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CHARACTERIZATIONS OF SOME C*-EMBEDDED
SUBSPACES OF βN

R. GRANT WOODS

Let K be a compact F-space such that I C*(K) I = 2ω.
Using the continuum hypothesis we characterize those sub-
spaces of K that are C*-embedded in K. We also characterize
the class of extremally disconnected Tychonoff spaces of
countable cellularity. As corollaries of these theorems, using
various set-theoretic hypotheses we characterize the C*-
embedded, and the extremally disconnected C*-embedded,
subspaces of βN.

1* Introdution* Our notation and terminology follows that of

the Gillman-Jerison text [4]. All hypothesized topological spaces are
assumed to be completely regular and Hausdorff (i.e., Tychonoff).
As usual βX denotes the Stone-Cech compactification of the Tychonoff
space X, and N denotes the countable discrete space. C*(X) denotes
the family of bounded real-valued continuous functions on X. A
subspace S of X is C*-embedded in X if given feC*{S) there exists
g G C*{X) such that g\S = f. A cozero-set of X is a set of the form
X - f-(0) where feC*(X). The collection of cozero-sets of X is
denoted by coz (X). A space X is zero-dimensional if its open-and-
closed (clopen) sets form a base for its open sets. X is strongly
zero-dimensional if βX is zero-dimensional.

A space X is weakly Lindelof if given an open cover °F of X,
there is a countable subfamily ^ of y~ such that U & is dense in
X (if & is a collection of subsets of a set we denote U {C: C e ^}
by U ^ ) A space X has the countable chain condition, or count-
able cellularity, if each family of pairwise disjoint nonempty open
subsets of X is countable. We abbreviate this by writing "X has
c.c.c." The following lemma, which came to the attention of the
author through a letter from W.W. Comfort, is easily proved.

LEMMA 1.1. A space has c.c.c. iff each of its open subsets is
weakly Lindelof.

A space X is extremally disconnected if disjoint open subsets
have disjoint closures. It is an F-space if its cozero-sets are C*-
embedded. It is an F'-space if disjoint cozero-sets have disjoint
closures. Each extremally disconnected space is an F-space, and each
JP-space is an F'-space. Proofs of these facts, plus other information
on these classes of spaces, may be found in [1] and [4]. We shall
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need the following facts.

THEOREM 1.2 (1H and 6M of [4]). The following are equivalent
for a space X.

( 1 ) X is extremally disconnected.
(2) Each dense subspace of X is extremally disconnected.
(3) Each open subspace of X is extremally disconnected.
(4) Each dense subspace of X is C*-embedded in X.
(5) Each open subspace of X is C*-embedded in X.

THEOREM 1.3 (14.25 and 14.26 of [4]).
(1) Each C*-embedded subspace of an Fspace is an Fspace.
(2) X is an Fspace iff βX is an Fspace.

The following lemma appears as the "note added on September
16, 1968" on page 494 of [1].

LEMMA 1.4. // X is an F'space and if each open subset of X
is weakly Lindelό'f then X is extremally disconnected.

LEMMA 1.5 (Corollary 1.7 of [1]). Each weakly Lindelof subspace
of an F'space is C*-embedded in its own closure.

The symbol [CH] preceding the statement of a theorem indicates
that the continuum hypothesis (2ω = ωL) is used in the proof of the
theorem. The cardinality of a set S is denoted by | S | . The weight
of a topological space X, denoted by w{X), is the least cardinal of
a base for the open subsets of X. If a is a cardinal number then
D(oc) is the discrete space of cardinality a and log a — min {7: 2r ^ a).

Finally, we shall use the following theorem, which appears as
Remark 8, page 274 of [2].

THEOREM 1.6. Each compact extremally disconnected space K
such that w(K) ̂  2a can be topologically embedded in βD{ά).

2* C*-embedded subsets of βN. The proof of the implication
in Theorem 2.2 that requires the continuum hypothesis—namely
(3) —* (1)—relies heavily on a theorem, and a technique of proof, due
to Fine and Gillman [3]. We first state the theorem.

THEOREM 2.1 (4.1(c) of [3]). Let X be an Fspace, let {Sa: a < ω j
be a family of ωt cozerosets of X, and put S = \Ja<(ϋl Sa. If GczS
and G Π Sae coz (Sa) for each a < ωlf then G is C*-embedded in S.
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We now state and prove the main theorem of this section.

