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ABSOLUTE SUMMABILITY OF
WALSH-FOURIER SERIES

N. R. LADHAWALA

We prove that for all /e^T 1 , Σ?-i (1/*) \f(k) \<K\\f\\^v

where ^f1 is the Walsh function analogue of the classical
Hardy-space and f{k) is the kth Walsh-Fourier coefficient of
/. We obtain this as a consequence of its dual result:
given a sequence {ak} of numbers such that αft=O(l/A0, there
exists a function h e BMO with h(k) — ak.

We study the relation between our results and the theory
of differentiation on the Walsh group, developed by Butzer
and Wagner.

Introduction* We are interested in various properties of
Walsh-Fourier series. wk{ ) will denote the kth Walsh function in
the Paley-enumeration and f(k) will be the corresponding Walsh-
Fourier coefficient of feL1. β^1 and BMO will denote the Walsh
function analogues of the classical Hardy space and the functions of
bounded mean oscillation, respectively (see [3], pp. 3-4; also refer
to the section on "Preliminaries", in this paper).

Our principal result is

THEOREM 1. There exists a constant K > 0 such that

for all f

Our proof of Theorem 1 does not follow the lines of its trigono-
metric analogue (see [5], pp. 286-287). We use the fact that Theorem
1 is equivalent to

THEOREM 2. Given a sequence {ak} of numbers such that
ak = O(l/k), there exists a function h in BMO such that h(k) = ak

for all k.

We give a direct proof of Theorem 2.
Theorem 2, combined with a result of Fine [2] gives Lip (1, LL)£

BMO. However, Lip (1, L1) ς£ L°°, in contrast with the trigonometric
case where Lip (1, Lι) = BVQL°° (see [5], p. 180). Theorem 2 also
has connections with the Butzer-Wagner theory of differentiation on
the Walsh-group (see [1]). The antidifferentiation kernel W(x)~l +
ΣE=i (Vk)wk(%) was shown by Butzer-Wagner to be in Lip (1, L1).
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W is thus a function in BMO, but W is not bounded. Hence we
know that if both / and D[1]/-the Butzer-Wagner derivative of /-are
in L1 then / must be in BMO. We give an example of an / in Lι

with D [ l3/ in U but / not bounded.
We have that TFeLip (l/p, Lp), for 1 <̂  p < oo, which gives: if

both / and Z>[1]/ are in L\ 1 < p < oo, then / is in Lip(W, C(G))
and the Walsh-Fourier series of / converges absolutely.

Theorem 1 can be restated in the context of the Butzer-Wagner
theory as: if / and DίlΊf are in ^ T 1 then Σ*Ul/(*OI < °° Equi-
valently, the Walsh-Fourier series of the 'indefinite integral7 of any
/ in βέf1 converges absolutely.

I am grateful to R. A. Hunt and R. C. Penney for their help
and encouragement.

Preliminaries* G = ΠZ2, the countable product of infinitely
many copies of Z2, is called the Walsh-group. Addition in G, defined
termwise modulo 2, is denoted by + . For a fixed x = (xk)eG, the
sets V0(x) = G,

Vn(x) = {(xίf x2, , xn, zn+1, zn+2, •) e G}, n ^ 1 ,

define a neighbourhood system at x and the topology thus induced
on G, makes it a compact, abelian group.

The Haar-measure cdxy on G is normalized so that I dx = 1.
J G

The character group G of G is the set of all continuous, nonzero
functions χ on G, satisfying

χ(χ + y) = χ(χ)χ(y)f vx,yeG,

endowed with the compact-open topology. Fine [2] has shown that
these functions are given by

Λ/ / /v» i —— I I I /v» / /v I I ̂  I?

Wn\X) — I I ίrk\X)\ k 9

where rk(x) = ( — 1)̂ +1 and n — ̂ 7=oej%j i s the unique binary expan-
sion of the integer n ^ 0. r^'s are called the Rademacher functions
and w/s the Walsh-functions (in Paley's enumeration). The system
{Wj} is closed under pointwise multiplication; more precisely,
Wn'Wm = wn+m, where for ^ = ΣΓ=oεj2^ and m = Σ?=o^i2J', eίf ^ e
{0,1}, we have w + m = Σ7= o | Sy — ̂  | 2j.

