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RELATIVELY INVARIANT MEASURES

SHMUEL GLASNER

A homomorphism of minimal flows X 5 Y, has a relatively

invariant measure if there exists a positive projection from € (X)
onto (Y ) which commutes with translasion. Such a relatively
invariant measure does not always exists. However, some
elementary facts from the theory of compact convex sub-sets of a
locally convex topological vector space are used to show that

L
given a homomorphism of minimal flows X — Y there exists a

commutative diagram

x-Ex

e
Y —Y
0

where 0 and 6~ are strongly proximal homomorphisms and ¢~
has a relatively invariant measure, (RIM). Homomorphisms
which have invariant measures are studied and questions of
existence and uniqueness are investigated.

Similar diagrams, where 6 and 0~ are replaced by other types of
proximal extensions, and ¢~ is replaced by an open map with certain
additional properties, are studied in [12] and [2].

In section one we introduce notions and definitions. Section two is
devoted to the proof of the main theorem about affine flows and then
some corollaries for homomorphisms of minimal flows are deduced.
Another corollary is a generalization of the Ryll Nardzewskie fixed
point theorem. This results are extensions of results in [6].

In section three the notation of a relatively invariant measure is
discussed and it is shown that metric distal extension has a relatively
invariant measure (see [8] and [1]). A homomorphism with a RIM
which has at least one finite fiber is shown to be almost periodic. In
section four we show the existence of the commutative diagram
mentioned above. This is used to show the existence of a universal
strongly proximal extension for any given minimal flow. We conclude
with some questions about the uniquéness of a RIM, and the existence
of almost periodic extensions.
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394 SHMUEL GLASNER

1. Definitions. Let T be a topological group, X a compact
Hausdorff space. We say that (T, X) is a flow if there exists a jointly
continuous map from T X X onto X, denoted (f,x)—tx, such that
s(tx)=(st)x and ex =x for all x € X and s,t € T;e is the identity
element of T. Let Q be a compact convex sub-set of a locally convex
topological vector space. We say that (T, Q) is an affine flow if (T, Q)
is a flow and if in addition the map x — tx from Q onto Q is an affine
map for each t € T. In particular an affine flow is a flow and one can
talk about minimal sets of Q, proximal points in Q, etc.

Usually when referring to a flow (T, X) (or an affine flow (T, Q)) we
shall omit the group T and write just X (Q respectively).

A sub-set of a flow X is minimal set if it is nonempty, closed,
invariant and contains no proper closed invariant sub-set. A sub-set of
an affine flow is irreducible if it is nonempty, closed, convex and
invariant and contains no proper sub-set with these properties.

A continuous equivariant map from the flow X into the flow Y is a
homomorphism. 1If Q and P are affine flows and ¢ from Q into P,isa
homomorphism which is also an affine map we say that ¢ is an
affine-homomorphism.

.Let Q - P be an affine homomorphism. We say that a sub-set Q,
of Q is P-irreducible (with respect to ¢) if Q, is closed, convex,
invariant, ¢(Q,) = P and Q, contains no proper sub-set with these
properties. .

Let Q be an affine flow, X =€X(Q) the closure of the set of
extreme points of Q. Clearly X is a closed invariant set and by the
Krein Milman theorem ¢o6(X), the closed convex hull of X, is equal to
Q. We say that Q is a primitive affine flow if X is a minimal set.

Given a flow X we denote by €(X) the algebra of real valued
continuous functions on X. If f€ €(X) and t €T then f' € €(X) is
the function defined by f'(x) = f(tx). Let #M(X) be the set of regular
Borel probability measures on X. We consider #(X) as a closed
convex sub-set of €(X)*, the dual space of €(X), equipped with the
weak * topology. The action of T on X induces an action of T on
M(X) in the following way. Let u € #(X),t €T and f € €(X), then
define tu € M(X) by

[ sacwr= [ fiau.

For a point x € X we denote the point mass at x by §,. Clearly
t8, = 8, and thus the homeomorphism x — §, of X into #(X) is also an
isomorphism of flows. Sometimes we shall identify X with the sub-set
{8, ]x € X} of M(X).

With the above action #(X) is an affine flow. Since ex(# (X)) =
X, M(X) is primitive iff X is a minimal flow.
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Let X -% Y be a homomorphism of minimal flows (¢ is necessarily
onto). This homomorphism induces an affine homomorphism
M(X)D M(Y), as follows. Let u € M(X) and let f € €(Y) be given,
qﬁ(u)EJ%(Y) is defined by

[ fabwn=| ¢oordu.