THEOREM 2.2 [CH]. Let K be a compact F-space such that
I C*(ϋΓ) I = 2ω. Let X be a subspace of K. The following are equiv-
alent:

(1) X is weakly Lindelb'f.
( 2 ) X is C*-embedded in K.
(3) |C*(X) |=2".

Proof.
(1) —* (2): By 1.5 X is C*-embedded in cl^X, which in turn is

C*-embedded in K by the Urysohn extension theorem (see 3.11(c)
of [4]).

(2)-+(3): Since \C*(K)\ = 2ω this is obvious.
(3)~*(1): Assume (1) fails; we shall prove that (3) fails also.

Let X be a subspace of K that is not weakly Lindelof. Let Y be
an open cover of X which has no countable subcollection whose union
is dense in X. By writing each member of Y as the intersection
of X with a union of cozero sets of oλκX, and noting that cl^X has
only 2ω(= ωt) cozero subsets, we see that without loss of generality
we may assume that Y1 = {Aa Π X: ®> < ωj, where each Aa is a cozero
subset of cl^X. Put U = U {Aa: a < ωj . Fix α0 < ω19 and induc-
tively assume that for each a < a0, we have found a nonempty
cozero-set Ba of cl^X such that BaczU and 7 < a < aQ implies that
Ba |Ί (Ar U Br) = 0 . Now \Ja<aQ Aa U Ba is a cozero-set of cl^X con-
tained in U. If it were dense in Z7, then as cozero-sets of compact
spaces are Lindelof there would be a countable subcollection ^ of
{Aa: a < α>J whose union covers U«<«0^ «Uΰα Thus IJ ^ would be
dense in U, and so { C n I : C e ^ } would be a countable subfamily
of Y whose union is dense in X, contradicting hypothesis. Thus
assume that U — c\κ (\Ja<a0 Aa U Ba) Φ 0 . Hence a nonempty cozero-
set Bao of cl^X can be found such that Bao Π (U«<«0

 A« u 5«) = 0 a n d

BaodU. Now let 5 = U«<ωi-B« As 7 > α implies Br f) Aa = 0 ,
evidently 5 n Aa = U r ^ ^r Π Aα ecoz (C7). Thus by 2.1 5 is C*-
embedded in U. But 5 is the union of ω1 pairwise disjoint nonempty
open subsets of clκX, so |C%B)| ^ 2ωκ Thus |C*(ί7)| ^ 2ωi and as
X is dense in U, \C*(X)\ ^ 2ωi > 2ω. Thus (3) fails, and the proof
is complete.

REMARKS 2.3. (1) The hypotheses on K in Theorem 2.2 are
satisfied by a large class of spaces. One such class is the class of
extremally disconnected spaces of weight no greater than 2ω, such
as βN, or the absolute of a compact separable space (see [2] for
details concerning absolutes of compact spaces). Another such class
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is the class of spaces of the form βX — X, where X is a locally
compact σ-compact non-compact space with |C*(X)| — 2ω (see 14.27
of [4]); βR — R is such a space, where R denotes the space of real
numbers. Under assumption of the continuum hypothesis Theorem
2.2 gives a characterization of the C*-embedded subspaces of each of
these spaces.

(2) Let K satisfy the hypotheses imposed in 2.2. One con-
sequence of 2.2 is that the question of whether a subspace X of K
is C*-embβdded in K depends only on the topology of X and not on
"how X is placed" in K. In the general case, by contrast, a space
T can contain two homeomorphic subspaces, one C*-embedded in T
and the other not. For example the space Q of rational numbers is
C*-embedded in βQ9 but its homeomorphs Q — {0} and Q Π (0, oo),
for example, are not C*-embedded in βQ.

(3) If 2ωi = 2ω then Theorem 2.2 fails; for by 1.6 βD{ω^ could
be topologically embedded in βN. Hence βN would contain a C*-
embedded copy of D{ω^), which certainly is not weakly Lindelδf. I
do not know whether Theorem 2.2 holds only if the continuum hy-
pothesis holds; neither do I know whether the (possibly weaker) im-
plication (3) —* (2) can hold in the absence of the continuum hypothesis.

