Frechet space and D an open or a closed
convex subset of X. It is our object in this paper to establish fixed point
theorems for not necessarily compact (e.g. condensing) multivalued acyclic
mappings T: D— 2* which need not satisfy the condition “T(D) C D” but
instead are required to satisfy weaker conditions of the Leray-Schauder
type. Our results are based upon the Eilenberg-Montgomery Theorem [4]
and upon our Lemma 1 in [16]. The fixed point theorems presented in this
paper for multivalued maps in infinite dimensional spaces strengthen and
extend certain fixed point theorems of Gérniewicz-Granas [7] and Powers
[17] for acyclic compact maps, the results for star-shaped-valued maps of
Halpern [8] for compact maps and our own [16] for condensing maps, and a
number of fixed point theorems for convex-valued compact and noncom-
pact maps (see Ky Fan [S], Browder [1], Reich [18], Ma [12], Walt [20], and
[20, 8, 15] for related results and further references).

1. Let X be a Frechet space. If D C X, then we will denote by D and
0D the closure and boundary of D, respectively.

DerInNITION 1. If Cis a lattice with a minimal element, which we will
denote by 0, then a mapping ®: 2¥ — C is called a measure of noncom-
pactness provided that the following conditions hold for any 4, Bin2*:

(1) ®(A4) = 0if and only if 4 is precompact.

(2) ®(cod) = ®(4), where cod denotes the convex closure of A.

(3) @4 U B) = max {®(4), D(B)}.
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It follows that if 4 C B, then ®(4) < ®(B). The above notation has
been used in [16, 19] and is a generalization of the set-measure [11] and the
ball-measure of noncompactness [6] defined either in terms of a family of
seminorms or of a single norm when X is a Banach space. Specifically, if
{P,|a €. }is a family of seminorms which determines the topology on X,
then for each a € &/ and @ C X we define y,(R) = inf{d > 0[$ can be
covered by a finite number of sets each of which has P,-diameter less than
d}, and x, (2) = inf{r > 0| can be covered by a finite number of P,-balls
each of which has P,-radius less than r}.

Then letting C = {f:o/ — [0, oo]}, with C ordered pointwise, we
define the set-measure of noncompactness Y- 2X = C by (Y())(@) = Ya ()
for each a € « and the ball-measure of noncompactness x() by (x())(a)
= %, () for each a € &/ (see[15] for more details and properties of y and

.X)‘ . - .
The class of mappings considered here is given by the following,.

DEFINITION 2. If @ is a measure of noncompactness of X and D C X,
an upper semicontinuous (u.s.c.) mapping 7: D — 2* is called ®-
condensing provided thatif @ C D and ®(7(2)) = ®(Q), then Q is relatively
compact.

It follows immediately that a compact mapping is ®-condensing with
respect to any measure of noncompactness ®. Classes of ®-condensing
mappings which are not compact have been considered in [19, 13, 14, 18].
In particular, if X is a Banach space, D C X is closed, C: D — 2 X is
compact, and S: X — 2% is such that S(x) is compact for each x € X, and
d*(S(x), S(y)) < kd(x, y) for all x, y € X and some k € (0, 1), where d*
denotes the Hausdorff metric on the compact subsets of 2% generated by
the norm d, then S + C: D — 2% is y-condensing,

By homology we mean Cech homology with rational coefficients, and
call a compact metric space Y acyclic if it has the same homology as a one
point space. In particular, any contractable space is acyclic and thus any
convex or star-shaped subset of X is acyclic. A mapping 7: D — 2* is called
acyclic if T(x) is compact and acyclic for each x € D.

The following theorem of Eilenberg and Montgomery [4] together
with the succeeding result from [16] will form the basis from which we will
deduce our results.

THEOREM A. [4] Let M be an acyclic absolute neighborhood re-
tract (ANR), N a compact metric space, r: N — M a continuous single-
valued mapping and T: M — 2" a u.s.c. acyclic mapping. Then the mapping
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rT: M— 2M has a fixed point, i.e., there exist x € M such that x € r(T(x)).

LEMMA A.[16] Let D C X be closed and convex and T: D — 2*. Then
foreach Q@ C D there exists a closed convex set K, depending on T, D, and 2,
withQ C Kandco{T(D N K) U Q} = K.

Our first result is the following fixed point theorem.

