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DISTRIBUTIONAL BOUNDARY VALUES IN THE
DUAL SPACES OF SPACES OF TYPE Sf

RICHARD D. CARMICHAEL AND E. O. MILTON

In this paper it is shown that elements of a space of analytic
functions defined in the tube domain Tc = Rn + /C, where C is
an open convex cone of a certain type, obtain distributional
boundary values in the weak topology of the distribution spaces
(Sf*)', a = (au - , αn), a} ^ 1, / = 1, , n and representation
results of the analytic functions in terms of the boundary values
are given. Converse results are obtained in which an analytic
function in the defined space is constructed from a given
distribution in ((cfx)', and some applications of the distributional
boundary value theorems are obtained. The main results are
proved with the aid of several new lemmas concerning the C°°
function spaces of type <f and their dual spaces. The results
obtained here are motivated by known results used in the
construction of local fields in quantum field theory.

1. Introduction. GePfand and Shilov [9] have introduced
the spaces of type Sf9 which have been shown to be of importance in at
least two areas of applications. GeΓfand and Shilov [10] have used
these spaces for a study of the Cauchy problem; while Constantinescu
[4] and Rieckers [11] have used them in their studies of quantum field
theory.

Constantinescu [4] constructs local fields, which are a category of
fields larger than the strictly localizable ones, and proves that the
vacuum expectation values in a local field theory are boundary values of
functions analytic in a tube domain corresponding to the forward light
cone. These vacuum expectation values are in fact distributional
boundary values of the analytic functions in the weak topology of the
dual spaces of the spaces of type ϊf and are distributions in these dual
spaces.

The present paper is motivated by the distributional boundary
value results of Constantinescu [4, Theorems 1 and 2]. We shall
generalize these results to functions analytic in tube domains corre-
sponding to open convex cones. The quantum mechanical setting of
the tube domain corresponding to the light cone is not the only special
case of our generalizations; we shall see that the results corresponding
to [4, Theorems 1 and 2] for the important mathematical settings of the
half plane in C1 and octant in C" are also special cases of the theorems
we obtain here. We not only obtain generalizations of the known
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results of Constantinescu but also obtain new results concerning
distributional boundary values in the dual spaces of the spaces of type
Sf, and we shall obtain new representations of the analytic functions
which have these boundary values. One of our main theorems gives
more precise information concerning the distributional boundary values
obtained by the analytic functions which we consider here than was
obtained in a previous paper of one of the authors [2]. Further, we
present some mathematical applications of our distributional boundary
value results. The main theorems presented in this paper are proved
with the aid of several new lemmas which we obtain here concerning the
spaces of type if and their dual spaces.

In §2 of this paper we state the notation and definitions needed
here. In §3 we prove some preliminary lemmas concerning the spaces
of type if and their dual spaces. We define a space of functions whose
elements are analytic in tube domains corresponding to open convex
cones in §4 and prove that these functions obtain distributional bound-
ary values in the topology of the dual spaces of the spaces of type
if. Converse results to those of §4 will be obtained in §5; while §6 will
contain some applications.

2. Notation and definitions. The n~ dimensional notation
to be used in this paper will be the same as in Carmichael [2], [3]. We
recall some of the more important notation for the convenience of the
reader, (t,y) = txyx + + tnyn, t E Rn, y E Rn, with a similar definition
for (t,z)9 t GRn, z E C \ By Dy, γ being an n-tuple of nonnegative
integers, we mean the differential operator DΎ = D]ι Dl% where
Dj = (1/2 TΠ) (dldti) or D, = (l/2πi) (fl/ftζ), / = 1, , n. We put D] or
Ό\ to distinguish between differentiating on the real variable t or the
complex variable z. Let W = (wu ,wn) be an n-tuple of
integers. We define tw — t T1 •• t»% t E Rn, with a similar definition for
zw, z E C n . We define | W\ = wx + • + wn and W\ = wx\ wΛ!.

Throughout this paper a =(«i, ••-,«„) will denote an n-tuple of
positive real numbers. The space of functions ya consists of the
infinitely differentiate functions φ such that for each n- tuple W =
(w,, ,H>Π) and each n-tuple γ of nonnegative integers the inequality

\twD*φ(t)\^Mγ (AV A;«) ( r r T : - - )

is satisfied, where ηf = 0,1,2, •,/ = 1, ,n, (for η = 0, the expression
r"1"1 is considered to equal 1, / = 1, ,n.) A = (Ax, -,An) is a con-
stant n- tuple of positive real numbers depending on φ, and Mγ is a
constant real number depending on φ and γ. The set of functions
φ ε ^ β for which the constants Ax = Aί9 , An = An may be selected
arbitrarily greater than a fixed A =(Aί9 — -,An) will be denoted by
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PaA- We emphasize to the reader that all the properties and definitions
which we use here concerning these spaces may be found in GeΓfand
and Shilov [9, chapter IV]; and we note that all the results and
properties proved in [9, pp. 166-237] for one dimension hold equally
well for n -dimensions as stated in [9, chapter IV, §9]. We note in
particular that Sft = U Λ .

The space SftΛ may also be defined as the space of C" functions
such that for each n- tuple y of nonnegative integers the inequality

is satisfied for all δ = (δi, , δ n ) , δ, > 0 , j = 1, , n, where M'y8 is a

constant and

a,

We put

(2) Mp(ί)

p = 2,3,4, , where a, and Ah j = 1, ,n, are related by (1). Then

(3) \\φi=\y\^pMp(t)\Diφ(t)\, p=2,3,4, ,

defines a sequence of norms on ϊfaΛ and SftΛ may be characterized as
the infinitely diίferentiable functions for which | |φ | | p is finite for any
p = 2,3,4, . The space ΐfaΛ belongs to the class of spaces K{MP} [9,
p. 179] and is a complete countably normed space.

A sequence {φv} of elements in ίfaΛ converges to zero in SftΛ if (i)
the norms \\φv \\p are bounded independently of v for any p = 2,3,4, •
and (ii) for any n- tuple γ of nonnegative integers, the sequence
{D]φv(t)} converges to zero uniformly in any segment {t: |^ | = d} <oo,
j = 1, ,n}. A sequence {φv} of elements of &>

a converges to zero in
ίfa if (i) there exists an A such that φv E ίfaΛ for every υ and (ii) {φv}
converges to zero in SftΛ for this value of A.

We define the Fourier transform for L1 functions φ(t) by

= ί
JR"

while the inverse Fourier transform is
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= ί
JR

Let a and A be n- tuples as previously stated in this section. The
spaces Sf* and <f*Λ are defined in [9, chapter IV, §§2.2, 3.2, and 9]. We
note that ίf* = &[Sft] and 9>xΛ = 9\&tΛ\\ that is T is the Fourier
transform space of Sft and ίfxΛ is the Fourier transform space of
&tΛ. We further note that if φ(t) G &„ then ψ(jc) = &[φ{t)\ x]E¥\
and ψ can be recovered from ψ by φ(t) = ZF~ι[ψ(x); t]. The same
situation holds for the spaces ίftΛ and 5^Λ. In fact the Fourier
transform is a continuous, linear, one-one mapping of Sft onto ίfΎ and
SftΛ onto 5^Λ with the same being true of the inverse Fourier transform
mapping ίfx onto ίfx and &>ΛΛ onto &>

xΛ% For the notions of con-
vergence in Sf* and if* A we refer to [9, chapter IV].

The dual spaces of &„ ίftΛ, Sf\ and ifxΛ are denoted &„ TaΛ,
{Sf')\ and (&*-*)', respectively. It is known [4, p. 296] that (#") ' =
Ψ [5 ;̂j and (SftΛ)' = 9\TaΛ\ That is (5^)' is the Fourier transform
space of 5̂ 1, and (Sf*Λ)' is the Fourier transform space of &"aΛ. We
recall the definition of this distributional Fourier transform because it
will be of extreme importance in this paper. The Fourier transform of
an element V E Sf'a is defined to be the element U such that the Parseval
relation.

(4) <ί/,ψ) = <v,φ>, φ e ^ , , ψ = φey*9

holds. The element U so defined from V G <f'a is in (if*)' and is the
Fourier transform, denoted U = ^[V], of V. (4) is a valid definition
because of the relation between &?

t and ίfx via the Fourier transform;
and in fact the Fourier transform defined by (4) is a continuous, linear,
one-to-one mapping of Sf'a onto (£f*).

The definition of the spaces of Cx functions %, 3), and ίf and the
spaces of distributions S)' and ίf' can be found in Schwartz [12]. We
have the containments 2 C<fx C¥, ST Ctf'aC2)\ and T CTaΛ CO)' [4,
p. 296]. supp(/) and supρ( V) denote the supports of the function / and
the distribution V, respectively. (See Schwartz [12] for the support of
a distribution.)

The set CCR" is a cone (with vertex at zero) if y EC implies
μy EC for all positive scalars μ. The intersection of the cone C with
the unit sphere is called the projection of C and is denoted pr(C). Let
C be an open cone such that pr(C')Cpr(C); then C" will be called a
compact subcone of C. The function

iic(O= sup (-<ί,y», f ER",
yepr(C)
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is the indicatrix of the cone C, and the set C* = {t: uc(t)^0} =
{t: (y, 0 = 0, y E C} is the dual cone of the cone C. The number

Pc = sup
c

characterizes the nonconvexity of the cone C, where O(C) denotes the
convex envelope of C. Throughout this paper Sb will denote the set
Sb={t:uc(t)^b} where b =• 0; and Tc will be the set Rn 4- iC CO. If
the cone C is open and connected, Tc will be called a tubular radial
domain.

In this paper we shall use some terminology from the theory of
topological vector spaces and their dual spaces such as bounded set in a
topological vector space, bounded set in a vector space which is the
union of topological vector spaces, strongly bounded set in a dual space,
and strongly continuous mapping between two dual spaces. We refer
to Edwards [6] and Friedman [7, Chapter 1] for this terminology.