Theorem 2.2 tells us when a subspace of βN will be C*-embedded
in βN. A slight generalization of a theorem of Louveau (stated
below) allows us to characterize (assuming the continuum hypothesis)
those Tychonoff spaces that are homeomorphic to some C*-embedded
subspace of βN. The following theorem appears in [5].

THEOREM 2.4 [CH], A compact space K is homeomorphic to a
subspace of βN iff K is a zero-dimensional F-space and w(K) ^ 2ω.

THEOREM 2.5 [CH]. The following are equivalent for a space X:
(1) X is a strongly zero-dimensional F-space and \C*(X)\ = 2ω.
(2) X is homeomorphic to a C*-embedded subspace of βN.

Proof.
(l)—*(2): By 1.3 βX is a compact zero-dimensional F-space and

\C*(βX)\ = 2ω. Thus w(βX) ^ 2ω so by 2.4 there is a compact sub-
space K of βN and a homeomorphism h;βX—>K. Evidently h[X]
is homeomorphic to X and C*-embedded in βN.

(2) -* (1): By hypothesis cl^X = βX. Thus βX is zero-dimen-
sional so X is strongly zero-dimensional. As βX is C*-embedded in
βN, by 1.3 βX is an F-space and \C*(βX)\ - 2ω. Hence \C*(X)\ =
2ω and by 1.3 X is an F-space.

One interesting consequence of 2.2 and 2.5 is that if the con-



CHARACTERIZATIONS OF SOME C*-EMBEDDED SUBSPACES OF βN 577

tinuum hypothesis is assumed, if X c βN and |C*(X)| = 2ω then X is
a strongly zero-dimensional .F-space.

3* Extremally disconnected spaces of countable cellularity*
By combining 1.1, 1.5, and 1.6 we obtain the following.

THEOREM 3.1. Let X be a Tychonoff space of countable cellu-
larity. The following are equivalent:

(1) X is extremally disconnected.
(2) X is homeomorphic to a subspace of βD(\og w(βX)).

Further, if X is homeomorphic to a subspace Y of βD{ά) for some
a, then Y is C*-embedded in βD(a).

Proof. Let βD(log w(βX)) = K.
(1) —> (2): βX is extremally disconnected (see 6M of [4]), so by

1.6 βX can be embedded in K.
(2)—>(1): We may assume XaK. As K is extremally discon-

nected and hence an F-space, its C*-embedded subspace cl^X is an
F-space. But cl^X has c.c.c. as X has; hence by 1.1 and 1.4 cl^X
is extremally disconnected. Thus by 1.2 X is extremally disconnected.
The final statement of the theorem follows from 1.1 and 1.5.

COROLLARY 3.2. A separable Tychonoff space is extremally dis-
connected iff it is homeomorphic to a subspace of βN.

Proof. If X is separable then w(βX) ^ 2ω (as βX will have no
more than 2ω regular open subsets), so log (w{βX)) = ω.

We now consider extremally disconnected C*-embedded subspaces
of βN. Note that 3.1 says that a subspace βN having c.c.c. will
be extremally disconnected and C*-embedded in βN. The following
theorem describes when the converse holds.

THEOREM 3.3. The following are equivalent:
(1) 2ωi> 2ω.
( 2 ) Each extremally disconnected C*-embedded subspace of βN

has c.c.c.

Proof.
(1) —> (2): Suppose X were an extremally disconnected C*-embedded

subspace of βN but that X does not have c.c.c. Let ̂  be a family
of ω1 pairwise disjoint open subsets of X. By 1.2 \J ̂ £ is C*-
embedded in X and hence in βN. But evidently | C * ( U - ^ ) I ^ 2ω*;
thus \C*(βN)\ ~^2ωK But \C*(βN)\ = 2ω so 2ω = 2ωi. Hence if (2)
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fails, so does (1).
(2)->(l): If 2^ = 2ω then w(βD(ωJ) = 2\ Thus by 1.6

can be embedded in βN. Hence there will be a C*-embedded copy of
D{ω^ in βN, and D(ω^ is extremally disconnected but does not have
c.c.c. Hence if (1) fails, so does (2).

REMARKS 3.4. (1) