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GENERALISATION OF A "SQUARE" FUNCTIONAL
EQUATION

A. K. GUPTA

Recently the difference equation defining the triangular
array of binomial coefficients, known as Pascal's triangle,
has been extended to a square functional equation which
generates a tableau of numbers. In the present paper these
results have been generalised and the generating function
for this new set of numbers has been obtained. Several
relations among these numbers, which help construct the
tableau, are studied. Some further generalisations of these
numbers are also given.

l Introduction* Let Z, I+ and R denote the set of integers,
the set of nonnegative integers and the set of real numbers, respec-
tively. The function / defined on the lattice I + x I+ which satisfies
the difference equation

(1) f(n + 1, r) - f(n, r) + f(n, r - 1)

and is uniquely determined by initial values on I+ x {0} and {0} x I+

describes the well known triangular array of numbers. This has
been generalised by many authors (see Gupta [4], [5], Cadogan [1],
Stanton and Cowan [6]). In [5] Gupta has studied the square func-
tional equation

(2) g(n+l,r+l) = g{n, r + 1) + g{n + 1, r) + g(n, r)

which together with the boundary conditions g{n, 0) = #(0, r) = l,Vn,
rel+ uniquely determines a tableau. However, here we obtain a
more general class of functions defined by

g: I+ x / + > R

satisfying the general square functional equation

3 g{n9 r) = pjtin - 1, r) + p2g(n, r - 1)
+ p,g{n - 1, r - l)Pi eR, i = 1, 2, 3 ,

subject to certain initial conditions g{n, 0) = pi. It may be noted that
g{n, r) is not symmetric in n and r. Also notice that if pt = 1, i =
1, 2, 3 this reduces to the case studied earlier (Gupta [5]). In the
next section we will give some results for this generalised function
g(n, r). However details will be skipped since they are similar to
the results in Gupta [5] or Stanton and Cowan [6].
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2* Properties of g(n, r)* Let us define the generating function
A(x, y) by

( 4 ) A(x, y) = Σ Σ 0(n, r)xnyr

n—Q r = 0

and invoke the recurrence relation (3), along with the initial conditions,
we get

(5) ± = Σ Σ O(n, r)x*y'
1 — p2x — Ply — p3xy *=o * =o

which expresses A(xf y) as a rational function, and may be used to
evaluate g(n9 r) either explicity or asymptotically. However if we
let g(n, 0) = d, Vn the generating function is given by

Ply - p2χ - p3χy)

LEMMA 1. g{n, r) is the coefficient of xn in the expansion of

(p* + 3>3 )̂7(1 ~~ Pι%)r+1 and is given by

n-kj\ k

Proof. Define Ar(a?) = Σ"=o flr(w, r)α?%. Then it is easy to show,
by using (3) and the initial conditions that

By expanding the right-hand side of (7) we get the result (6).
Again if we let g(n, 0) = d, then g(n9 r) is the coefficient of xn

in the expansion of

d ΓPz + PzxΎ
1 — x L 1 — piίc J

LEMMA 2. TΓe

( 8 )

Proof. Similar to the proof of Lemma 2 of [6],

LEMMA 3. // dm = ΣΓ+r-m βrfa, r),
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( 9 ) dm+2 = (p, + p2)dm+1 + p3dm .

If we let Pi = 1, i — 1, 2, 3 we get Lemma 4 of [6],

The following relation can easily be verified and corresponds to
Lemma 3 of [5].

(10) g(n, r + s) = Σ g(k, r)[g(n - k, s) - p,g(n - k - 1, s)] .

The relationship of #(w, r) with the hypergeometric function 2F1

is given by

(11) g(n, r) - ( -&.)>,(-* , r; 1; 1 +

This Gauss hypergeometric series reduces to a polynomial of degree
n{r) in (1 + (PίPjPs)) for n(r) = 0, 1, 2, . From this relation (11)
we can derive many results, of which we give only one below.

g(n, r) = ±£(n - l)^g(n - 2, r)
nL p

- 1, r)] .

This relation corresponds to Lemma 5 of [5] and is useful in
computing the numbers g(n, r). Results corresponding Lemma 6 of
[5] and many more can be similarly obtained.

3. Further generalisation* In general g(n, 0) = dneR. In §2
we have treated the special case when dn = pj. In fact different
initial conditions give rise to (i) an Arithmetic progression and (ii)
Geometric progression for the numbers g(n, 0). However in general
we can prove the following.

THEOREM 1. We have,

(12) g(n, r) = Σ ( )plPlP^{n -r+v,u)

where

r \ r\

\u, v, w) ulvlwl

With initial conditions explicit formulae can be obtained.

We can further generalise by considering
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g:Ix I x 1+ > R

where

g(n, m, r) = p ^ ( ^ , m, r — 1) + p2g(n, m — 1, r — 1)

+ 3>80(w — 1, m — 1, r — 1) .

Then #(?&, m, r) satisfies the following theorem, (see [1]).

THEOREM 2. We have

I r \
g{n, m, r) — Σ ίtfίWίKw — w, m — v — w, 0) .

u+v+w=r x ' ' '

Many generalisations are possible by increasing the dimension of
the lattice, and/or by redefining the functional equation that gives
the recurrence relation.

4. REMARK. Earlier in [2] and [3] the value of g(n, r) found
its applications in sphere packing, coding metrics and chess puzzles.
Since the present function is a generalisation of this earlier result,
it is hoped that these numbers too will be of use in such context.
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