Let C be an open connected cone, and let C" be an arbitrary
compact subcone of C. Let /(z) be a function of z = x + iy E T c ; and
let U be a generalized function. By /(z)—• U in the weak topology of
the generalized function space as y=Im(z)—>0 (i.e., y,-—>0,
j = l, ,n), y E C ' C C , we mean (f(z),ψ(x))-+(U,ψ) as y-»0, y E
C'CC, for each fixed element ψ in the corresponding test function
space. We then call U the (weak) distributional boundary value of
/(z); and we note that it is defined on the distinguished boundary of Γc,
{z = x + /y: x E R\ y = (0, ,0)}, which is not necessarily the topologi-
cal boundary of Tc.

We are concerned in this paper with analytic functions defined in
tubular radial domains Tc or Tc\ where C is an open connected cone
and C is an arbitrary compact subcone of C. Bochner's analytic
extension theorem [1, Chapter 5] states that any function which is
analytic in such a tube domain has an analytic extension to the convex
envelope of the tube domain. In light of this result it suffices to assume
for our purposes in this paper that the open connected cone C is in fact
convex and that the compact subcones of C are convex. This assump-
tion will be made in the remainder of this paper.

3. Preliminary l e m m a s . In this section we shall obtain
some lemmas concerning the spaces of type if and their dual spaces
which will be useful in the succeeding sections. We begin by proving a
series of lemmas concerning the spaces of type 5P, 5^.

LEMMA 1. Let Φ C ? be a set of functions such that for each
n-tuple y of nonnegatiυe integers {DΎφ(t): φ &Φ} is uniformly
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bounded. Let Ψ be a bounded set in Sfa. Then ΦΨ = {φψ:ψGΦ,
φ EΨ} is a bounded set in $fa.

Proof. The space Sfa can be constructed as U Λ P>* P 178, p.
238], where A = ( n , - ,n), n = 1,2,3, . The spaces S O are com-
plete countably normed spaces, and S O CSft,B if Λj<Bhj =
1, , n. Thus there exists an n-tuple A = (Λ,, ,Λn) such that Ψ is a
bounded set in S O since Ψ is a bounded set in <?,. It is obvious that
ΦΨ C %. Let p = 2,3,4, be arbitrary but fixed. For the fixed p, let
γ be an arbitrary n-tuple of nonnegative integers such that | γ | =
p. Let φEΦ and ψ EΨ. Choose the n-tuple (aU',an) from the
n-tuple A according to (1) and recall the function Mp(t) from
(2). Using the generalized Leibnitz rule we have

Mp(t)D](φ(t)φ(t)) =

where β and p are n- tuples of nonnegative integers. Letting Nβ

denote the uniform bound on {Dβφ(t): φ EΦ} and recalling that γ is an
arbitrary n- tuple of nonnegative integers such that | γ | g p, we obtain

Mp(t)\D](φ(t)φ(t))\^Mp(t) Σ 7ΓΓΊ
β+P = Ύ P P

Σ

Inequality (5) holds for each | γ | , | γ | ^ p , and all t 6 R " . Thus

(6) WΦΦWP =\\Ψ\\P S U P I Z, aΓΊNβ)'
\y\^p \β+p = γ P 'P ' J

Since p = 2,3,4, is arbitrary and φ G Ψ C ^ - , then (6) shows that
ΦΨ C SO. Further (6) proves that ΦΨ is a bounded set in SO since Ψ
is a bounded set in SO. Thus ΦΨ is a bounded set in 5̂ α, and the proof
is complete.

As we have noted in §2, the SO spaces belong to the class of
K{MP} spaces of GeΓfand and Shilov [9, p. 177], where Mp(t) is defined
in (2); and GeΓfand and Shilov [9, p. 177] prove that condition (P) of [9,
p. 92] is satisfied. Further, it is easily seen that both conditions (M) and
(N) of [9, p. 111] are also satisfied. Thus by [9, pp. 111-112], the system
of norms in (3) is equivalent to the system of norms
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; = sup | R M P ( 0 \D"φ{t)\dt, p =2,3,4,( 7 )

in 5 ,̂Λ, where Mp(t) is the function defined in (2). Using this fact we
now prove the following lemma.

LEMMA 2. Let C be an open convex cone. Let {ψy(t): y E C}C<£
such that for each n-tuple y of nonnegatίve integers {D](φy(t)): y EC}
is uniformly bounded and Dy

t(ψy(t))-*0 pointwise for t E Rn as y -»0,
y E C. Then for each φ E #,, φψy^0 in ¥« as y ->0, y E C.

Proof Let φ be an arbitrary but fixed element in Sfa. As in the
proof of Lemma 1, there exists an n-tuple A such that φ E SfaΛ. Let
p =2,3,4, ••• be arbitrary but fixed. For the fixed p, let γ be an
arbitrary n-tuple of nonnegative integers such that | γ | ^ p . It is
obvious that φψyξΞCx for each y E C ; and using the generalized
Leibnitz rule we have

(8) Mp(t)\D](φ(t)ψy(t))\^Mp(t)

where Mp(t) is the function in (2) and β and p are n-tuples of
nonnegative integers. Now let Np denote the uniform bound on
{Dp

t(φy(t)): y E C}, and recall that γ is an arbitrary n-tuple of nonnega-
tive integers such that | γ | ^ p. From (8) we obtain

Mp(t)\D](φ(t))\^ Σ
β+P =

(9)

This inequality holds for all γ, | γ | g p, and all t E Rn. It thus follows
from (9) that

(10) \\φψy\\p^\\φ\\p sup( £
|γ|έp \β+p =

and this bound is independent of y E C. Since p = 2,3,4, is arbi-

trary and φ E $faΛ, (10) shows that (φψy) E ^faΛ for each y E C and the

norms | |φψ y | | p , p = 2 , 3 , 4 , •••, are uniformly bounded independent of

yea
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It remains to prove that {DΎ

t(φ(t)ψy(t))} converges to zero uni-
formly in any segment {t: \t} | g d, <°°, j' = 1, ,n} for each n-tuple γ
of nonnegative integers as y -» 0, y E C To do this it suffices to show
that

(Π) lun||<Wy | |p=0, p=2,3,4,

from which it is easily seen that we can actually conclude
{Dy

t(φ(t)ψy(t))} converges to zero uniformly on the whole of R" for
each n- tuple γ as y —»0, y E C To prove (11) it suffices to show

(12) lim||φψy | |; = 0, p=2,3,4, ,
y-»-0
yGC

since the system of norms defined in (3) and (7) are equivalent in
ίfaΛ. Thus we again let p = 2,3,4, * be arbitrary but fixed and γ be an
n- tuple of nonnegative integers such that | γ | ^ p. For the fixed p we
put

Then

Mp(ί)

Thus

MP(O |Dϊ

(13) SM p +

Again let Np denote the uniform bound on {Di(φy(t)): yGC} and recall
that γ is arbitrary such that | γ | ^ p . From (13) we obtain

Mp(t) \DUΦit)φ,(t))\
(14)

Σ
β+p =
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Since φ G 5?β,A implies \\φ\\p+ι < °°, we see that the right hand side of (14)
is an element of L ι and bounds the left hand side independently of
y G C . Further from (8) we have

(15) Mp{t)\D]{φ(t)ψy{t))\^U\i

The hypothesis that DΎ

t(ψy(t))-+0 pointwise on R" as y —>0, y —• C, for
each γ and (15) show that (Mp(ί) |Dy(φ(O<MO)|)^>0 pointwise on R"
as y->0, y EC. An application of the Lebesgue dominated con-
vergence theorem now yields

(16) lim ί Mp(t) \D](φ(t)φy(t))\ dt = 0,

and (16) holds for each γ, | γ | ^ p . It thus follows from (16) that
llΦΨyllp^O as y ^ O , y G C ; and we recall that p = 2 , 3 , 4 , is
arbitrary. Thus (12) holds. By definition of convergence in 5C we
have φψy->0 in ίPa as y —>0, y G C; and the proof is complete.

We note the following restricted version of Lemma 2.

LEMMA 3. Let C be an open convex cone, and let Q be an arbitrary
but fixed positive real number. Let {ψy(t): y G C } C ^ such that for
each n-tuple y of nonnegative integers {DΎ

t(φy(t)): y G C , | y | ^ Q } is
uniformly bounded and Dy

t(φy(t))^>0 pointwise for t ER" as y —•(),
y G C . Then for each φ G #,, φφy -> 0 in £fa as y -+ 0, y G C.

It is clear that Lemma 3 is just a special case of Lemma 2 since we
are obtaining a convergence result as y —> 0, y G C. We state Lemma 3
separately because it is the version of this result which we use later in
this paper.

Let b^O be fixed. Let ξ(η)E%, η ER\ such that ξ(η)=l,
η^(-b), ξ(η) = 0, η^(-b-e), e > 0 and fixed, and O^ξ(η)^
1. Put

(17) λ(f) = f«y,f», y E C , ί E R " ,

where C is an open convex cone. We have λ(t)E Έ, ίER".