We say that ¢ is a strongly proximal homomorphism (or extension) if
for every measure p € M (X) with d;(p,) = point mass on Y, there exists
a net t; € T such that limt,u = point mass on X. In particular X is a
strongly proximal flow if X is a strongly proximal extension of the
trivial flow.

Let X-%Y be a strongly proximal extension and x,,x, € X with
é(x))=¢(x;). The measure u =(5,+8,)/2 satisfies d(p)=
dsxy- Hence there exists a net t; € T such that limtu = 8, for some
x € X. But limtp = (limté,, +1lim¢8,,)/2 and since §, is an extreme
point of #(X) this implies limt,x; = limt,x,, i.e. the points x, and x, are
proximal points in X.

We say that a homomorphism is proximal if every two points with
the same image are proximal points. Thus we have shown that a
strongly proximal homomorphism is proximal.

A homomorphism X -% Y is distal if whenever x, # x, and ¢ (x,) =
¢ (x,) then x,; and x, are not proximal. A flow is distal if it is a distal
extension of the trivial flow.

2. Affine flows. Let Q be a compact convex sub-set of a
locally convex topological vector space, and let X be a closed sub-set of
Q such that ¢o(X) = Q. We shall use the following theorems from the
general theory of convex sets (see for example [11]).

I  (Krein Milman) ¢o(ex(Q)) = Q.

II  (Milman) ex(Q)C X.

III For every measure u € #(X) there exists a unique point

z € Q such that for all affine functions f on Q, f(z) = f f(x)du. The
X

map 5z sends #(X) onto Q, and is a weak * continuous affine
map. The point z is called the barycenter of u.

IV (Bauer) A point x € X is an extreme point of Q iff 8x is the
only measure in #((X) whose barycenter is x.

THEOREM 2.1. Let Q -5 P be an affine homomorphism of an affine
flow Q onto a primitive affine flow P. Then

(1) There exists a P-irreducible sub-set of Q.

(2) Every P-irreducible sub-set of Q is primitive.

3) If Q,CQ is P-irreducible, X = €X(Q,) and Y =&X(P). Then
¢(X)=Y and (¢|X): X—Y is a strongly proximal homomorphism.
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4 If QoC Q is P-irreducible, Y = &X(P) and x,,x, € Q, are such
that ¢(x)) = ¢(x,) EY then x, and x, are proximal points (see [6]
Theorem 5.3).

Proof. (1) Use Zorn’s lemma.

(2) Let Q, be a P-irreducible sub-set of Q, X =&X(Q,) and
Y =¢eX(P). Let x€¢'(Y)NQ, then by the minimality of Y
o(cls{tx |t ETPD Y. Hence ¢(Co{tx|t €T} =co(Y)=P. But Q,
is P-irreducible and thus ¢o{tx |t € T} = Q,. By II we conclude that

ex(Q)C X Ccels{tx [t ETIC (V)N Qo
Thus if x € X we have
X Ccls{tx |t eT}C X and X =cls{tx|t € T}.

This proves that X is a minimal set.

(3) Consider the map #(X)-% Q, which sends a measure on X to
its barycenter on Q,. Let y €Y, and let u € #(X) be a measure with
Supp(r) C ¢ (N X. (ie. (¢]X) () =35,)

If f is an affine function on P then fo¢ is an affine function on

Q. Hence (fod)(Bur)= J'X (fed)dr = f(y) and since the affine func-

tions on P separate points we can conclude that ¢(B(n))=y. Hence

d(B(cls{tu |t ETY) =Y and ¢(Co(B(cls{tu |t € T}))=P.
Since Q, is P-irreducible we have

(B (cls{tu |t € TH) = Q.

Now by II, this implies ex(Q,) C X C B(cls{tu |t €T}, and if
Xo € ex(Q,), then there exists v Ecls{tu |t € T} such that B(v)=
Xo. But by IV v =6, and (¢|X): X—>Y is a strongly proximal
homomorphism.

(4) Let X=¢8X(Qo,) and y = ¢(x,) = ¢(x,). Choose y,€E ex(P),
then there exists a net s; in T such that lims;y =y,. We can assume
that limsx, = z, and limsx, = z, exist. Let u, € #M(X) satisfy B(w;) =
z(i = 1,2), If we use B to denote also the barycenter map from #(Y)
onto P, then B((¢|X)"(w:))=¢(B(w:)=¢(z)=y,. Hence by IV
(¢ X)) = 8,4,

By (3) there exists a net ¢; in T such that limt;u, = lim#u, = point
mass on X. By III we have

limt,-zl = B(limt,#;) = ﬁ(limt,[.bz) = limti22

and x, and x, are proximal.
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ProPOSITION 2.2. Let X-%Y be a homomorphism of minimal
flows.

(1) There exists an M(Y)-irreducible affine sub-flow Q, of
M(X). If Y™ =8X(Q,), then Y~ is a minimal sub-flow of M(X),
é(Y")=Y and the homomorphism 6 =¢|Y~, Y~ -5Y is strongly
proximal.

) ConverselyAif Y~ C M(X) is a minimal set such that <f>(Y~) =Y
and such that 6 = ¢|Y "~ is a strongly proximal homomorphism, then
Q =¢co(Y") is an M(Y)-irreducible affine sub-flow of M(X).

Proof. (1) In Theorem 2.1.take P = #(Y), Q = #M(X) and Q, a
P-irreducible sub-set of Q with respect to ¢. Since #(Y) is primitive
Y™ =8X(Q,) is minimal, (Y ") =Y and Y~ -5 Y is a strongly proximal
homomorphism.

(2) Let B:4#(Y")— Q denote the barycenter map. Consider the
diagram

J%(Y~)-E>Q CM(X)

6l /é
M(Y)

If f € €(Y) then f can be considered as an affine functionon #(Y) as
follows. For v € M(Y) f(v) = I fdv. Thus fod is an affine function

on /(X) and hence also on Q. It follows that for every f € €(Y) and
EeM(Y)

[ wber=[ qoorde=[ (odrae

= ()6 = f-B@) = [ faG-pe).

Thus 6 = ¢°B and the above diagram is commutative.

Let now Q,C Q be an #(Y)-irreducible sub-set of Q, v € €x(Q,)
and p EM(Y7) sucl} that B(nw) =v. Then d3(v) is a point mass on Y,
say §,, and ()= (B ()=d)= é,. Since 6 is strongly proximal
homomorphism this implies that there exists a net ¢, in T such that
limtpu is a point mass on Y™, say §,, Now limty =limtBu =
Blimtu = B(8,) =mn € Y™ and since €X(Q,) is a closed invariant set this
implies Y~ C &X(Q,). Therefore Q = Q,, and Q is #(Y)-irreducible.
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COROLLARY 2.3. Let X -%Y be a homomorphism of minimal sets,
then ¢ is strongly proximal iff M(X) is M(Y)-irreducible.

Proof. This follows immediately from Proposition 2.2 if we ob-
serve that eX (M (X)) = X, and ¢o(X) = M(X).

Theorem 2.1 can be applied to prove the following generalization of
the Ryll Nardzewski fixed point theorem, in the same way as Theorem
5.3 in [6] was used in proving this fixed point theorem. (Theorem 7.3 in

(61,

THEOREM 2.4. Let E be a separable Banach space, Q a weakly
compact convex sub-set of E. Suppose (T,Q) is an affine flow such
that the action of T on Q is distal in the norm topology. Let
&: (T,Q)—(T,P) be an affine homomorphism of Q onto a primitive
affine flow P. Then there exists a minimal sub-flow X of Q such that
(¢ X): X —>&X(B) is an isomorphism of minimal flows.

3. Relatively invariant measures.

DEeFINITION. Let X -% Y be a homomorphism of minimal flows; a
linear map P:%6(X)— 4(Y) is called a relatively invariant measure
(RIM) for ¢ if P satisfies the following properties

(1) P(f)=0 whenever f € $(X) and f=0.

2 PO)=1.

(3) P(hod)=h for h € 6(Y).

@4 P(")=(Pf) forfe¥(X)and t €T.

DEeFINITION. Let X -% Y be a homomorphism of minimal flows. A
homomorphi§m A Y—>M(X), y—A, is called a section for ¢ if for
each y EY,p(A,)) =34,

ProrosiTION 3.1. Let X-%Y be a homomorphism of minimal
flows. Then the following conditions are equivalent.

(@) There exists a section for ¢.

(b) ¢ has a RIM.

(c)ﬁ There exists a convex closed invariant sub-set Q of #M(X) such
that (¢ |Q): Q—>M(Y) is an affine isomorphism onto.

(d) szere exists an M(Y)-irreducible affine sub-flow Q of M(X)
such that ¢ |eX(Q): €X(Q)— Y is a flows isomorphism.

Proof. (a)> (b) Let A: Y—> M (X) be a section. Given a func-
tion f € €(X), define a function Pf on Y as follows

Ph(y) = fxfdAy yEY).
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Clearly Pf € €(Y). Since A, is a probability measure, properties (1)
and (2) in the definition of a RIM are clearly satisfied by P. If
he€¥€(Y), then foreach y€Y

Phes )= [ (hod)dr, = hab)=hy).

Thus P(h°¢) = h and property (3) is satisfied. Finally if f € €(X) and
t €T, then for each yE Y

PN = [ fan, = f, = [ gar, =@y = @Y o),

Thus P(f') = (Pt)', property 4 is satisfied and P is a RIM for ¢.
(b)=>(c) Let P: €(X)—> €(Y) be a RIM. Define
vy: M(Y)— M(X) by

| ) =[ @pdu @ eur),reec.

Clearly v is an affine weak * continuous map. Moreoverif t € T,
then

fxfd(tY#) =fxf'd7/-b = fyP(f’)d,u, =jy (Pfydy — -
=fy(Pf)dt“ =fxfd(vtn).

Thus ytp = typ and vy is an affine homomorphism.
We now show that u = ¢yu for u € MU(Y).
Indeed

[ nayr=[ totravn=[ Ptrog)dn = hdy

for all h € 6(Y). If we denote Q = y(#(Y)) then Q is a convex
closed invariant sub-set of ((X) and d3|Q is 1—1, hence an affine
isomorphism.

(c)=>(d) Let Q beasin(c)then since Jr | Q is one to one it is clear
that Q is #(Y)-irreducible. Moreover ¢ |gX(Q): EX(Q)— Y is a flow
isomorphism.

(d) > (a) Assuming Q as in (d) exists, define A: Y— M(X) by
A = ($]|eX(Q))" clearly A is a section.

DerINITION.  If X -5 Y is a homomorphism of minimal flows which
has the properties (a)-(d) of Proposition 3.1 we say that ¢ is a RIM
extension (or homomorphism).
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REMARK. Let X% Y be a RIM extension then for a particular
choice of a section A: Y — #(X), the following relations between the
objects discussed in Proposition 4 holds:

A RIM for ¢ is given by

EN;=[ fr,  Geewyey)
The map y: M(Y)— M(X), defined by

[ o= o= [ e

(f € €(X), p € M(Y)), is an affine isomorphism into, and Q = y(HM(Y)) is
an M(Y)-irreducible affine sub-flow of #(X). The minimal flow
Y~ =&x(Q) is isomorphic to Y via $|Y: Y =Y. Finally y|Y =
(| Y™)"'= A is the original section for ¢.

COROLLARY 3.2. Let X-%Y be a RIM extension. (1) If Y has
an invariant measure so does X. (2) If X is uniquely ergodic then so is
Y.

Proof. By Proposition 3.1 there exists an affine isomorphism y of
M(Y) into M (X), and clearly (1) follows. If p and v are invariant
measures on Y then by the unique ergodicity of X, y(u)=vy(v). Thus
pw =v and Y is uniquely ergodic.

LeEmMA 3.3. Let X-5Y be a RIM extension and A: y—>M(X) a
section for ¢. If X is a metric space then there exists a residual set
O C Y such that y € O implies Supp(},) = ¢7'(y).

Proof. Let 2* denote the compact metric space of closed sub-sets
of X, equipped with the Hansdorff topology. There is a natural action
of T on 2* induced by the action of T on X. The map y—Supp (A,)
from Y into 2*¥ is a lower-semi-continuous map and t(Supp(A,)) =
Supp(tA,) = Supp(A,). Let @ C Y be the set of points in Y at which
the map y — Supp(A,) is continuous, then @’ is a residual sub-set of
Y. Let £ =cls{Supp(A,)|y € Y} then Z is a closed invariant sub-set
of 2*X. If A € then A = lim Supp(A,) for some sequence y; € Y and
we can assume that limy, =y exists. Since Supp(A,)Cé'(y;) and
since ¢~ ': Y—2% is an upper-semi-continuous map, it follows that
A C¢7'(y). Thus each element of ¥ is contained in a fiber. Now if
y € 0’ then there is a unique element of ¥ which is contained in ¢ 7'(y),
namely Supp(A,).

Consider now the set X' = U{A|A € Z}. Clearly this is a closed
invariant sub-set of X, and since X is minimal X' = X. This implies
that for y € @ Supp(A,) = ¢ '(y).



RELATIVELY INVARIANT MEASURES 401

LeMMA 3.4. A strongly proximal homomorphism has a RIM iff it
is an isomorphism.

Proof. Let X-%Y be a strongly proximal homomorphism with a
RIM. By Proposition 3.1 (d) there exists an M (Y)-irreducible affine
sub-flow Q of JM(X) such that &|ex(Q):&X(Q)—Y is an
isomorphism. By Corollary 2.3 #(X) itself is #(Y)-irreducible,
hence Q = M(X) and €X(Q) = X.

This lemma showes that not every homomorphism of minimal flows
has a RIM. For example every almost 1—1 (almost automorphic)
extension is strongly proximal and hence unless it is 1 —1, it does not
possess a RIM. Of course any minimal flow without an invariant
measure is an extension (of the trivial flow) without a RIM.

/\

Y<——-—X

Lemma 3.5. Let

be a commutative diagram of minimal flows.

(1) If x has a RIM so does ¢.

(2) If y and ¢ have RIM then so does .

(3) If x has a unique RIM and ¢ has a RIM, then ¢ has a unique
RIM.

Proof. (1) Let P:%(Z)—>%(Y) be a RIM for yx, then
f=>P(fo¢)(f € €(X)) is a RIM for ¢.

(2) Clear.

(3) Let P: 6(Z)—>%(Y) be the unique RIM for y and let
P;: €(Z)—> € (X)be aRIM for . By (1) there is also a RIM for ¢, say
P,: €(X)—>%(Y). Now by the uniqueness of P, P,oP, = P and since
P(%€(Z)) = €(X),P, is unique.

DerFiNITION. Let (T, Z)-% (T, Y) be a homomorphism of minimal
flows. We gay that y is a group extension if there exists a compact
Hausdorff topological group K such that

(1) There is a jointly continuous action of K on Z, (Denoted by
(z,k)—zk, z € Z, k € K).

2) ForzeZ te€T and k €K (tz2)k =t(zk).

(3) For every z€ Z, x '(x(2)) =zK.
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A homomorphism (T, X)-% (T, Y) of minimal flows is called an
almost periodic homomorphism (or extension), if there exists a group
extension (T, Z, K)-% (T, Y) and a homomorphism (T, Z)-% (T, X) such
that y = ¢oy. (Notice that ¢ is also a group extension.)

LeEMMA 3.6. Let X -5 Y be an almost periodic extension. Denote
N ={u € M(X)|d (u)isa point masson Y}.

Then N as a sub-flow of M (X), is pointwise almost periodic (i.e. N is a
disjoint union of minimal sets), and ¢ | N': N — Y is a distal extension.

Proof. Let (T,Z,K), ¢ and y be as in the definition of almost
periodic extension. We can assume that the action of K on Z is
free. Define

% ={u € M(Z)|x()is a point mass on Y}.
Fix a point z, € Z, let y, = x(x,) and choose u € £ such that )E(p,) =

yo. By our assumption the map k —z.k is a homeomorphism of K
onto x '(y,) and thus we can lift & to a measure & on K:

Lf(z)d,.L =fo(zok)d,z: fEL(2).

In this way we can define an action of K on y'(8,) namely ku =
kix. (This depends of course on zy).

Let u, 8 € ¥ '(8,,), we shall show that 6 is in the T-orbit closure of
w iff 6 = ku for some k € K. Indeed suppose there existsanet t, in T
such that lim#tu = 6, without loss of generality we can assume that
limt;z, = z,, exists and it follows that y(z,) =y,. Hence there exists
k, € K such that z, = z,k,. Now for every f € €(Z) the net of func-
tions f“(zok ) converges uniformly in k to the function f(z,;k). Hence

f f(z)d6 = lim f f@)dtp = lim J' FH@)dw
= lim fo"' (zok)dp = limfxf(t,zok)d/l
= [ tekkrda = [ fedodki = | fekrdn

= L f(z)dk,p.

Thus k,u = 6.
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Conversely if 8 = k,u for some k, € K, then there isanet t, in T
such that lim t,z, = 2.k, and for f € €(Z) we have

f f(z)d6 = f f(2)dkp = f f(zok)do
z VA K
- f f(zokik)dgg = lim f 1 (zok)dji
K K
= limf fi(z)du = limf f(z)dti.
VA zZ

Hence limtu = 6.

It is now easy to see that £ is pointwise almost
periodic. Moreover if u,v € £ with ,\3(#) = y(v) and there exists a net
t, in T such that limfu =limtv =6. Then we can assume that
x(0)=x(u)=1y, and that limtz, =z, exists. Now as above there
qxists k, € K such that zok, = z, and k,u = 6 = k,v. HenceP =v and
x|¥: £—Y is distal. Finally since §(£)=A and since o = y it
follows that & is point-wise almost-periodic and that |N: N—>Y is
distal.

REMARK. In the notations of Lemma 3.6, there is always an action
of K on M(Z) namely u — wk where

L f(2)d(uk) = L fk)dy  (f € €(Z), u € M(Z)and k € K).

When K is abelian the map u — g of x ~'(yo)onto #(K), does not
depend on the point z, € x '(y,). Moreover ku = uk and thus under
the action u — uk, (T, %,, K)» (T, Y) is a group extension for every
minimal set £, C¥. Thus #,-% Y is an almost periodic extension for
every minimal set A, C W.

