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ABSOLUTE SUMMABILITY OF
WALSH-FOURIER SERIES

N. R. LADHAWALA

We prove that for all fe %, S5, (1/k) | k) <K f1l+,,
where 5#°* is the Walsh function analogue of the classical
Hardy-space and f(k) is the £'® Walsh-Fourier coefficient of
f. We obtain this as a consequence of its dual result:
given a sequence {a,} of numbers such that a,=0(1/k), there
exists a function ~€¢ BMO with A(k) = a,.

We study the relation between our results and the theory
of differentiation on the Walsh group, developed by Butzer
and Wagner.

Introduction. We are interested in various properties of
Walsh-Fourier series. w,(-) will denote the 4" Walsh function in
the Paley-enumeration and f(k) will be the corresponding Walsh-
Fourier coefficient of feL'. 5#* and BMO will denote the Walsh
function analogues of the classical Hardy space and the functions of
bounded mean oscillation, respectively (see [3], pp. 3-4; also refer
to the section on ‘‘Preliminaries’’, in this paper).

Our principal result is

THEOREM 1. There exists a constant K > 0 such that

S WK AU = KIIf 1l
for all fe 7.

Our proof of Theorem 1 does not follow the lines of its trigono-
metric analogue (see [5], pp. 286-287). We use the fact that Theorem
1 is equivalent to

THEOREM 2. Given a sequence {a,} of numbers sufh that
a, = O(/k), there exists a function h im BMO such that h(k) = a,
for all k.

We give a direct proof of Theorem 2.

Theorem 2, combined with a result of Fine [2] gives Lip (1, L)<
BMO. However, Lip (1, L') ¢ L, in contrast with the trigonometric
case where Lip(1, L') = BV Z L™ (see [5], p. 180). Theorem 2 also
has connections with the Butzer-Wagner theory of differentiation on
the Walsh-group (see [1]). The antidifferentiation kernel W(x)~1 +
S (Uk)yw(x) was shown by Butzer-Wagner to be in Lip (1, LY.

103



104 N. R. LADHAWALA

W is thus a function in BMO, but W is not bounded. Hence we
know that if both f and DU!f-the Butzer-Wagner derivative of f-are
in L' then f must be in BMO. We give an example of an f in L'
with DUf in L' but f not bounded.

We have that WeLip(1/p, L?), for 1 < p < c, which gives: if
both f and DUf are in L?, 1 < p < oo, then f is in Lip (1/2’, C(G))
and the Walsh-Fourier series of f converges absolutely.

Theorem 1 can be restated in the context of the Butzer-Wagner
theory as: if f and DUf are in 57" then 37, |f(k)| < . Equi-
valently, the Walsh-Fourier series of the ‘indefinite integral’ of any
f in 7" converges absolutely.

I am grateful to R. A. Hunt and R. C. Penney for their help
and encouragement.

Preliminaries. G = IIZ,, the countable product of infinitely
many copies of Z,, is called the Walsh-group. Addition in G, defined
termwise modulo 2, is denoted by . For a fixed = = (x,) e G, the
sets Vi(x) = G,

Vn(x) = {(xu Loy vy Ly Bytr1y Rty *° ') € G}? n 2 1 y
define a neighbourhood system at & and the topology thus induced

on G, makes it a compact, abelian group.
The Haar-measure ‘dx’ on G is normalized so that S dx = 1.
G

The character group G of G is the set of all continuous, nonzero
functions ¥ on @, satisfying

1 + y) = x(@xy), vr,yeG,

endowed with the compact-open topology. Fine [2] has shown that
these functions are given by

wn(x) = k]j(! [rk(x)]eky

where 7r(x) = (—1)"s+ and n = > 7,¢6;27 is the unique binary expan-
sion of the integer » = 0. 7,’s are called the Rademacher functions
and w;’s the Walsh-functions (in Paley’s enumesration). The system
{w;} is closed under pointwise multiplication; more precisely,
W, W, = W,in Where for n = 37,¢;2/, and m = >, 92/, €;, ;€
{0, 1}, we have n + m = X5, |e; — 05| 27

For m = 1, the m™ Dirichlet kernel is defined as:

Do(0) = 5, wi(a) .

For m = 2,
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2 if we V,(0),

D,u(x) = {0 it z¢ V(0.

For f, ge L,

(Fro)@ = | e + vy .
Fk) = SG f@)w(x)dx denotes the k™ Walsh-Fourier coefficient and

(8.1)w) = £ F(wi(e) = (£+D,)x)

is the »'™ partial sum of the Walsh-Fourier series of f. Thus,

(Sym f)(x) = zmSV _ft .

m

Moreover, (f+g) (k) = f(k)g(k), Vk=0 and f, geL'. Henceforth,
all functions f are assumed to satisfy g f(x)dx = f(O) = 0.
G

L?, 1 < p £ « denote the usual Lebesgue spaces on G; C(G) is
the space of continuous functions on G.

BMO is defined to be the space of all functions f such that
SUDL21 || S [f — Spn—1f Plle < 0. SZ* is the space of those functions
f for which Sf = Co[Spnf — Sp—1fP)"2e L'. Moreover, || fll»t=
I1SF1lzt (see [3]).

For h=(h,)eqG, letnh)= >0 h,27" and Lip(a, L?) ={f¢€
Lo f(C) = FC4R) e = OIMR)T L= p < o0, a >0,

For p = «, we replace L* by C(G). If

@,(f3 0) = suPzn=e [ F() — FC + R)ler

then feLip (a, L”) = w,(f; 0) = 0(3%) = w,(f; 27") = 0(27").

Let X denote L?, 1 < p < o, or C(G).