LEMMA 4. Let C be an open convex cone, and let φ G £fa. Let
λ(t) be the function defined in (17) where b^O is arbitrary but
fixed. Then (λ(t) exp(-2π(y,t))φ(t))-^(λ(t)φ(t)) in £fa as y-+0,
y G C
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Proof. It suffices to show (λ(ί) (exp(-2π<y,f»- \)φ(t))-+O in
5̂ a as y-^0, y E C . To do this we use Lemma 3 with

ψ y ( t ) = ( λ ( t ) ( e ~ 2 π { y t ) - \ ) ) , y E C

Note first that {φy(t): y EC}Cg. Let γ be an arbitrary n-tuple of
nonnegative integers, and for the present let y be an arbitrary but fixed
point of C. Using the generalized Leibnitz rule (recall D, =(l/2πί)

(18) D](φy(t)) =

Now exp ( - 2τr(y, t)) —> 1 pointwise for t E Rn as y —• 0, y E C Since
Dβλ (ί) is bounded on R" for each β, β + p = γ, we have that the term in
the sum in (18) which corresponds to β = γ and p = (0, ,0) satisfies
(DYλ(f) (exp(-2τr(y,O)- l))-»0 pointwise for ί E R n as y-*0, y E
C In order to obtain a similar convergence in the other terms in the
sum in (18), we must recall that by the definition of λ(ί), Dβλ(t) = Ofor
all β, β + p = γ, for t E R" such that (y, t) ^ ( - b - e), y E C. Thus
Dl(ψy(O) = 0 if (y,ί)g(-fo - 6 ) , y E C ; so that it suffices to consider
D](ψy(t)) for ί ERn such that ( y , ί ) > ( - f c - e ) , y e C . For the other
terms in the sum in (18), those corresponding to p ^ (0, ,0), Dp(l) = 0;
and for < y , 0 > ( ~ ^ - c ) , t <ΞC,

\Dβλ(t) (i)lplype-2lT{yJ)\^ Kβe
2"ib+€)\yp\

where b §0and e >0 are fixed and Kβ bounds |D β λ(ί) | , t ERΠ. This
estimate combined with the fact that D](ψy(t)) = 0 for all t GR" such
that (y, ί) ^ ( - b - β), y E C, shows that all the terms in the sum in (18)
corresponding to p ^ (0, ,0) converge to zero pointwise for t E Rn (in
fact uniformly in t E R") as y —>0, y E C . Thus we have that every
term in the sum in (18) converges to zero pointwise for t ERn as y -»0,
y E C ; and from (18) this same convergence holds for DΎ

t(ψy(t)) for any

y
It remains to show that the set {DΎ

t(ψy(t)): y E C, |y | ^ Q}, where
Q is a fixed positive real number, is uniformly bounded for each n- tuple
γ of nonnegative integers. Again recalling that D](ψy(t)) = 0 for
t GR" such that (yj)^(-b - e ) , y E C, we obtain from (18)

GR", where y E C such that | y | ^ Q , Kβ bounds |D β λ(ί) | , and b g
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and e >0 are fixed. Thus for each γ, {D](ψy(t)): y e C, |y | g Q} is
uniformly bounded (i.e., bounded independently of f ERn and y E C
such that I y | ^ Q.) We conclude from that

(λ(ί)exp(-2τr<y,ί>)-l)φ(ί))-*0

in £fa as y —>0, y E C, which proves the desired result.

LEMMA 5. Let C be an open convex cone, and let Ψ be a bounded

set in Sfa. Let λ(t) be the function defined in (17) where b^O is

arbitrary but fixed. Let Φ = {λ(t)exp(-2π(yj}): y E C, | y | ^ < ? } ,

where Q is an arbitrary but fixed positive real number. Then ΦΨ is a

bounded set in Sfa.

Proof. Obviously ΦC<£; and from the proof of Lemma 4,
{Dϊ(λ(ί)exp(-2π<y,f'»): yeC, \y\^Q} is uniformly bounded for
each n- tuple γ of nonnegative integers. By Lemma 1, ΦΨ is a
bounded set in $fa.

In this paper we shall at times consider open convex cones C
having the following property which we denote as property (C):

(C)An open convex cone C has property (C) if for each φ E &)

a there
exists an n-tuple A = (Au ,ΛΠ), Af >0, j = 1, ,n
such that A E C and φ E SfaA.

Examples of open convex cones having property (C) are C = (0, o°),
C = (0, oo), x (0, oo)2 x . . . x (0, oo)n, and the forward light cone C = Γ =
{y E R": y, > (Σ"=2 (y/)2)(l/2)} These cones define the upper half plane in
C1, the octant formed by the product of n upper half planes in Cn, and
the tube domain corresponding to the forward light cone Γ+ in C",
respectively; and each of these three domains in complex space is an
example of a tubular radial domain. In this paper (§§4 and 5) we shall
obtain theorems concerning functions analytic in tubular radial domains
which are defined by open convex cones which may or may not satisfy
property (C). In either case the corresponding theorems for the
domain of analyticity being the upper half plane, octant, or tube domain
corresponding to the forward light cone will be special cases of the
theorems we obtain in §§4 and 5.

The following four lemmas concern the spaces Sf'a, which are the
duals of the spaces of type 5̂ , ίfa.

LEMMA 6. Let V ε S ' . Let C be an open convex cone which
satisfies property (C); and let (exp ( - 2ττ(y, t)) Vt) E 'ίff

a for every y EC,
where a = (au , α π ) , α, ^ 1, / = 1, ,n. Then V E £f'a.
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Proof. Let φ G ίfa. According to property (C), there exists an
n-tuple A =04,, ,AΛ), Λ > 0 , /==l, ,n, such that A EC and
φ G yα,Λ. Since C is a cone then y = (1/2)A G C We now proceed
exactly as in the proof of [4, Lemma 2] to obtain the desired result; for
we have obtained in our present setting exactly the properties that
permit the proof of [4, Lemma 2] to hold. Further the method holds
equally well for Ta, a = (au ,αn), α, g 1, / = 1, ,rt.

LEMMA 7. Let V G $f 'a C 2)' and φ Eίfx, where a is restricted as in
Lemma 6. Then φV E<ff.

Proof, See Constantinescu [4, Lemma 1] and note that the proof
holds equally well for a = ( α b %αn)? α, ̂  1, / = 1, ,n.

LEMMA 8. Let C be an open convex cone and let y be an arbitrary
but fixed point of C. Let {φn} be a sequence of functions in ¥a which
converges to zero in ̂ a as n ~> oo, and put

ψn(t) = (λ(t)e-2^t}φn(t)l n = 1 , 2 , 3 , 4 , •••,

where λ(t) is the function defined in (17) corresponding to b > 0. Then
{ψn} is a sequence of functions in ίfa which converges to zero in !¥a as
n

Proof. It is obvious that for each n, ψn(t)&Cx. Since {φn}
converges to zero in ίfa, there exists an n-tuple A =(A1, ,Λn) of
positive real numbers such that φn G ίfaΛ for each n and φn —> 0 in £faΛ

as n -»oo. Let p = 2,3,4, be arbitrary but fixed. For the fixed p,
let γ be an arbitrary n- tuple of nonnegative integers such that | γ | ^
p. By the generalized Leibnitz rule we have

(19)

where Mp(ί) is the function defined in (2). Recalling the definition of
λ(ί), we may now argue as in the proof of Lemma 4 and consider (19)
for t G R" such that (y,t)>(~ b - e),y EC. From (19) we thus obtain

(20) Mp(t)\D^ψn(t)\^\φn\\P Σ β f e
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where y G C, b ^ 0 , and e > 0 are fixed and Kv bounds |D"λ(ί) |. (20)
holds for each γ, | γ | ̂  p, and all t E R\ Since {</>„} converges to zero
in 5^ A then \\φn\\p is uniformly bounded independent of n. It now
follows from (20) that the same is true for || ψn \\p by an argument similar
to obtaining (10), and p = 2,3,4, is arbitrary. It also follows that
ψn(t)E£fa,Λ for every n.

Now let γ be an arbitrary n- tuple of nonnegatίve integers and let
ίGR" be restricted to any interval {t: |f, | ̂  d, <oo, / = 1, ,n}. We
still need only consider such t that also satisfy ( y , ί ) > ( - ί ? - e ) , y G C ,
because of λ(t). We have

(21)

where y £ C , b ^ 0, and 6 > 0 are fixed, and Kv bounds
|D"λ(ί)|. Since {φn} converges to zero in SfaΛ, then {Dp

t(φn(t))}
converges to zero uniformly on {ί: |ίj l^d,-<t», / = l, ,n}. (21)
proves that the same is true of {D](φn(t))}, Thus we have proved that
φn E^aΛ for each n and {ψπ} converges to zero in SfaΛ. Thus {ψn}
converges to zero in £fa.

The following result is a converse to Lemma 6.

LEMMA 9. Let C be an open convex cone. Let V G ^ l with
supp (V)CSb ={t: uc(t)^b}, where b ^ 0 is arbitrary but fixed. Then
(exp(- 2τr<y, t))Vt)e Ta for all yGC.

Proof. Let φ E ϊfa. From the proof of Lemma 4, (λ(f)exρ(-
>)Φ(O)e^« y e C . Since supp(V)CSb,

(22) <β -2-<"> V, φ (ί )> = < V, λ ( f ) β -2'<*'>φ (ί )">.

From the fact that V G ^ l and (22), it is easily seen that (exp(-
2ττ(y, t))Vt) is a linear functional on 5̂ α, y E C. Let {φn} be a sequence
of functions in Sft which converges to zero in ίfx. By Lemma 8 and the
continuity of V Eίf'a we have

lim (e -2'<*'> V, φn (ί )> = lim < V, ψn (ί )> = 0
f t > o o Π ° o

where y is arbitrary but fixed in C. This proves that (exp(
2ττ(y,t))Vt) is continuous on Sfa, and the proof is complete.
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4. The space °U h

c and distributional boundary values
in ( y ) ' . We now define the space of analytic functions °Ubc with
which we are concerned in this paper. Let C be an open convex cone,
and let C be an arbitrary compact subcone of C. Let N(0, m) denote a
closed ball of the origin in Rn of radius m >0. Denote Γ(C',m) =
Rn + i{C'\{C Π N(0, m))). We consider functions f(z) which satisfy

(23)

z =x + iy G T(C',m)

for all σ > 0, where m > 0, K(C') is a constant depending on C", N is a
nonnegative real number, and b is an arbitrary but fixed nonnegative
real number. We denote by °Uc the set of all functions f{z) which are
analytic in T(C\m) and satisfy (23) where C" is an arbitrary compact
subcone of C and m > 0 is arbitrary.

We shall now prove two lemmas which we shall need for our study
of the functions °U b

c. In the following two lemmas and throughout the
remainder of this paper Γ(C',ra) denotes the set Rn +
i'(C'\(C'nN(0,m))).

LEMMA 10. Let C be an open convex cone, and let C be an
arbitrary compact subcone of C. Let g(t), t GR", be a continuous
function with support in C* = So = {t: wc(ί) = 0}. Let

(24)

for all σ > 0, where M(C') is a constant depending onCCC and (24) is
independent of ΩG(C'\(C Π N(0,m))), where m >0 is arbitrary but
fixed (i.e., (24) holds for all ΩE(C'\(C'ΠN(0,m))).) Let y be an
arbitrary but fixed point of (C'\(C Π N(0,m))). Then (exp(-
2τr(y, 0) g(t)) G Lp, 1 ̂  p < oc, as a function of t G Rn.