The following corollary was first proved by A. W. Knapp [8]. We
include a proof which makes use of Lemma 3.6.

CorOLLARY 3.7. Let X -5 Y be an almost periodic extension then
¢ has a unique RIM.

Proof. Let Q be an J(Y)-irreducible affine sub-flow of
M(X). By Proposition 2.2. €X(Q)-% Y is a strongly proximal exten-
sion of Y Aand by Lemma 3.6 €X(Q)-%Y a distal extension of
Y. Hence ¢ |&X(Q)is 1 - 1and by Proposition 3.1 (d), ¢ has a RIM.

Let (T,Z,K), x and ¢ be as in the definition of an almost-periodic
extension. Assume again that the action of K on Z is free. The
extension Z-»Y is a group extension hence an almost periodic
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extension and by the first part of this proposition y has section
A:Y—>M(Z). As in the proof of Lemma 3.6 one can show that for
eachk €K and y €Y, A, = kA,. Hence A, is the Haar measure on K
and A is unique. The uniqueness of a RIM for ¢ now follows from
Lemma 3.5 (3).

ProprosiTION 3.8. Let X be a quasi-separable minimal flow (i.e., X
has sufficiently many metric factors) and let X-%Y be a distal
homomorphism. Then ¢ has a RIM.

Proof. By the Furstenberg-Ellis structure theorem for quasi-
separable distal extensions, [1], there exist an ordinal 1, a family of

flows {X, |a =7} and a family of homomorphism {X,,Hi)Xa la <n}
such that X,=Y,X, = X,¢, is an almost periodic extension and for
limit ordinals B =7 X, is the invers limit of the system {X,, ¢, |a <
B}. Using Corollary 3.7 and Lemma 3.5 (2), and using the fact that for
a limit ordinal 8 = 7 the union of the images of €(X,) in €(X;) (a¢ <B)
is dense in €(X;), one constructs inductively a RIM for ¢.

REMARKS. (1) Since there exist distal flows which are not uni-
quely ergodic [3], it is clear that a RIM for a distal extension is not
necessarily unique.

) Let X -5 Y be a distal homomorphism, is it true that fqr every

minimal set N, C ¢ (Y)C#(X) the homomorphism No—qb—) Y is
distal? If this is true, and it can be proved without the use of the
structure theorem, then the existence of a RIM will follow as in the
proof of Corollary 3.7. In particular when Y is the trivial flow, a proof
of the fact that a minimal set in (X)) is distal whenever X is distal will
produce a new proof for the existence of an invariant measure for a
distal flow. (In [9] there is an example of a distal flow on the torus X,
such that #(X) is not distal.)

ProrosITION 3.9. Let X-5Y be a RIM extension. If for some
section A: Y — M(X), and some point y,E€ Y, Supp(A,,) is a finite set,
then ¢ is a finite to one almost periodic extension. In particular if for
some Y, € Y,d '(yo) is finite then, ¢ is finite to one everywhere and is
almost periodic.

Proof. We show that ¢ is a finite to one distal extension and this
implies that ¢ is almost periodic.

Let A,=23l_,ax, where 0<a <1, Z,a =1, x,€X satisfy
&(x))=y,and if k# 1 then x,# x.. Since A is a section it follows that



RELATIVELY INVARIANT MEASURES 405

Ay = Ay, =2 atx,. If t, is anetin T then clearly lim £,A ,, exists and

is equal to A, iff, in X", lim(t,x," -, t.x.) = (21, +,2,) exists and A, =
Sr,az. Thus if we denote Z =cls{(tx,,- -, tx,)|t € T} then Z as a
sub-flow of X" is isomorphic to Y via the map y = A, = (z,,""+,2,)

where A, = Z[_, a;z; (If some of the a, — s are equal we can reorder them,
if necessary, so that z, = limt,x, whenever lim¢,y, = y.)

Since Y is a minimal flow we conclude that for each y €Y, the
point (zy,- -+, z,) of X" where, A, = 2/, a;z,,.is an almost periodic point.
In particular if i#j then z and z are not proximal. Now U{z |z is
some coordinate of some z € Z}= U{Supp(A,)|y € Y} is clearly a
closed invariant sub-set of X. Since X is minimal this set is equal to X
and we can conclude that for each y € Y with A, =Z,_, a2, ¢7'(y) =
{z1,"*,z,}. Thus ¢ is a finite to one distal homomorphism. The proof
is completed.