For m ^ 1, the mth Dirichlet kernel is defined as:

m—1

= Σ
kQ

For m = 271,
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(2* if X β VM ,

Aχ) - j 0 i f χ0 v^0) m

For/, geL\

(f*g){%) = \af(y)g(x + y)dy .

f(k) = \ f(x)wk(x)dx denotes the kth Walsh-Fourier coefficient and
JG

is the nth partial sum of the Walsh-Fourier series of /. Thus,

(S2mf)(x) = 2 t f{t)dt .

Moreover, (f*gT(k) = f(k)g(k), V& ^ 0 and f,ge L1. Henceforth,

all functions / are assumed to satisfy \ f(x)dx = /(0) = 0.

Lp, 1 ^ p ^ oo denote the usual Lebesgue spaces on G; C(G) is
the space of continuous functions on G.

BMO is defined to be the space of all functions / such that
sup^JISUI/ — &2™-i/]2Hoo < °° ^ γ i s the space of those functions
/ for which S / = ( Σ : = i [ f r / - S 2 - 1 / ] T 2 e L 1 . Moreover, | | / | | ^ =
\\Sf\\j} (see [3]).

For h = (ΛJ e G, let λ(Λ) - Σϊ=i Λn 2- , and Lip (α, Lp) = {/ e
i p : 11/(0 ~ f{'+h)\y - OWk)β]}, 1 S* p < oo, α > 0.

For p = oo, we replace L°° by C(G). If

ω,(/; δ) - Bupa(w« | |/( ) - /(• + Λ)IUP ,

then / e Lip (α, Lp) — ωp(/; 8) = O(da) <=> ωp(f; 2~n) - O(2~na).
Let X denote Lp, 1 ^ p < oo, or C(G).
Define e3- = {xi} where a ί = δjs. For an / e l , if there exists a

</eX such that limm_ || 1/2Σf=02^[/( ) - /(• + βy+ι)] - ^( )llχ - 0 ,
then / is said to be differentiate in X (see [1]). g is called the
derivative of / and we write Dmf — g. Differentiate functions in
X are completely characterized by the Theorem (see [1]):

For / e l , the following are equivalent:
(1) D [ 1 ]/ = g exists.
(2 ) There is a g e X such that kf(k) = £(&), Vfc.
( 3 ) There is a 0 6 X such that / = W*g where

Proof of Theorem 2. Since ak = O(l/k), say |αΛ | ^
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Vfc ^ 1, Σ*U cw^α) defines a function ftei2 such that h(k) = ak for
fc ̂  1 and £(0) = 0. Let us put, DH(h, v)(t) = Sz*{Srh(-)St»=Jι{-)Y(t).

Then to prove AeBMO, it suffices to show that (see [3]),

Now

= Σ α*

12

ϊ 2

2 V - 1 2^—1 k—ί

Also, for any t e G and n fixed,

[ ± 1 if
= ± χn(j) = .

0 otherwise.
Since S2

n(wku)(t) = ± χn(k + I), we have for v ^

2 V - 1 2 V - 1 fc- 1

= Σ al +2 Σ Σ ±ak arχA
k=2y-1 k=2v~ι + l l = &-1

Thus

Σ Dn(h, v){t)
v — %

Σ \ ±-\x

Note that, | χjjc + I) \ = 1 for 0 ^ A; + I < 2n and 0 otherwise.
For a fixed &, k + I < 2% iff the dyadic expansions of k and I agree
at and after the ntn stage. Thus, there are exactly 2n values of I
for which \χn(k+l)\ = 1, if k is fixed. Therefore

Σ
i fe1 I

-f Σ -̂^ 1 ^

Since ΣK=t (W) < °°, 3M< 00 such that |ΣΓ=»i5»(Λ, f)(ί)l < ^ i-e^

COROLLARY 1. Lip(l, L^SBMO, 6^ί Lip(l, L1) £ L~.