Proof. Let y be an arbitrary but fixed point of {C'\(C ΓΊ ΛΓ(O, m)))
where m > 0 is arbitrary but fixed. We choose Ω in (24) as Ω = μy
where μ is a positive real number such that 1 > μ > (m /| y |) > 0. (For
y G (C'\(C Π N(0, m))), | y | > m. Thus 1 > (m l\ y |) > 0, and (m /| y |) is
fixed since both m > 0 and y are fixed. We thus choose a real number
μ such that 1 > μ > (m /| y |) > 0. Since C" is a cone and y G C\ then
μ y G C \ Thus Ω = μy e(C'\(C Π N(0,m))) since μy G C and
I μy I = μ | y | > m. By assumption, (24) holds for this particular choice
of Ω.) By Vladimirov [14, Lemma 2, p. 223] there exists a real number
d > 0 such that
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(25) < ί , y > i = d | y | | ί |

for all t E.C* and y G C CC. Using the above choice of Ω, we have
from (24) and (25) that

) exp(2τrorμ|y|) exp(2τr(l-μ) ( -
(26)

=£ M(C') exp(2πσμ|y |) exp(-

and (26) holds for all t G C* and y G (C'\(C Π N(0, m))). From the
choice of μ, (1 - μ) > 0; and from (25), d > 0. Now let 1 ̂  p < °° and
recall that supp(g) C C*. We have from (26) that

ί \e-2w<yJ>g(t)\'dt = ( le-'^giDl'dt
JR" JC*

^ (M(C'))P exp(2τrσμp | y |) ί exp(- 2π(l - μ )dp | y | | ί |) A.
Jc*

Using a classical result concerning the Lebesgue integral (see Schwartz
[13, Theorem 32, p. 39]) and (27) we have

(28)

^(M{Cr))p(Zn) εxp(2πσμp\y |) s n l e x p ( - 2 π ( l - μ ) φ | y |s) ds,
Jo

where Zπ is the area of the unit sphere in Rn; and ( l - μ ) > 0 and
d > 0. Integrating by parts (n - 1) times on the last integral in (28) we
obtain

ί
JR

(29)
^(M(C'))p(Zn)exp(27rorμp|y|) (n - 1)! (2π(l - μ)dp|y |Γ".

Now (29) holds for all σ > 0, y is fixed in (C'\(C Π N(0, m))), and μ is
fixed. Thus the right hand side of (29) is finite; and we conclude from
(29) that (exp(-2ττ(y, t))g(t))EL", 1 £ p < », as a function of / GR"
for fixed y G (C'\(C Π N(0, m))).

LEMMA 11. Lei C fee an open convex cone, and let C be an
arbitrary compact subcone of C. Let V = Dyg(t), where g(t) is a
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continuous function on R" which satisfies (24). Let supp(V r)CC*
So. Then f(z) = ( V, exp(2τri<z, t))) is an element of %°c.

Proof. Let C be an arbitrary compact subcone of C and m > 0 be
arbitrary but fixed. C* is a regular set (Schwartz [12, pp. 98-99]); thus
supp(g) = supp(V) C C*. We now consider the function

(30) f(z) = (V, e2ir/<2''>> = ( - ί)Mzy ί g(t) elηri{zt)dt.
Jc*

(With V = DΎg(t), we have formally used the definition of distributional
derivative in (30). By what we prove below, this formalism is
valid.) We wish to prove the existence and analyticity of f(z) for a
suitable restriction of y = Im(z). To do so it suffices to consider

(31) h(z)= ί
JC*

Let z0 be an arbitrary but fixed point of T(C',m) and let JR(z0,r)C
T(C',m) be an arbitrary but fixed neighborhood of z0 with radius r
whose closure is in Γ(C',m). Let zGR(zQ,r), and let β be an
arbitrary n-tuple of nonnegative integers. From Vladimirov [14,
Lemma 2, p. 223] we obtain the existence of a real number d > 0 such
that

(32) < ί ,y)^d | ί | , z=jc + ίyej?(zo,r),

for all tEC*. Since JR(zo,r) is fixed and has closure in T(C\m),
there exist two balls of the origin in Rn of radius 5 and Γ, respectively,
such that

0 < m < S < | y | < T

for ally = Im (z),z =x + ίy GJR(ZO,Γ). We now let μ =(mlS). Then
0< μ < 1. Further, μy E C" for y = Im(z), z = x + iy G JR(zo,r), since
C" is a cone; and | μy | = μ | y | = (m /S) | y | > (m /5) (S) = m. Thus if
μ^(mlS) and y=Im(z) , z = JC + iy GR(zQ,r), then
μy e(C'\(C'ΠN(0,m))). We now choose Ω = μy, μ=(mlS), y =
Im(z), z = JC + iy E JR(z0, r), in (24). With this choice of Ω, we have
from (24), (32), and the fact that | y | < Γ for all y=Im(z), z =
x-h/y Ei?(Zo,r), that
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f
Jc*

g(t) ^ ί \tβ\
Jc*

=̂ M(C ') I
Jc*

\tβ I e 2 i r μ ( y J ) e 2 m r μ ^ e ~ 2 i r { y ' t ) d t

and ( l - μ ) > 0 , d>0. Again using the result in Schwartz [13,
Theorem 32, p. 39] as in (28), we have from (33) that

If g{t)tβe27ri{zt)dt

(34) Γ slβl+nl

Jo
- μ)s)ds

where as in (28) Zn denotes the area of the unit sphere in R". From (34)
we conclude that the integral defining h(z) in (31) and any derivative,
Dβh(z), of it converges uniformly for zGR(zo,r). (Recall that
μ = (m IS), σ > 0, and T are all independent of z E R(z0, r).) Since z0

is an arbitrary point in Γ ( C , m), we thus have that h(z) defined in (31)
exists and is analytic for z E Γ(C\ m). From (30) it thus follows that
f{z) exists and is analytic for z E T(C',m), where C is an arbitrary
compact subcone of C and m > 0 is arbitrary.

Letting β = (0, ,0) in (34), we have immediately from (30) and
(34) the existence of a constant K(C) and a positive real number N
such that

)N, z E Γ ( C ' , m ) .

(Note that K(C') also depends on V here because of the γ in zγ.) But
for any σ > 0 and y e(C'\(C'nΛΓ(0,m))), exp(2πσ|y | )> 1. Thus

|/(z)| S K(C') (1 + \z \)N exp(2ττσ|y I), z = JC + ίy E Γ(C f,m).

This completes the proof that f(z) = (V,exp(2τri(z, t)))E °UC-
Throughout the remainder of this section we assume that C is an

open convex cone such that property (C) (see §3) is satisfied by each
compact subcone C of C, and C" will always denote such a compact
subcone of C. Further, we assume throughout the remainder of this
section that the n-tuple a = (α,, ,αn) is such that a} g l , j = l, , n.
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In the following theorem we show that elements of the space of
analytic functions °ttc obtain distributional boundary values in (S^α)' on
the distinguished boundary of the tubular radial domain Tc.

THEOREM 1. Let f(z) E <%£» where C is an open convex cone such
that property (C) is satisfied by each compact subcone C ' C C Then
there exists a unique element VE!?'a with s u p p ( V ) C S b =
{ί: uc(t)^b} such that (cxp(-2π(y,t))Vt)E^f

a for all yGC and
f(z)-+&[V] E {Sfx Y in the weak topology of {ifx)' as y-+0,y EC CC.

Proof Let C be an arbitrary but fixed compact subcone of
C. By hypothesis f(z)E°llc; thus for any m >0 f{z) is analytic in
T(C\m) = Rn + i'(C"\(C" Π JV(0, m))) and satisfies (23) there. We may
choose an n-tuple W = (H>,, , wn) of nonnegative integers such that

\z-wf(z)\£ K{C) (1 + |z | ) — exp(2π(b + σ)|y |),
(35)

where n is the dimension and e > 0 is fixed. Put

(36) gy(t)= f z-wf(z)e'2iriMdx, z = x + iy <ΞT{C',m).

Because of (35), gy (t) exists and is a continuous function of t E Rn. We
may now apply exactly the same method of proof as in Carmichael [2,
Theorem 1] to show that gy(t) is independent of y=Im(z) and
supp (gy) C Sb ={t: uc(t)^b}. (From now on we write g (t) instead of
gy(t) to emphasize the independence of the function defined in (36) from
y = Im(z).) From (35) we see that (z~wf(z))E L1 Π L2 as a function of
jc=Re(z)6R n , ye(C'\(C'nN(0,m))) . Thus from (36) and the
Plancherel theory we have (exp(- 2ττ(y9 t))g(t))EL2 as a function of
ί 6 R " ; and

(37) z"7(z) = &[e-2*™g(t): x], z = x + iy E T(C\m\

where the Fourier transform is in the L2 sense. From (35) and (36) we
have

\g(t)\^K{C')exp(2π{(y,t) + {b +σ)\y\)) ί (l + \z\r»-<dx
JR"

(38)
g M(C') exp (2τr«y, t) + (b + σ) \ y |)),
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z = x + iy E Γ ( C , m), for all σ > 0, where M(C) is a constant depend-
ing on C'CC and the boundedness property (38) is independent of
y E (C'\(C Π N(0, m))) since g(t) is independent of y. Thus from (38)
we have

(39) \e-2w<yJ>g(t)\^M(C')eib+σ)lyl

9-y E ( C ' \ ( C Π N(0,m))).

Hence for y arbitrary but fixed in (C'\(C Π N(0, m))), (exp ( - 2ττ(y, ί>)
g(O) is a continuous bounded function of ί E R " ; so that
(exp(-2τr(y,O) g(t))E:Sf9 CSf'a. Further g ( f ) e ® ' since it is
continuous. Applying Lemma 6 and its proof, we have g(/)E
Sf'a. (We may invoke Lemma 6 here because the exact same proof as in
Lemma 6 will give the desired result that g(t)G £f'a under the assump-
tions that g(t)G3)\ (exp(-2π(y,t))g(t))<Ξ¥'a for all yG
(C'\(C'nJV(0,/n))), and C satisfies property (C), which we have
assumed for all compact subcones C in this theorem. This is true for
since C is an open convex cone itself and has property (C), then for
each φ E ίfa there exists an n-tuple A = (A,, ,An), A y >0, / =
1, , n, such that A E C" and ψG 5 β̂.A. Now if A E
(C'\(C Π N(0, m))) then let D = A while if A £ ( C ' \ ( C Π N(0, m))),
choose £ > 0 large enough so that D =
ξA E ( C ' \ ( C Π N(0, m))). This may be done since C is a cone. In
either case φ E 5 α̂D since A, ̂  D/? j = 1, , n, implies 5 α̂Λ C
5^ϊD. Thus we now have an n-tuple D of positive real numbers such
that D E (CMC1 Π N(0, m))) and φ E #. D . Now making the choice of
y =μDε(C'\(C'ΠN(0,m))) , where μ > 0 such that l > μ >
(m l\ D |) > 0 (recall the proof of Lemma 10 where we chose Ω = μy), we
may proceed as indicated in the proof of Lemma 6 to obtain the result
that g(t)E9>'a. Note here that the selection of y =
μDE(C'\(C' Π JV(0,m))) is the same step as letting y = (1/2)A in the
proof of Lemma 6.) Λ

We now define the differential operator Δ by

where W is the n- tuple chosen at the beginning of this proof. Since

g(t)esra,

Further, supp (V) = supp (g) C Sh = {t: uc(t) ^ b}. Thus by Lemma 9,
(exp(-2ττ(y,0)V,)E^: for all y E C

It remains to prove the desired convergence. . Foe the moment we
let y be an arbitrary but fixed point of (C\(C Π 7V(0,m))). As we
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have shown above, (exp(-2τr(y, t)) g{t)) E &"a, y e
(C'\(C Π N(0, m))) and (z~wf(z)) G L' Π L 2 as a function of JC G R\ y E
(C'\(C Π N(0, m))). Thus (37) holds as an equality in (<f")' and from
(4) we have

), ψ(x)) = (Ple-wogit); x], Φ(x))
( 4 0 ) _ , . . , . < ,

z=x + iyE T(C',m), for y arbitrary but fixed in (C'\(C Π N(0,m))),
where φ E ίft and ψ = φ Eίf\ Since supp(g) C 56, we have

(41) (e-wg(f),φ(ί)> = {g{t),λ(t)e-2*^φ{t)),

where λ(ί) is the function defined in (17). By Lemma 4, (λ(ί)
exp(-2τr(y,t))φ(t))->(λ(t)φ(t)) in Sfa as y -^ 0, y G C CC. Since
g(t)Ei&"a and suρρ(g)C5(,, we thus have

(42) lim Φ
yGC'CC

Combining (40), (41), and (42) and using (4), we obtain (recall m > 0 is
arbitrary)

lim <z-w/U), ψ(x)> = <g(ί), Φ(t))
yeccc

from which it follows that

(43)

as y =Im(z)-»0, y e C ' C C .
Since V = Δ g ( ί ) e ^ , then ^ [ V ] E ( ^ ) \ Letting

there exists an element χ(t) = χ( - t) E # such that ^(JC) =
(recall that the Fourier transform is a continuous linear one-one
mapping of Sfx onto ίfx)\ and this ^ ( 0 is given in terms of ψ(jc) by

- 0 ] = ί

By (4) and the definitions of Δ and of the distributional derivative,
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, ί
(44)

xwφ(,x)elπiMdx).= <g(ί),f

It is known that multiplication by a polynomial is a continuous operation
in Sf* [9, Chapter IV, §4]. Thus φ(x) E Sf* implies (x wψ(x)) e ^ ' so
that there exists a function t(t) = Y(-t)E:SfΛ for which xwψ{x) =
^[f( ί ) ; *] and f(ί) = &-ι[xwψ(x);(-t)]. Thus from (44) and (4) we
have

(45) φ [V],ψ(χ)) = (g(t)Mt)) = (ng],χwΦ(χ))== (χwnglΦ(χ)\

which shows that 9\V] = (xw&[g]) in (5^)'. Combining (43) and (45)
we have proved f(z)-+&[V] £ ( # * ) ' as y = Im(z)->0, y E C ' C C , in
the weak topology of (Sf*)', which is the desired result. The proof of
Theorem 1 is complete.

The space of analytic functions Gb

c considered in [2, Theorem 1]
restricted to cones C under consideration in this section is a subspace of
the space °Ub

c defined in this paper. Now (Sf*)'C2£\ the space of
ultra-distributions of Gel'fand and Shilov [8]; and the injection is
continuous. We thus see that Theorem 1 of the present paper gives
more precise information concerning the distributional boundary values
of functions which are analytic in tubular radial domains and which
have growth condition as in (23) (corresponding to open convex cones C
whose compact subcones C satisfy property (C)) than was given in [2,
Theorem 1]. Further, using similar techniques as in the proof of
Theorem 1, [2, Theorem 1] can be restated and proved for the space of
functions °Ub

c defined as in this section for C being an arbitrary open
convex cone. Since Gb

c Q°Ubc, one obtains a more general result than
[2, Theorem 1] for the distributional boundary values in 3?\

For the special case that b = 0, we shall now show that more
information can be obtained concerning the functions f(z)E°Uc than
was given in Theorem 1. We shall show that f(z)EL°Uc can be
recovered as the Fourier-Laplace transform of the constructed distribu-
tion V E Sf'a and also as the Fourier transform in (ίfa)' of (exp ( -
2π(y, ί'» V,). Further, we show that the function f(z) satisfies a strong
boundedness property in (Sfa)'. In the following theorem m >0 is
arbitrary.

THEOREM 2. Let f(z) E.°Ucy where C is an open convex cone such
that property (C) is satisfied by each compact subcone C CC. Then
there exists a unique element V E Sf'a with supp (V) C C* = 5 0 such that
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(46) (exp(-2τr<y,ί>(V,)e5?: for all y E C ;

(47)

(48) f(z)

where (48) holds as an equality in {ίfa)';

(49) { / ( z ) : y = I m ( z ) E ( n ( C ' Π N ( 0 , m ) ) ) , \y\^Q] is a strongly

bounded set in {ίfa )', where Q is an arbitrary but fixed positive
real number greater than m

(50) f(z)^&[V]<E(ίfaY in the weak topology of {ffaϊ as y =
Im(z)->0, y G C ' C C

Proof. The existence of V E 9"a with supp (V) C C* such that (46)
and (50) hold follows from Theorem 1. We now prove (47). Recall
from the proof of Theorem 1 that V = Δg(O, where g(t) is a continuous
function with supp(g)C C* and g(t) grows as in (38) where b = 0 (i.e.
grows as in (24).) Thus by Lemma 11, (Vr,exp(2π/(z, ί))) exists and is
an analytic function of z E T(C, m). Using the definition of Δ given in
the proof of Theorem 1 and a straightforward calculation, we have

(51)

where the Fourier transform in (51) can now be interpreted in both the
L1 and L2 sense because (exp(- 2ττ(y, t))g(t))G Lι Π L2 according to
Lemma 10. Combining (37) and (51) we have (47).

In order to prove (48) we let ψ E ίFa. There exists an element
= χ(-t)GSfa such that φ(x) = &[χ(t); x] and χ(t) =

); ( - t)] (recall the proof of Theorem 1.) Let y be an arbitrary
but fixed point of (C'\{C Π N(0, m))). We have

(52) e-
2^'}χ(t)= ί ψ(x)e2m(zt)dt,

and (exp(- 2τr<y, t))χ(t)) E Sft since χ(t) E ίfx. Now f(z) E ( ^ )' as a
function of x = R e ( z ) E R π for y arbitrary but fixed in (C'\(C Π
N(0,m))). Using (47), a change of order of integration, and (52) we
obtain
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(f(z), φ(x)) = ((Ag(t),e2^% φ(x))

= ί φ(x)zw f g(t)e2wiMdtdx

(53)

= ί g(t) ί zwφ(x)e2ni(zt)dxdt
JC* JR"

= /v, f φ(x)e2πi{zt)dx\

and we have by (46) that (exp( - 2ττ(y, ί>) Vf) E S^. From (53), (4), and
the fact that φ(x) = &[χ(t); x] we obtain

(54) <f(z),Ψ(x)) = <&[e-2v<yJ)V]9 φ(x))9φe9»,

which proves (48).
We now prove (49). Let Φ be an arbitrary bounded set in ίfa then

Φ = {φ(t) = φ(- t): φ G Φ} is a bounded set in &a. Let ψ 6 Φ . Since
supp(V)CC*, we have

where λ(t) is defined as in (17) corresponding to b = 0. By Lemma 5,
{(λ(ί)exp(-2τr<y,ί>) Φ(t)):φeΦ, y G(C'\(C Π N(0,m))), |y|S<?}
is a bounded set in 5̂ α, where Q is an arbitrary but fixed real number
greater than m. Since V G Sf'a, V is continuous and hence bounded on
Sfa. Thus

ye(C'\(C'nΛΓ(0,m))), | y | ^ Q }

ψ ε Φ , yG(C ; \(C'nN(0,m))), | y | ^ Q }

is a bounded set in the complex plane. Since Φ is an arbitrary bounded
set in #,, this means that {(exp( - 2ττ<y, f» Vt): y G (C'\(C Π N(0, m))),
I y I ^ Q} is a strongly bounded set in Sf'a. But the Fourier transform is
a strongly continuous mapping of Sf'a onto (if*)'. Using this fact and
(48) we conclude that {/(z): y = Im(z) e ( C ' \ ( C Π JV(0,m))), | y | g
Q} = {^[exp(- 2τr(y, ί)) Vt]: y = Im(z) G (C'\(C Π N(0, m))), | y | g
Q} is a strongly bounded set in (ίfa)'. This proves (49), and the proof
of Theorem 2 is complete.

As we have noted previously, the tube domain corresponding to the
forward light cone is an example of a tubular radial domain which is
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defined by an open convex cone satisfying property (C). The result of
Constantinescu [4, Theorem 2] is now a special case of Theorems 1 and
2, and the converse part of [4, Theorem 1] is a special case of Theorem
2. We note that in this special setting one does not need the notion of
compact subcone, and the exponential part of (23) corresponding to
b = 0 is unnecessary. In Theorem 2 we have obtained more detailed
information concerning the analytic functions than was obtained in [4,
Theorem 2 and converse of Theorem 1] and have put these results in a
more general setting, and Theorem 1 shows that elements of a class of
analytic functions having a more general growth condition than polyno-
mial growth obtains distributional boundary values in (5^α)', a =
au , αn), ctj ̂  1, j = 1, , n. Results corresponding to [4, Theorem 2
and converse of Theorem 1] for functions analytic in the upper half
plane and the octant may now be formulated, and they are special cases
of Theorems 1 and 2.