THEOREM 1.  Let X be a Frechet space with D C X closed and convex.
Suppose T: D— 2% is us.c. and acyclic and f: W — D is single-valued and
continuous, where W D T(D). Iff T: D— 2% is ®-condensing, then f T has a
fixed point. In particular, if T(D) C D and T is ®-condensing, then T has a
fixed point.

Proof. Choose x, € D. By Lemma A, we obtain a closed convex set
K such that x, € K and co{ {T(K N D)) U {x,}} = K. Since {T(D)) C D,
we see that K N D = K and so co{{T(K)) U {x,}} = K. By the defining
properties of the measure of noncompactness ®, and, since fT is ®-con-
densing, K must be compact. In view of the results in [3, 10], every compact
convex subset of a Frechet space is an ANR, and is acyclic. Consequently,
letting M = K, N = T(K),and f = r we may invoke Theorem A to conclude
that fT has a fixed point. The last part of the theorem follows by letting f =
identity.

ReMARK 1. Using the above result, it is clear that a theorem analo-
gous to Theorem 3.4 in [15] is valid for acyclic 1-set and 1-ball contractive
mappings.

The second part of Theorem 1 has been obtained in [7, 17] for the case
when T'is compact and X is a Banach space.

THEOREM 2. Let X be a Frechet space and D C X open and convex
with 0 € D. If T: D — 2¥ is a ®-condensing and acyclic mapping such that

) Tx) N {AxA>1} = ¢ forx € 9D,

then T has a fixed point. In particular, if TOD) C D, T has a fixed point.
Proof. I:et p: X — D be the single-valued mapping defiined by: p(x)

= x if x €D, and p(x) = x/p(x) if x € X\ D, where p is the support

function of D. Since 0 € D, it follows that p is continuous. Furthermore, for
each 4 C X, p(4) C ¢o6{4 U {0}}, so that, by the defining properties of @,
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®(p(4)) < ®(4). Hence, pT is a ®-condensing mapping of D into D
because if @ C D and ®(p(T(4))) = P(Q), @ must be relatively compact.
Thus, by Theorem 1, we may choose x € D, with x = p(z) and z € T(x),
i.e., x € pT(x). It follows from (4) that x € T(x). Indeed, if z € D, then p(z)
=z =xandsox € T(x),and if z €D, then p(z) = Bz forsome 8 < 1 and
so (1/B)x € T(x), in contradiction to (4). The last assertion follows from
the fact that, foreach y € 9D and 8 < 1, By € D and so T(3D) C D implies
4).

@ In case T(x) is convex for each x € D, the above result has been
obtained in [15] by use of a topological degree argument, without the
assumption that D is convex.

1. In case X is a Banach space, whose norm has certain additional
properties, we will now prove some results for acyclic mappings 7: D —
2% where D is closed and convex, without the assumption that T(D) C D.
In particular, we strengthen the results of [8, 16] for mappings satisfying the
so-called “nowhere normal outward” condition and without the assump-
tions (as in [8, 16]) that D contains a set with a nonempty core and that X is
equipped with a collection of approximation maps (see [8] for definitions of
these concepts).

We recall that a Banach space X is said to have Property (H) if X is
strictly convex and whenever (x,, ) C X is such that {J|x,||) — ||x|]| and {x, )
converges weakly to x, then (x,) — x. Every locally uniformly convex
Banach space has this property. We will use the following lemma con-
cerning such spaces, and use the notation {x,) — x to denote the weak
convergence of the sequence (x, ) to x.

LEMMA 1. Let X be a reflexive Banach space with Property (H), and
suppose D C X is closed and convex. Then to each x € X there exists a
unique point N(x) in D such that ||x — N(x)|| = inf,ep||y — x||. Further-
more, the mapping x — N(X) is continuous.

Proof. Letx € X andletd = inf,¢p||y — x||. Choose (u,) C D such
that (||u, — x||) — d. Then (u,) is a bounded subset of D and since X is
reflexive and D is weakly complete we may choose a subsequence (u,,) of
upy with {u,,y — z € D. Since {(u,, — x) —z — x,

d = lim||u,, — x|| = lim inf ||up, — x| = ||z — x]|.

But||z — x|| = 4, and so (||u,, — x||) — ||z — x||. Since X has Property (H)
we must have (u,, ) — z. The point z with z € D and ||z —x|| = dis unique
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because X is strictly convex, and since, by the above argument, any subse-
quence of (u, ) willin turn have a subsequence which converges to z, we see
that (u, ) — z = N(x).