Define e; = {x!} where x! = d;,. For an fe X, if there exists a
g€ X such that lim,..||1/2 37 2[f(-) — f(- + €;1)] — 9()|lx =0,
then f is said to be differentiable in X (see [1]). g is called the
derivative of f and we write D" f = g. Differentiable functions in
X are completely characterized by the Theorem (see [1]):

For fe X, the following are equivalent:

(1) DUf = g exists.

(2) There is a ge X such that kf(k) = §(k), Vk. )

(3) There is a g € X such that f = Wxg where
W) ~ 1 + 3, A/k)w(x).

Proof of Theorem 2. Since a, = OQ1/k), say |a,| < M/(1/k),
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vk =1, 3\, a,w.(x) defines a function h e L* such that A(k) = a, for
k=1 and h(0) = 0. Let us put, D.(h, v)(t) = Sy {Sple(+)Sp=1(+)}(£).
Then to prove ke BMO, it suffices to show that (see [3]), 3IM >
05 || 3520 Dol VYO [l =00 = M, Y = 1.
Now

(S 1) = Sh(-))
{3 awe)}

k=gv—1

2Y—1 2¥—1 k—1
= > a+2 X DL QG Wii(t) .

k=2v—l k=gv—l41 1=pv—1
Also, for any te€ G and » fixed,

+=1 if 05«2,
0 otherwise.

Se(w)t) = + 1.35) = {

Since Sy(wii)(t) = £ %.(k 4+ 1), we have for v = n

D,(h, v)(¢)
2¥—1 2v—1 k-1
= > a+2 3 3 Faparxedl).
k=gt k=2v—liy =¥l

Thus

3. D,(h, ¥)(0) )

© ) 2Y—1 k—1
sMi S +25 S S oLyl
=k v=n p=pr—iqr 1=l K l

Note that, [x. (k4 1) =1 for 0=k +1<2* and 0 otherwise.
For a fixed k, k 4+ I < 2" iff the dyadic expansions of % and ! agree
at and after the n™ stage. Thus, there are exactly 2" values of [
for which |y (k+1)| =1, if k is fixed. Therefore

{8 25 2w+l

v=n \ pogyu—1, k 20—

00 ov—1 1 2% Ll 21L
L —4.
< "Z—""{kzzg“+1 k 2"—1} s
Since > (1/k*) < co, AM < oo such that (>3, D.(h, v)(t)| < M, i.e.,
132520 Dalhy DYl iz=ay = M < 0, Y = 1.

CoroLLARY 1. Lip(1, L') S BMO, but Lip (1, L') & L~.

~ Proof. Fine [2] had proved that, for each f in Lip(1, L"),
f(k) = O(/k). So feBMO by Theorem 2.
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Butzer and Wagner [1] have shown that W(x)~1 + 3, (1/k)wi(x)
is in Lip(1, L'). But We¢ L~ because {S,.g} is uniformly bounded
whenever g€ L=} Syn W(x) = 1 + 337 (1/k), Vx e V,(0).

REMARK. The above corollary is in contrast with the trigono-
metric case. We know that Lip (1, L') = BV S L* in the latter con-
text [5, p. 180].

Proof of Theorem 1. Recall that fe 57, We want to show
that 32, (1/k) | f(k)| £ K- || f||»*, with K independent of f.

Let us put b, = (sgnf(k))/k, k=1, b, =0. Then by Theorem
2, 39 ¢ BMO such that §(k) = b,. Therefore

S5 (UK 1700)| = (SuvgSuv)O)
= | (S-S W)y -

But (see [3], p. 8) the last integral is majorized by

VEHQHBMO ([l

Thus 2., (1/F) [F(k)] < V2l gllsxo | fll1. By the proof of
Theorem 2, ||g|lsmo = 7%/6 + 8. Hence, there exists a constant K>0,
independent of f, such that

INHCIOES (P

REMARK. It can be easily shown that Theorem 1 implies
Theorem 2.

Butzer and Wagner ([1]) introduced the notion of differentiation
on the Walsh-group. They showed that W(x)~1 + 3, (1/k)w.(x)
is the ‘antidifferentiation’ kernel and W belongs to Lip (1, L'). In
the proof of Corollary 1, we have shown that W e BMO but We L~.
Since convolution of an L' function and a BMO function is again a
BMO function, we obtain f and DUf are in L'= f = WxDUf is in
BMO. Rubinshtein [4] has shown that 37, (1/n log n)w,(x) defines
an unbounded L'-function g, and that 35, (1/log n)w,(x)~h(x) is in
L'. Thus, we have g and » = D"™g both in L' but ¢ is not bounded.

It is easy to prove that WeLip (1/2, L?); then using interpola-
tion and duality, we get WeLip(l/p, L?), 1 < p < . By the
characterization of differentiable functions in L? (see [1]), we then
have that if f and D"!f are in L? for some 1 < p < oo, then
feLip (1/q, C(G)), where 1/p + 1/¢ = 1. This leads to the fact that
the Walsh-Fourier series of such an f converges absolutely. Theorem
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1 actually strengthens this result, as we see below.

The definition of derivative can be given for 57" as in [1]. A
characterization similar to (x) for differentiability in 27 remains
true: fe 57" is differentiable iff 3g € 57" such that kf(k) = §(k), Vk.

Now, if f is differentiable in £#*, then

S0 = 3 Wk 90| <

by Theorem 1, because g € 5#*; thus f has an absolutely convergent
Walsh-Fourier series. The same fact can be stated as: The Walsh-
Fourier series of the “indefinite integral” Wxg of any ge 57, is
absolutely convergent.
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