5. Converse results. In this section we obtain converse
results to Theorems 1 and 2; and throughout this section the n- tuple
a = (al9 *,αn) is such that αy g 1, j = 1, ,n, as in §4.

Lemma 11 can be used to obtain a converse result corresponding to
the type of if'a distribution constructed in Theorems 1 and 2.

THEOREM 3. Let C be an open convex cone such that property (C)
is satisfied by each compact subcone C C C Let V = Όyg{t), where
g(t) is a continuous function on Rn which satisfies (24). Let
supp( V) C C* = So. Then V G Ta\ and there exists a function f(z) G
%£ such that

(55) f(z) = (v,e2^% zGΓ(C' ,m), C 'CC;

(56) f(z) = &[e~2*MVtl z<ΞT(C\m)y C 'CC;

where the equality in (56) is in (S^α)';

(57) {/(2):y=Im(z)e(C'\(C'ΠN(0,m))), |y |g<?} is a
strongly bounded set in {ίfa)'', where Q is an arbitrary but
fixed positive real number greater than m

(58) / ( z ) - * ^ [ V ] e ( S ^ ) ' in the weak topology of (^α)' as
y =Im->0, y<ΞC'CC.

Proof. Since C* is a regular set (Schwartz [12, pp. 98-99]),
suρρ(g) = supp( V) C C*. Let C be an arbitrary compact subcone of
C and let m > 0 be arbitrary. By an argument as in the proof of
Theorem 1, g (t) G Wa. Hence V = D yg (t) G Ta. We now define f(z)
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as in Lemma 11. By Lemma 11, f(z) E °U °c. With this f(z) in (55) and
the fact that V E ίf'a, we now proceed exactly as in the proof of
Theorem 2 to obtain (56), (57), and (58).

We now wish to obtain a more general converse to Theorems 1 and
2 in that we wish to obtain a result in which one assumes that V is an
arbitrary element of 9"a with support in the dual cone C*. To do so we
must restrict the type of open convex cone with which we work to those
which satisfy the following property, which we denote as property (C*):

(C*) An open convex cone C satisfies the property (C*) if for
every e > 0, {t E Rn: 0 < ( - <y, ί» < e) is a bounded set
in Rn for each fixed y E C.

The cones C = (0,oo), C = (0,oo), x (0,°o)2x x (0, oo)n, and the
forward light cone C = Γ+ are examples of open convex cones which
satisfy property (C*).

We now prove three lemmas which will be needed to obtain our
general converse result.

LEMMA 12. Let Che an open convex cone which satisfies property
(C*). Let C be an arbitrary compact subcone of C and let m > 0. Let
\(t) be the function defined in (17) corresponding to b = 0. Then for
each fixed

Proof To prove the desired result we use the alternate definition
of Sfa (GeΓfand and Shilov [9, p. 172].) Let C" be an arbitrary compact
subcone of C and let m > 0 be arbitrary but fixed. It is obvious that
(A(O exp(2τπ(z, t)))E: C00 as a function of t E.Rn for z arbitrary but
fixed in T(C\m). We thus need to show that for any n-tuple γ of
nonnegative integers, there exists a constant Ky and an n-tuple
(fli, , an) of positive real numbers depending on (λ(t) exp(2τπ(z, t)))
such that

(59) M'{t) \D](λ(t)elΊTi{zΛ))\^Ky, t ER",

where

(60) M'(t) = exp( f l l |U | (α'Γ' +- + aH\tn |
(β->"').

To obtain the estimate (59) it obviously suffices to consider ί G R " such
that | i / | > l , / = l, ,n. Further, λ ( 0 = 0 for t ER n such that <y,0 =
(-6) , yE(C'\(C'ΠiV(0,m)))CC, by the definition of λ(t) in (17)
corresponding to b = 0. Thus to prove the estimate (59) it suffices to
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restrict our attention to the set Λ = {* E R" :| ί, | > 1, j = 1, , n, and
(y, t) > ( - e)}, where y = Im(z) G (C'\(C n N(0, m))) C C.

For the present we let (α,, , α j be any fixed n-tuple of positive
real numbers. Let γ bje an arbitrary n-tuple of nonnegative
integers. By the generalized Leibnitz rule

M'(f)|Dϊ(λ(ί) £ ™ ) | S M ' ( ί ) Σ -^-
β+P = Ύ P ! P

(61)

where Kp bounds |D"λ(f)|. Let us first restrict our attention to
/ e (Λ D {/: 0 > (y, t) > ( - <?)}). For such / we have by property (C*)
that there exists a ball R(0, r) of the origin of radius r<oo which
contains (ΛfΊ{ί:O><y,f')>(-€)}) (and in fact contains
{ί:0>(y,ί>>(-e)}.) Thus from (61) (recall α; > 1, / = 1, ,n)

M'(t)\Dj(λ(t)e2'iUl))\

(62)

for t E (Λ Π {t: 0 > (y, ί"> > ( - €)}), where P is a constant depending on
the ball i?(0,r), γ, (A(O exp(2πi(2,ί»), and the n-tuple (α,, ,αn).

We now consider ί 6R" such that ί e ( Λ Π C*ΠΛ(0,r)), where
C* = { ί6R n : (y , ί )g0} is the dual cone of C. For such t, A(O =
1. Recalling α, S 1, j = 1, , n, we obtain

2™(63) g exp(r(a, + + «J) | 2 γ | e

for ί G (Λ Π C* Π i?(0, r)), where P f is a constant depending on the ball
JR(O,r), γ, (λ(Oexp(2τri<z/»), and the n-tuple (au- ,απ).

For the points ^ E 8 n under consideration, those ^ GΛ, it remains
to consider ί e((A Π C*)\l?(0,r)); and as in the preceding paragraph,
λ ( O = l here. For the fixed y e(C'\(C Π N(0,m))) we have by
Vladimirov [14, Lemma 2, p. 223] that there exists a real number d > 0
such that (25) holds for all t G C*. Thus for te((AΠ C*)\R(0, r)),
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M'{t) \D]{λ(t)e2Mu))\ = M'{t)\zy \e~2"{yΛ)

Since y = Im(z) G (C'\(Cf Π N(0; m))), | y | > m > 0; and

M'(ί) \DΎ

t(λ(t)e27Γi<ZJ>)\

v ; ^expCαJί^ + -fαJ^D \zy\ εxp(-2πdm\t |)

^ | z γ | exp( | ί | ((α.+ + αJ-^Trdm)),

where we recall that a} ^ 1, j = 1, , n. We now choose the n-tuple
(fli, , αn) to consist of fixed positive real numbers α, , / = 1, , n, such
that (α, H h β n ) ^ 2πdm, which can be done since d > 0 is fixed and
m > 0 is arbitrary but fixed. For this choice of (au •-,#„) we obtain
from (64)

(65) M'{t) |D7(λ(ί)β 2 l ϊ i < z r > ) | ^ | 2 r | ^ P ^ ,

where P" depends on γ, (λ(/) exρ(2ττ/(z,/))), and the Λ-tuple
(αi, , ΛΠ ). With this fixed choice of (a,, , an) which depends on m
and d and hence on C ; and (λ(ί)exp(2τri(z,f))), we put

X ; = max (PyP\P").

Combining (62), (63), and (65), we thus have that

(66) M'(f) |D7(λ(f) ^2iri<z r >) |^K;, ί E Λ ,

where iίγ is a constant depending on γ, (A(O exp(2τri(z,f))X and the
n-tuple (fli, , an) (and possibly on the ball i?(0, r).) (59) is now easily
obtained from (66) and the fact that A (O = 0 for t ERn such that
(y,t)^(-e). The proof is complete.

LEMMA 13. Let C be an open convex cone which satisfies property
(C*). Let V E ^ l with supp(V)C C* = {ί: uc(t)^0}. Then f(z) =
<V,exp(2πi<z,ί > ) > % £

Proof. Let C be an arbitrary compact subcone of C, and let
m>0. Let z be an arbitrary but fixed point of T(C\m) =
R n +i(C'\(C'ΠN(0,m))) . By Lemma 12, "(λ(O exp(2τri<z,ί"»)e
Sfa. Since V E ^ and supp(V)C C*, we have
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f(z) = < V, έ?2m'<2 f>> = < V,λ(ί) e2πι{u)), z G Γ ( C , m),

is well defined as a function of z G Γ(C\ m). By [9, Chapter IV, §4],
(λ(f)exp(2πΐ<z,ί'»)e#, implies ((*,-) λ(t) exp(2πi<z,ί>» G #,, / =
1, , n. Using the linearity and continuity of V G 5̂ 1, it is straightfor-
ward to show that for each j = 1, , n

= Mm ((/(z,, ,z,_,,zy +Δz,,zi+,, ,zπ)-/(z))/Δz/)
Δz^O

= 2πί<V,(ί i) λ ( ί ) ^ 2 w 1 < 2 f>>.

Thus for zu z2, *, Zj-i, zJ+1, , zn fixed, /(z) is analytic as a function of
zi in the projection of T{C',m) into the jth coordinate plane, j =
1, •••,/!. By Hartog's theorem [1, Chapter VII] /(z) is analytic in
T(C',m).