In a similar way one can show that a homomorphism X %Y of
minimal flows, which is finite to one and open, is almost-
periodic. Thus for a finite to one homomorphism of minimal flows the
properties of having a RIM, of being open and of being almost-periodic
are equivalent. Using this fact and a construction due to W. A. Veech
[12] one can deduce the following proposition, which is probably well
known.

ProposITION 3.10. Let X be a minimal metric flow and X -5 Y a
homomorphism. Suppose there exists a point y, € Y such that ¢'(y,)
is a finite set. Then, either ¢ is almost 1—1 or, there exists a
commutative diagram

0*
X*—— X

o* ¢
Y Y

such that X* is a minimal flow, 0 and 6* are almost 1— 1 extensions and
0* is a nontrivial almost-periodic extension.

4. How to obtain a homomorphism with a RIM from

a given homomorphism. Let X% Y be a homomorphism of
minimal flows. By Proposition 2.2 we can find an #(Y)-irreducible
affine sub-flow Q in #((X), and then the map ¢ |eX(Q): EX(Q)— Y isa
strongly proximal homomorphism. Denote &X(Q)=Y and ¢|Y =
0. Consider now the set RCXXY~ defined by R=
{(x,v)|d(x)=0(v)}. We have the following theorem.
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THEOREM 4.1.
(1) R contains a unique minimal set, X~.
(2) The following diagram is connutative

0-
X —X

¢- ¢

Y——Y

0

Where 6~ and ¢~ are the projections of X~ onto X and Y~ respectively.
(3) 6 and 6~ are strongly proximal homomorphisms.
(4) ¢~ hasa RIM. Infactforeachv € Y™ the measurev X 8, on
X X Y~ is supportedin X~ and themap A: Y —>M(X"): A, =v X, isa
section for ¢ .

Proof. (1) Let X~ be an arbitrary minimal set in R, we shall
prove that statements (2)-(4) holds for this particular choice of a
minimal set and then it will follow from (4) that X~ is the unique
minimal set in R.

(2) Let x,v)E X" then (b0 )(x,v))=d(x) and
Bod )(x,v))=0(v). Since X" CR,dp(x)=0()and p°0 " =0°¢".

(3) We know already that 6 1is a strongly proximal
homomorphism. Let { be a measure in #(X~) whose support is
contained in a set of the form (7)) '(x) ={(x,v)|v € Y and (x,v) € X"}
for some x € X. Then (¢7)"(¢) is supported in the set {v € Y™ |(x,v) €
X7}, But for (x,v)EX", 60(v)=d¢(x) and thus Supp(¢™)"({)C
07'(¢(x)).

Now 0 is a strongly proximal extension, hence there exists a net ¢
in T such that lim¢t,(¢™)"({)=86, EM(Y ™), for some v EY". Since
(=8, X(¢7)"({) it is now clear that for a sub-net ¢, of t;, lim¢t, { isa
point mass on X~. Thus 6~ is also a strongly proximal homomorphism.

(4) The commutative diagram of minimal flows in (2), induces a
commutative diagram of affine flows

e
M(XT) M(X)
() é
M(YT) M(Y).

A
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We recall that Q = ¢co(Y ™) C M (X) is an M(Y)-irreducible sub-set
of M(X).
Denote by Q~ the affine sub-flow, ((67)")7'(Q) of M(X"), then

6((¢)(QN=d(87)"(Q7) = d(Q) = M(Y).

But 6 is a strongly proximal extension, and by Corollary 2.3,
MY ™) is M(Y)-irreducible, hence (¢ )" (Q)=M(Y"). LletveE Y™
be fixed and choose ¢{ € Q™ such that (¢™)"({)=6, €M(Y"). This
implies that {=(87)"({)x 8, Denote (#7)"({)=n and note that
n€Q.

By the commutatnvnty of the above diagram ¢(v) = 6(v)= 0(6 )=
(B2(6)V ()= ($°(07))({) = $(n), but v € Y~ hence $(v) = d(n) =
a point mass on Y.

It now follows from Theorem 2.1. (4) that » and n are proximal
points of Q. Therefore there exists a net ¢, in T such that limty =
limtm. Since Y~ is a minimal set and v € Y, the common limit lies in
Y™ and we can assume that it is actually equal to ». Now

limt,{ = limt,(n X 6,,) =y X 8,, (S Q~;«M(X~).

Thus for every v € Y~ the product measure v X §, is supported in X,
and it is now clear that the map A: Y~ — (X ") defined by A, = v X §,
is a section for ¢~. This completes the proof of Theorem 4.1.

Consider now a minimal flow Y and let M be the universal minimal

flow. There exists a homomorphism M -% Y. Using the construction
of Theorem 4.1 (with X = M) we obtain a commutative diagram

M

where Y™ C M(M), 6 is strongly proximal and ¢~ has a RIM. (By the
universality of M, is 1—1).
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fY—>Yisa strongly proximal homomorphism then there
exists a homomorphism 7, such that the diagram

is commutative.
 Let Q=co(Y~ )C./%(M), Q’ =7n(Q); then Q' C#(Y") and since
é=yon we have $(Q)=y°n(Q)=¢(Q)=M(Y). But ¢ is
strongly proximal, hence #(Y') is M (Y)-irreducible (Corollary 2.2) and
Q' =M(Y’). In particular n(Y")=Y' and ¢o(A|Y)=de(H|Y )=
) =0°((¢)"|Y"). Now the map A: Y > MM): A, =v
isasectionand (¢™)*"|Y " =A"". Thusforv€ Y CMM), (¢ )" (v)=
8, EM(Y™) and ¢o(/|Y")=6. This shows that Y~ is a universal
strongly proximal extension of Y.

If Y'-5Y, is another universal strongly proximal extension of Y,
then there exist two homomorphism 7 and ¢ such that the diagram

n
Y & ~Y’

L

Y 0
Y

is commutative.

Now fory € Y™, ¢((ten)(y)) = (6 °n)(y) = ¢(y). Hence (t°n)(y)
and y are proximal points. But ¢°n is an automorphism of the flow
Y, hence this is possible only if (o) (y) = y i.e. tonp = identity. This
shows that Y~ is unique up to an isomorphism.

Incidentally this shows that for every minimal flow Y and a
homomorphism M -% Y, any two (Y )-irreducible affine sub-flows of
M(M) are affinely isomorphic.

In particular when Y is the trivial flow Y~ =1l the universal
minimal strongly proximal flow (see [6]), and every irreducible affine
sub-flow of (M) is affinely isomorphic to #(Il;).
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The flow Y~ has the property that every homomorphism Z % Y~
where Z is minimal, has a RIM. (Lemma 3.5 (1)).

The observation that any two (YY) irreducible affine sub-flows of
M(M) are isomorphic raises the following question. Given a
homomorphism X -%Y of minimal flows, is it true that any two
M(Y)-irreducible  affine  sub-flows of M(X) are affinely
isomorphic? Taking Y to be the trivial flow the question is whether
any two irreducible affine sub-flows of #(X) are necessarifiy
isomorphic. In particular if X is a minimal flow with an invariant
measure is it true that every irreducible affine sub-flow of #(X) is
trivial?

A particular case in which the answer to the above questions is
clearly affirmative, is the case in which there is a unique #(Y)-
irreducible affine sub-flow of #(X). This is the case iff in the
construction of Theorem 4.1 the homomorphism X~ -% Y~ has a unique
RIM.

The following example of a minimal flow X such that #(X)
contains a unique irreducible affine sub-flow (which is an invariant
measure), is due to Professor H. Furstenberg.

Let G be a semi-simple connected Lie group with finite center,
G = KAN an Iwasawa decomposition for G and let M be the central-
izer of A in K. Then H = MAN is a closed amenable sub-group of
G. Theorem 2.6 of [4] states that the action of H on any homogeneous
space of G is uniquely ergodic. Let I' be a discrete uniform sub-group
of G and let Q C M (G/T), be an affine G-invariant irreducible sub-flow
of M(G/T). In particular Q is H-invariant, and since H is amenable
the unique H-invariant measure on G/I' lies in Q. Thus Q is
unique. Since G/T carries a unique G-invariant measure, m, it follows
that Q ={m}.

This example can be generalized as follows

ProrosiTION 4.2. Let (T,X) be a minimal flow. Suppose there
exists a sub-group S of T which is amenable and such that (S,X) is a
uniquely ergodic flow. Then, M(X) contains a unique T-invariant affine
irreducible sub-flow.

We conclude with the following question which, in fact, is the
reason for our interest in relatively invariant measures.

Generalizing results of H. Furstenberg in [5] and H. Keynes and J.
B. Robertson in [7], R. Peleg proved the following theorem [10,
Theorem 11, where Y is the trivial flow].

THEOREM. Let (X, T) be a minimal metric flow with an invariant
measure. Then X is topologically weakly mixing (i.e. X XX is
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‘topologicaly ergodic), iff the only almost periodic factor of X is the
trivial one.

We state the following conjecture.

CoNJECTURE. Let X% Y be a RIM-extension and suppose X is
metric. Let R be the sub-set of X X X, defined by

R = {(x.,X2)|¢(x1) = ¢(x,)}.

Then R is topologically ergodic iff the only almost periodic extension of
Y, which is a factor of X, is Y itself.
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