
PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 1, 1974

CONTINUOUS SPECTRA OF A SINGULAR SYMMETRIC
DIFFERENTIAL OPERATOR ON A HILBERT SPACE

OF VECTOR-VALUED FUNCTIONS

ROBERT ANDERSON

Let H be the Hubert space of complex vector-valued
functions /: [α, oo) -» C2 such that / is Lebesgue measurable

S CO

f*(s)f(s)ds < oo. Consider the formally self
α

adjoint expression c(y) = — y" + Py on [α, oo), where y is a
2-vector and P is a 2 x 2 symmetric matrix of continuous real
valued functions on [a, oo). Let D be the linear manifold
in H defined by

D — {f&H: f, f are absolutely continuous on compact
subintervals of [α, oo), / has compact support
interior to [α, oo) and c(f)εH} .

Then the operator L defined by L(y) = c(y), yεD, is a real
symmetric operator on D. Let Lo be the minimal closed
extension of L. For this class of minimal closed symmetric
operators this paper determines sufficient conditions for the
continuous spectrum of self adjoint extensions to be the
entire real axis. Since the domain, DQf of LQ is dense in H,
self adjoint extensions of LQ do exist.

A general background for the theory of the operators discussed
here is found in [1], [3], and [5]. The theorems in this paper are
motivated by the theorems of Hinton [4] and Eastham and El-Deberky
[2]. In [4], Hinton gives conditions on the coefficients in the scalar
case to guarantee that the continuous spectrum of self adjoint ex-
tensions covers the entire real axis. Eastham and El-Deberky [2]
study the general even order scalar operator.

DEFINITION 1. Let L denote a self adjoint extension of Lo.
Then we define the continuous spectrum, C(L), of L to be the set
of all λ for which there exists a sequence (fn) in D2, the domain
of L, with the properties:

( i ) HAH - 1 for all n,
(ii) </w> contains no convergent subsequence (i.e., is not com-

pact), and
(iii) | | ( L - λ ) Λ | | - + 0 as n~* ^
For the self adjoint operator L we have the following well-

known lemma.

LEMMA 1. The continuous spectrum of L is a subset of the real
numbers.
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Proof. Let λ = a + iβ where β Φ 0. Then for all /eZ>2 we
can see by expanding | | (£ — λ)/||2 that

which implies XgC(L).

THEOREM 2. Let L(y) = y" + P ( % for a^t < oo, where P(t) =

I oY£) /9fr) 1 w^ere ^(*) ^ s positive and has two continuous derivatives.

Let g(t) > 0 be one of a(t) or β(t)9 where both a and β are con-

tinuous on [a, oo) and g(t) has a continuous derivative. Then

if for some sequence of intervals {Am} where Am S [&, °°)> -4-m ==

[cm — α w cTO + am] and αm—> oo, ί/?,̂  following are satisfied:
( i ) min {g(x)} — oo,

(ii) ( ((9f(x)Y)K9(x)) dx = o(am),

(iii) ( g(x)dx = o(a3

m),

(iv) ( γγ(x)Ydx = o(oj f

conclude that C(L) is (— oo, oo).

Proof. We will establish the theorem for #(£) = α(£) since the
other case follows in exactly the same way.

Note that to prove the theorem then we need only show that
for any real number μ there is a sequence </m> in D(L) such that
\\fm II = 1, Λ — 0 a.e., Λ vanishes outside A, and || (L - μ)fm \\ — 0
as m —* oo.

Let </&m> be defined by

- {(« ~ O K ) 2 ] 3 for I ί - c,I ̂

l for I t - c ^

Then define </»(«)> by

( 2 )

where Q1? Q2 are real functions with two continuous derivatives and
δmi, bm2 are normalization constants.

To find I δm I = i/δ2

w l + δ2

TO2 we have

μ-(-)

'(2α
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Hence for some positive constant K

( 3 ) | δ m | 2 -

and

Hence

fm —> 0 as m •

where Kr does not depend on t or m.
Since fm e D(L), we have

(L - μl)fm = fZ + (P - μl)fn

7/ w 2 Ί

OS -

+ (α

+ 08
(L - μl)fm =

Now if Qi is chosen so that

and δm2 is chosen to be identically zero we have that

VI + 2iQ[bmle^h'm(L - μl)fm =

By the way Qt is chosen,

o

+ £II +

Now, by (ii)

a' -f.\

By condition (iv),

II7/. || ^ ( ^ ί I 712)1'' = 0(1) as

Next, by (iii), (3) and (6)

as

m > &o .
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m > oo .r M (α - ^))1 / 2 - o(l) as

Then, by (3), (6), and the Cauchy-Schwartz Inequality

G \ 1/2/ f \l/2

Am / \jAm /

= o(l) as m > oa .