It remains to show that /(z) satisfies the boundedness condition
(23) for b =0. Since (λ(ί) exp(2πί<z,ί»)ES^α, then there exists an
n-tuple Λ = (Λ,, ,ΛΠ) such that (λ(ί) exp(2τr/<z,0))^^.>ι In fact
this n- tuple A can be obtained from the n-tuple(α,, ,n) chosen in the
proof of Lemma 12 by the relation stated in (1). Also 5^«C5CΛ and
V eSff

a imply that V G Sf'aΛ. Now SftΛ is a complete countably
normed locally convex topological vector space whose topology is
defined by the sequence of norms (3), and V is a continuous linear
functional on ifaA. Thus there exists a positive constant M and a value
of p = 2,3,4, such that

(67) |/(z)|

We may now proceed exactly as in the proof of Lemma 12 with Mp(t)
defined in (2) replacing the function M'(f) defined in (60) to obtain
inequalities similar to (62), (63), and (65) and conclude for each γ,
I γ I ̂  p, that

(68) Mp(t) |D7(λ(ί) e2"iM)\^KΎ(\ + \z\)\ t ER\

where z G Γ(C\ m), Ky is a constant depending on γ and on C", and Nγ

is a positive real number depending on γ. (68) holds independently of
t G Rn and for each γ, | γ | ̂  p. Thus from (67) and (68) we obtain the
existence of a constant K' depending on γ and C and a constant N
such that
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| / (z) |^MK'( l + |z |)N, z e Γ ( C ' , m ) .

Since exp(2ττσ|y | )> 1 for all σ >0, y E(C'\(C" Π N(0,m))), we see
that /(z) satisfies (23) for b = 0; and the proof is complete.

LEMMA 14. Let the hypotheses of Lemma 13 be satisfied, and let
ψ E <fa. Then

(69) ((V9λ(t)eM™)9 ψ(x)) = (V,λ(t)e-2 Mφ(t)),

z = x + iy ET(C,m), where C is an arbitrary compact subcone of C,
m > 0 , and φ(t) = φ ( - t ) E ^ α such that

(70) φ(t) = 9^[ψ(x); (-1)] = ί ψ(x) e2inMdx.

Proof. By Lemma 13, f(z) = <V,λ(ί) exp(2ττ/(z, ί>»e <U°C. We
now let y = Im(z)6(C'\(CnJV(0,/w))) be fixed. Because of the
growth behavior (23) for b = 0 and the fact that /(z) is continuous as a
function of x = Re(z), /(z) G (^ α ) ' as a function of JC = Re(z). In fact
the product of f(z) with an element of ίfa is Riemann integrable with
respect to JC = Re (z); and the Reimann integral can be approximated by
Riemann sums. Consider the Cartesian product on n intervals [ —
y, Y] x x [- y, Y]. Divide the coordinate axes in Rn into parti-
tions, and let Δ^ be the volume and (xh9 ••,*„,) be a point of the yth
small parallelpiped. By the continuity and linearity of V G ^ i we
obtain

(71)

(f(z),ψ(x)) = \im Γ ••• Γ (V9λ(t)e2inM)ψ(x)dx
y->0° J-Y J-Y

= ( V,lim lim ^ λ(ί)exp(2π/<(x,/ +i>i, •,*„, +iyn)J))
\ y ~ > 0 ° J ^ ° ° )=\

where ψ E 5^α. It is straightforward to show that the right hand side of
the last equality in (71) converse in ίfa to

λ(ί) f ψ(x)e2πi(zt)dx =

where φ(t) = φ(- t)E Sft such that (70) holds. Thus from (71) and the
fact that V e ^ w e have (69).

We now obtain the desired converse to Theorems 1 and 2.
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THEOREM 4. Let C be an open convex cone which satisfies prop-
erty (C*). Let C be an arbitrary compact subcone of C and let
m >0. Let V<=£ff

a with supp(V)C C* = {t: uc(t)^O}. Then there
exists a function f(z)EόUc such that

(72) /(z) = <V,e2^'>>, z E Γ ( C \ m ) ;

(73) f(z) = &[e-2"<>'t)Vt], z = j c + ίy e Γ ( C ' , m ) , where the
equality (73) is in {ίfa)'\

(74) {/(z):y=Im(2)e(C'\(C'nN(0,m))), | y | ^ Q } is a
strongly bounded set in (Sfa)\ where Q is an arbitrary but
fixed positive real number greater than m

(75) /(z)-*^[V] £ ( # " ) ' in the weak topology of (<fa)' as
y = Im(z)-*0, y EC'CC.

Proof. By Lemma 13, the function f(z) defined in (72) exists under
the convention

/(z) = < V,e2πi{ZΛ)) = <V, A(ί)e™ M ) , z E T(C\m),

where supp( V) C C* and λ(ί) is defined in (17) corresponding to b = 0;
and /(z) is an element of °tt £. As in Lemma 14, there exists an element
φ(t) = φ(-t)eyt such that φ(x) = &[φ(t);x] and (70) holds (recall
the proof of Theorem 1.) For the moment we let y = Im(z) be an
arbitrary but fixed point of (C'\(C Π N(0, m))). From Lemma 14, (4),
and the fact that ψ(x) = &[φ(t); x] we obtain

where supp(V)CC* implies ( λ ( ί ) V ) = V in Ta\ and (73) is
proved. Using the representation (73) we may now prove (74) exactly
as we proved (49) in Theorem 2.

It remains to prove (75). From Lemma 4, (λ(t) exp(-2ττ<y,ί))
ψ(ί))-»(λ(ί) φ{t)) in Sft as y-^0, y G C ' C C . Since V 6 ^ and
supp(V^) CC*, we have

(76) <

as y -> 0, y G C C C. From (69), (76), and (4) we have (recall m > 0 is
arbitrary)
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as y->0, y G C ' C C , where ψ(x) = &[φ(t); JC]; and
^ [ V ] e ( ^ ) ' . This proves (75), and the proof is complete.

From Lemma 9 and the hypothesis on V in Theorems 3 and 4, we
see that we may also conclude in these theorems that (exp(-
2π(yJ))Vt)eya for all y EC. Thus for C being the forward light
cone in Theorem 4, the hypothesis of Theorem 4 implies the hypothesis
and conclusion of the sufficiency of [4, Theorem 1]; and Theorem 4 is a
generalization of the sufficiency of [4, Theorem 1J.

6. Conclusions and applications. We have extended
(Theorems 2, 3,4) the results of Constantinescu [4, Theorems 1 and 2] to
the setting of functions analytic in tubular radial domains and for
distributions in (ίf*)', a =(aί9 -9an), a, ^ 1, j = l, ,n. In our
theorems we have also obtained new representations and information
concerning the analytic functions which have (£fa)' boundary values
and which are representable as the Fourier-Laplace transform of the
inverse Fourier transform of the boundary value. Further, we have
shown (Theorem 1) that functions having a more general growth
condition than those considered by Constantinescu have distributional
boundary values in the weak topology of ($fa)'. The main theorems in
this paper have been established with the aid of several new lemmas,
which we have proved here, concerning the spaces of type ίf and their
dual spaces. The distributional boundary value results have as applica-
tion and as special cases not only the results of Constantinescu for
functions analytic in tube domains corresponding to the light cone but
also for the corresponding functions analytic in half planes in C1 and
octants in Cn.

Aside from the mathematical interest of the results presented in
this paper concerning distributional boundary values of analytic func-
tions in Cn and the spaces of type ίf and their dual spaces, the analysis
developed here and in the paper [2] of one of the authors is of interest in
applications in the sense of the last sentence in the previous
paragraph. In applications to quantum field theory, distributional
boundary value results are of interest for functions analytic in tube
domains corresponding to the light cone and in half planes. The
techniques which we have established here and in [2] in our general
setting for the construction of the inverse Fourier transform of the
boundary value from the analytic function and the establishment of the
support set (see Theorem 1) can be applied to the special domains and
can be used to establish similar results for other types of analytic
functions which are of interest in quantum field theory. Further, our
technique in establishing the boundary value result is similarly applicable
(recall Theorems 1 and 2). The techniques employed in the proof of
analyticity and growth in Lemma 13 and in the proof of "change of
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order of integration" in Lemma 14 are useful in the setting for
applications especially if there is no representation theorem for the
distributions involved.

We note, for example, the recent paper of Constantinescu and
Thalheimer [5] in which Euclidean Green's functions for Jaffe fields are
studied. Theorems 1 and 2 of [5] involve the study of the Fourier-
Laplace transform of "ultradistributions" and are used to obtain the
field theory results. These theorems are obtained in the terminology of
the present paper restricted to 1-dimension. That is, functions analytic
in R1 + ίC, C being an open convex cone in R1, and satisfying a growth
condition for imaginary part in compact subcones of C are shown to be
representable as a Fourier-Laplace transform of a certain generalized
function having support in the dual cone of C in R1 and are shown to
have a distributional boundary value. Also a representation as in (48)
of this paper is used. The techniques involved in the proof of the
support set, for example, are essentially the same that we give in the
present paper and in [2] restricted to 1-dimension. Similarly, other
techniques involved in these two theorems of Constantinescu and
Thalheimer are essentially 1-dimensional restrictions of our
techniques. (It is interesting to note that the test spaces of functions
and the corresponding spaces of generalized functions studied in [5] are
closely related to the spaces of type ίf and their dual spaces [5, pp.
3-4].) The point is that even for other distribution spaces and for the
mathematics of field theories other than the one introduced by Constan-
tinescu [4], with which the results of this paper are concerned, techniq-
ues employed in this paper for the general setting of functions analytic
in tubular radial domains can be adapted to prove corresponding results
for other field theories and for functions analytic in special cases of
tubular radial domains. Our techniques in the general setting indicate
techniques to be used in the settings of application to quantum field
theory. (We could have chosen any number of other papers on
quantum field theory as examples of the point we make above. We
have chosen [5] because of its use of cone terminology and the relation
of the test functions employed in [5] to the spaces of type &.)

We shall now consider some mathematical applications of the
results which we have obtained in this paper.

A well known result of Bochner [1, p. 92] states that every "tube"
[1, p. 90] has a uniquely determined largest analytic completion which is
the convex envelope of the given "tube." Stated in another form, this
result says that if f(z) is analytic in the tube TB = R" + iB9 where BCR"
is a domain, then f(z) has an analytic extension to the convex envelope
O(TB) = TO(B) = Rn + iO(B) of TB. We now desire to prove a result
which is similar to this theorem of Bochner but more general in the
sense that the given function is analytic in a subset of Cn of the form Tc
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where C is an open cone which does not have to be connected. (Recall
that in Bochner's result the imaginary (real, respectively,) part of the
space of analyticity must be a domain, hence must be
connected.) Using the distributional boundary value results presented
in this paper, we show that certain functions which are analytic in Γ c,
where C is an open cone which is the finite union of open convex cones,
have an analytic extension to TO(C\ the convex envelope of
Tc. (Recall from §2 that O(C) denotes the convex envelope of the
cone C.) Further, we explicitly construct the extension function.