Proof. Fine [2] had proved that, for each / in Lip(l, L1),
f(k) = O(l/ft). So /eBMO by Theorem 2.
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Butzer and Wagner [1] have shown that W(x)~l + Σik=ΛVk)wk(x)
is in Liρ(l, L1). But WίL00 because {S2»βr} is uniformly bounded
whenever g eL~; S2~W(x) = 1 + Σ^Γ 1 (1/k), V%6 VJO).

REMARK. The above corollary is in contrast with the trigono-
metric case. We know that Lip(l, L1) = BVQL°° in the latter con-
text [5, p. 180].

Proof of Theorem 1. Recall that feβέ?1. We want to show
that Σ*U(1/AO l/(fc)l ^ #• II/IUΛ with X" independent of /.

Let us put bk = (sgn f(k))/k, k ^ 1, 60 = 0. Then by Theorem
2, 3# 6 BMO such that g(k) = 6*. Therefore

- (S,«g)(yMS>*f)(y)dy .
JG

But (see [3], p. 8) the last integral is majorized by

Thus Σ*U (1/fc) l/(fc)I ^ V7 !̂!flr||BMO II / l l ^ By the proof of
Theorem 2, ||g||BMo ^ π2/(> + 8. Hence, there exists a constant
independent of /, such that

REMARK. It can be easily shown that Theorem 1 implies
Theorem 2.

Butzer and Wagner ([1]) introduced the notion of differentiation
on the Walsh-group. They showed that W(x)~ 1 + Σ*U (Vk)wk(x)
is the 'antidifferentiation' kernel and W belongs to Lip (1, Lι). In
the proof of Corollary 1, we have shown that IF e BMO but WgL°°.
Since convolution of an L1 function and a BMO function is again a
BMO function, we obtain / and D [ 1 ]/ are in L1 => f = W*D™f is in
BMO. Rubinshtein [4] has shown that Σin=ΛVnlog n)wn(x) defines
an unbounded ZΛ function g, and that Σϊ=2 (I/log n)wn(x)~h(x) is in
L1. Thus, we have g and h = Dίι]g both in L1 but g is not bounded.

It is easy to prove that W e Lip (1/2, L2); then using interpola-
tion and duality, we get We Lip(l/p, Lp), 1 <̂  p < oo. By the
characterization of differentiable functions in Lp (see [1]), we then
have that if / and DίlΊf are in Lp for some 1 < p < oo, then
/eLip(l/g, C(G)), where 1/p + 1/g = 1. This leads to the fact that
the Walsh-Fourier series of such an / converges absolutely. Theorem
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1 actually strengthens this result, as we see below.
The definition of derivative can be given for ^f1 as in [1]. A

characterization similar to (*) for differentiability in 3ίfx remains
true: fe J T 1 is differentiate iff Ig e Sϊf1 such that kf(k) = g(k), Vft.

Now, if / is differentiate in Sίf1, then

by Theorem 1, because g e 3ίfγ\ thus / has an absolutely convergent
Walsh-Fourier series. The same fact can be stated as: The Walsh-
Fourier series of the "indefinite integral" W*g of any g e §ίfγ, is
absolutely convergent.

REFERENCES

1. P. L. Butzer and H. J. Wagner, Walsh-Fourier series and the concept of a deri-
vative, Applicable Analysis, 3 (1973), 29-46.
2. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc, 65 (1949), 372-414.
3. A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, W. A.
Benjamin, Inc., Reading, Mass., 1973.
4. A. I. Rubinshtein, Series with respect to the Walsh system with monotone coeffici-
ents, Matem. Zametki, 2, No. 3(1967), 279-288.
5. A. Zygmund, Trigonometric Series, 2nd ed. Vol. I, II, Cambridge University Press,
Cambridge, 1959.

Received February 2, 1976.

PURDUE UNIVERSITY