We now show that N is continuous. Let y € X with { y,) C X such
that (y, ) — y. For each n we have ||y, — N(»,)|| < |ly. — N())||, so that
lim sup ||y, — N(yu)I| = ||y — N(p)||- Since { N(y,)) is a bounded subset
of D we may choose {(N( y,,)) such that (N(y,,)) — z € D. Then

|y = N = |y — 2ll = lim inf [{y,, — N(yn )l

< limsup |y, — Nyl = Iy — NO)|I-

Consequently, lim ||y,, — N(y,)l| = |y — N(»)|, and so by the first part
of the proof, (N( y,,)) — N(y). This argument shows that any subsequence
of {(N(y,)) in turn has a subsequence which converges to N( y), so that

(N(yn))— N()).

We point out that any uniformly convex Banach space is reflexive and
has Property (H).

Following Halpern [8], for a subset D of a Banach space X, we define
the outward set of a point x € D, denoted by n,(x), to be

np(x)={y € X|y# x|y —x||=|y— 2| forallz € D}.

We add in passing that, as was shown in [9], if Ip(x) is the inward set
ofx € X,ie,Ip(x) ={y € XAx + (1 — A)y € D forsomeA € [0, 1)},
thennD(X) N ID(X) = 0.

THEOREM 3. Let X be a Banach space with D C X closed and convex.
Suppose that T: D— 2% is acyclic and “nowhere normal outward,” i.e.,

&) T(x) N np(x) = ® forx € D.

Furthermore, suppose that one of the following conditions holds:
(1) Xs strictly convex and D is compact.
(ii) X is reflexive, satisfies condition (H), and T(D) is compact.
Then T has a fixed point.

Proof. (i) Since X is strictly convex and D is compact, the mapping
N: X — D defined by the inequality || N(x) — x|| < || y — x||forally € D,
is well defined and continuous [8]. Since D is an acyclic ANR, we use
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Theorem A to conclude that NT has a fixed point in D. Since T satisfies (5),
the fixed point of N7 must also be a fixed point of T.
(ii) By Lemma 1, the above mapping N is continuous. Since T(D) is

relatively compact, NT is condensing, and so NT has a fixed point by
Theorem 1. Again, using (1), this fixed point must also be a fixed point of T.

COROLLARY 1.  Theorem 3 holds with the hypothesis “T is nowhere nor-
mal outward” replaced by either of the stronger conditions, “T(x) C Ip(x) for
allx € D”or “T(x) C Ip(x) forallx € D.”

In case T(x) is star-shaped for each x € D, Theorem 3 has been proved
in [8, Theorem 20] under the additional condition that X is equipped with a
collection of approximation maps and that the core (D) # ¢.

THEOREM 4.  Let X be a Banach space with D C X closed and convex.
Suppose T: D — 2% is acyclic and ®-condensing. Furthermore, assume that
one of the following conditions holds:

(1) Xisstrictly convex and T(x) C Ip(x) for x in D.

(ii) X is a Hilbert space, T(x) N ny{x) = & for eachx € D,and @ is
either the ball-measure or the set-measure of noncompactness defined in §1.
Then T has a fixed point.

Proof. (i)Letx, € D. By Lemma A, we may choose a closed convex
set K which contains x, and such that co{7(D N K) U {x,}} = K. By
previously used arguments, K must be compact. Letx € K N Dwithz €
T(x). Then z € I(x),so thatforsomeA € [0, 1),Ax + (1 —=A)z€ DN K.
This shows that T(x) C Ipnx(x) for each x € D N K. Hence, by Corollary
1, T'has a fixed point.

(ii) Let N: X— D be defined by ||N(x) — x|| = inf{ ||z — x|| for each
x € D}. Now, X is a Hilbert space, and Cheney and Goldstein [2] have
shown that ||N(x) — N(»)|| =< ||x — y|| for each x and y in X. Itis not hard
to show that this implies that for each 4 C X, ®(N(4)) < ®(4). Conse-
quently, NT: D — 2” is ®@-condensing, and hence, by Theorem 1, NT has a
fixed point. Since T(x) N np(x) = @, this fixed point must also be a fixed
point of 7.

Under hypothesis (i) the above result strengthens Theorem 3 in [16]
and, in particular, Theorem 24 in [8].

REMARK 2. If X is a Hilbert space and D = B(0, 1), then for x € 3D,
np(x) = {Ax|A > 1}. Hence for a mapping 7: D— 2 the Leray-Schauder
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condition (4) of Theorem 2 coincides with the requirement that 7(x) N
np(x) = ¢ forallx € D.
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