Hence it follows that

\\{L~μI)fm\\ >0 as m

which is what we were to show.

COROLLARY 3. If P(t) = \*ζ ^ Π on some half-line d£t < oo

Theorem 2 and

( i ) α, c > 0 wΐέft <5 < 0, 0 < σ < 2, or
(i i) 6, c > 0 wΐίΛ, δ < 0 , 0 < > 7 < 2

C(L) = (— oo, CXD) .

THEOREM 4. Suppose L(y) is as in Theorem 2, where 7(0 is
positive and has two continuous derivatives. If for some sequence
of intervals {Am}, where Am = [cm - am, cm + αm], Am S [α, c>o)
αm—* oo, ί/̂ β following are satisfied:

(i ) min

(ii) ( ((Y(t)Y)/(l(t)) dt = o(am),

(iii) \ Ί{t)dt - 0 ( 0 ,

(iv) ( a\t)dt and \ β\t)dt are o(am),

m m

then C(L) = (-oo, oo).

Proof. In the proof of Theorem 2 choose Q[2 = Q? = 7(ί) - μ,
so that fmί - /m 2. Then Q[' - Q'2

f = (Y(t))/(2V7(t) - μ) and applying
conditions (i) — (iv) as before where g(t) is replaced by 7(0 we get
that || (£ - μl)fm\\-+θ as m-> oo.

COROLLARY 5. Let P(t) = K J*Π in Theorem 4. I / O 0,

0 < δ < 2 and σ, η < 0 then C(L) = ( - oo, oo).



CONTINUOUS SPECTRA OF A SINGULAR SYMMETRIC DIFFERENTIAL

Let H be the Hubert space L2([a, oo), w) of complex vector-valued

functions /: [α, oo) — C 2 such that | | / | | 2 = Γ w(f*f) < <*>, where w is
Ja

positive and weC{2)[a, oo). Let l(y) = (l/w)y" + Py. Then define Lo

as before and let L be a self adjoint extension of LQ.

THEOREM 6. Suppose there is a sequence of intervals, Am £

m[α, oo), Am = [cm — αm, cm + αm] where am—» oo

( i ) ί (a(wΎ)lv? - o(| am I), ί a/w - o(| ̂ m |)3, min a(t)
JAm }Am teAm

ί (w'Y/w° = o(| A . I), ( (w"Jwγ = o I),

), and

(iv)

as m—> C(L) =

Note that (ii) implies that ( (w'/w2)2 = o(| Aw |3) by (w'/w2)2 =

(wΎ/w*Ί/w and Cauchy-Schwartz Inequality.

Proof. As is the previous theorem define

where / „ = 0 and / m l = ( J . β « Λ > - 1 "

Then again 6L = K/an and | / m l | ̂  δm^~1 / 2 = (K/(wam))112. Calculating

]

(w')a » lβw'W + iQ"\

Then (L — μl)fm = (l/w)fi[ + P/m, where the top element is

1 / i

w m m w

w + W ( W )
4

iQ^'m - w~Wh'

= £sL[-(Qγ + (or
w

—
4

Of course, the second element of (L — μl)fm is 7/w l. By choosing
(Qf)2 = (a — μ)w we have that by (i)



= [(a -

R. ANDERSON

t2 = O((aw)112) as t

a s ί _ c > o .

Then by the calculations above

( 7 )

w2

1 !L w l̂

w
bjw-^w'h'

Since |/m l |
2 £ K/(wam) and {QJ = (α - /*)«;,

= o(l) as m

Similarly,

by (i)

\\fnίw'\wj || g (—

By the definition of Q and fml,

by (ii) .

by(iii).

And by condition (ii),

\\fmlw~W II ̂  ( —

Since I bm |2 = iΓ/αm and | A^ | ^ iΓ ,/^,

|| bmw~^Q'h'm || ^ ((KKϊ/al) \ i^^R))1'2 = 0(l) by (i)
V jAm \ W ) I

Similarly, by the remark at the end of the theorem,

|| bmw-*»w'h'm |j ^ ((KKilO \ {w'fw-'Y = o(l) .

Since | hZ I £ KJal,

II bmw-^K II ^ ((iΓίΓί/αί.) ^ w-2)1'2 = o(l) by (ii) .

By (iv),
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l II ^ ((K/am) ^ 72)1/2 - o(l) as m

Hence, by the above calculations and (7),

\\(L-μI)fm\\ >0 as m

Since this is what we were to show, this conclude the proof.
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