Let C be an open cone such that C = Ur

j=ι Ch r < oo, where the Q
are open convex cones such that property (C) is satisfied by each
compact subcone C CCh j = 1, , r. Let C be an arbitrary compact
subcone of C. Let f(z) be analytic in T(C', m),m > 0 being arbitrary,
and satisfy (23) for b = 0. Let us now restrict z to TCi = R" + iCh

j = 1, , r. Then /(z) e <%£„/ = 1, % r. By Theorem 2 there exist
unique elements V, E $f'a with sup PiV^CC* such that

in the weak topology of (#*), ' as y = I m ( z ) - ^ 0 , yGC]CCh j =
1, ",r. Using this fact, we now obtain conditions under which
functions f{z) that are analytic in Tc have an analytic extension to

THEOREM 5. Let C be an open cone such that 0{C) satisfies
property (C*) and C = U jLi Cj r < <*>, where each C] is an open convex
cone such that property (C) is satisfied by each compact subcone
C c Q , j = l, ,r. Let f(z) be analytic in Γ(C ; ,m), m >0, and
satisfy (23) for b = 0. Let the (¥")' boundary values U} off(z) which
exist from each connected component ΓC/, / = 1, , r, be equal. There
exists an element V G ϊf'a with supp(V)C{ί: MO(C>(O = 0} such that

(77) (exp(-2τr<y,ί>)V t)eS^ for all y E C ;

(78) f(z) = (V,e2πi(ZJ)), z

(79) f ( z ) = &[e-2π{yJ}Vtl z=x + iy(Ξ Γ ( C , m ) , C'CC,
where the equality (79) is in {ίfx)';

(80) {f(z):y = Im(z) E(C ; \(C ; Π N(0,m))), | y |^<?} is
a strongly bounded set in {ίPa)\ where Q is an
arbitrary but fixed positive real number greater than
m;

and there exists an element F(z) E °Uao which is the analytic extension
off(z).
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Proof. As in the paragraph preceding the statement of this
theorem, we apply Theorem 2 to /(z) restricted to each of ΓC/,
j = 1, , r, and obtain elements V, G ίf'a with supp(V,) C Cf such that
f(z)->&[Vj]=Uj £(¥*)' as y=Im(z)->0, y G C c Q . By
hypothesis [/, = ί/2 = * * * = Ur in (5^*)', and we call this common value
U. But U} = &[Vj] implies Ύs = &-\U& j = 1, ,r. Since the in-
verse Fourier transform is a one-to-one mapping of (if*)' onto &"„, we
have Vx= V2= " - = Vr in 5?ά We call this common value V, and
V <ΞTa. Since supp(V,)C{ί: wc,(O^0}, / = 1, - ,r, then V vanishes
on U ;=, {t: uQ (t) > 0}. Now

uc(t)= maxr(uCl(t))9

and from the definition of p c in §2, we have iio<o(0 = (pc"c(O) Thus

(81) wo(o(0^(pc) max

and by a lemma of Vladimirov [14, Lemma 3, p. 220], 1 ̂  ρc <
+ oo. Now if ί e {ί: uO(C)(t) > 0}, then by (81) t <Ξ
{t: maxi=1, , Γ ( M Q ( O ) > 0 } . Hence t G u;=,{ί: wCi(O>0}, and on this set
V vanishes. Thus V vanishes if t €Ξ {t: M 0 ( O(0 > 0} which implies that
supp(V)C{ί:iιO(c)(O^0}.

Applying (46), (47), and (48) of Theorem 2 to f(z) restricted to each
ΓCi, we have

with the latter equality being in (£fx)'; and these hold for z E T{C'hm),
C'i CQ,/ = l, ,r. Since V = V, = V2 = = Vn then (77), (78), and
(79) are obtained. Further, (80) follows from (49) in a similar fashion.

We now consider

O(C)<V,e2irf<2 0>, z G Γ

Since V G ̂  and suρp(V)C{ί: MO(C)(O = 0}, we have by Theorem 4
that F(z)G%S(C). Because of (78) we see further that F(z) is the
desired analytic extension of /(z) to ΓO(C), and the proof is complete.

Note that (78) provides a representation of f(z) for z in the space of
analyticity of /(z). In addition to its relation to the analytic extension
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theorem of Bochner, Theorem 5 is also a generalization of Theorem 2 to
tubes over disconnected cones. It is evident that Theorem 5 is not a
precise extension of Bochner's result to tubes over disconnected cones
for the functions and cone considered since in the first place the given
function /(z) is not assumed to be analytic in the whole of Tc but only
in sets of the form Γ ( C , m), C" C C, m > 0 arbitrary; and in the second
place, the extension function is not analytic in the whole of ΓOίC) but in
similar type sets in TO(C). However, Theorem 5 is an extension of
Bochner's result to tubes over disconnected cones for the functions
considered in the sense that our constructed extension function equals
the given function on the sets of analyticity of the given function and is
itself analytic on precisely the same type sets in the whole of TOiC\

Theorem 5 has as a corollary the following result.

COROLLARY 1. Let C = ( ( - », 0) U (0, oo)). Let f(z) be analytic in
\lm(z)\>m for any m > 0 and satisfy (23) there for b=0. Let
Ux = U2 where Uλ(U2) is the weak {¥")' boundary value off(z) from the
upper (lower) half plane. There exists an element V E ίf'a with
suρρ(V) = {0} such that

(exp(-2π<y,ί'»V,)eS^ for all y E C ;

in (Sfa)'\

{/(z): |Im(z)|>m >0, |Im(z)|^Q, m < Q} is a strongly

bounded set in (if*)'.

The proof is obtained by observing that O(C) = R1 and
{t' Uo{o(t) = 0} = {0} and applying the conclusions of Theorem 5. In
one dimension we do not need the notion of compact subcones. Note
that since (O(C)\C) = {0}, /(z) is its own extension as the representa-
tion /(z) = <V,exp(2πί(z,ί>)>, | Im(z) |>m >0, indicates.

A well known problem in classical analysis, which is sometimes
referred to as the Hubert boundary value problem, is as follows: given a
function G(ξ) on the boundary of a domain D in C, find analytic
functions in D and in the complement of D such that the sum of the
analytic functions has G(ξ) as boundary value. In particular this
problem has considerable interest when the boundary is the real axis
and the domains of analyticity are the upper and lower half planes. We
now formulate this problem in C" with respect to the distributions in
(ίfay,a =(α,, ',an),ctj g l , j = l, , n. In particular we shall show,
using our distributional boundary value results, that any element
UE(£fay can be represented as the boundary value of a sum of
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analytic functions on the distinguished boundary of a tubular cone
which is the union of tubular radial domains; that is, we show that any
element l/E(5^α)' can be decomposed as a sum of elements in {$?")'
each of which is the boundary value of an analytic function in a tubular
radial domain.

Let C be an open cone such that C = U r

M Ch r < <», where each of
the Q are open convex cones which satisfy property (C*) and where the
dual cones Cf, j = 1, , r, satisfy

(82) R Λ \ ύ C* and C*Π C ϊ , jV k, [ i V ' . ' . / r

are sets of Lebesgue measure zero. Examples of open cones C which
satisfy the above properties are C = ( ( - <χ>,0) U (0,°°)) in one dimension
and C = U 5 { y 6 R n : δ ^ > 0 , δ = (δ,, ,δ n ) , δ, = ± 1 , j = l, ,n},
where r = 2".

THEOREM 6. Lei C = U ^ C;, r <&, be an open cone such that the
properties for the Q and C*, j - 1, , r, m the preceding paragraph are
satisfied. Let U<Ξ(¥ay. Then U = Σr

MUh where l / ^ ε ί ^ ) ' , j =
l, ,r; eαc/i 17, 15 ί/ie weαfc (5^α)r 'boundary value of a function
fiWeqilr, and each 17, = ^[V}] wΛere V ^ G ^ α n d supp(Vi)CCT,
J = l, ,r.

Proo/. There exists V E ^ such that Vr = y l [ t 7 ] and £7 =
Φ\V\. Put

j = 1, , r, where Vi and (V})ί indicate that the distributions V and Vj
are operating on the variable t. We have Vj E 5̂ 0 and supp(V}) C C*,
j = l, ,r. We now put fι(z) = (Vh exp(2π/<z,ί"»>, z € f ' , / =
l, ,r. By T h e o r e m ^ / ( z ) E % ^ and ^(z)->^[V)l - UieW)' in
the weak topology of (5?*)' as y =Im(z)->0, yeC-CCJ, / =
1, , r. By the hypothesis (82) on the dual cones C*, j = 1, , r, we
have V = Σ β, V, in ^ 1 . Thus (4) and linearity yield

φ E^x, φ - φ E iPa, and the proof is complete.
As noted in the introduction to the Hilbert boundary value problem

considered in Theorem 6, the complex plane C1 is the setting in which
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this problem has most interest classically, In the following result we
obtain the restriction of Theorem 6 to this classical setting.

COROLLARY 2. Let U <=(¥«)' (R1). Then U = (Uι+U2) where
Ux E {<fa)' and U2 e (S?1)'; there exist functions /,(z) andf2(z) which are
analytic in I m ( z ) > m > 0 and I m ( z ) < ( - m)<0, respectively, and
which satisfy

|/,(z)| ^ KM + \z\)N exp(2ττσ| y |), y = Im(z) > m >0,

|/ 2(z)|gXm(l + |z|)Nexp(2τrσ|y|), y = Im(z) < ( - m) <0,

for all σ >0;

in ί/ie weaA: (ίf°y topology as y = Im(z)->0±, respectively.

As we have noted in the paragraph preceding Theorem 6, the cone
C = (C, U C2), where C, = (0, <») and C2 = ( - °°, 0), satisfies the proper-
ties indicated in the hypothesis of Theorem 6. (Note that Cί = [0,o°)
and Cf = ( —°°, 0].) The conclusions of Corollary 2 thus follow im-
mediately from Theorem 6, and we have that Ux and U2 are the Fourier
transforms of elements in Sf'a having support in [0,oo) and (-oo,0],
respectively.
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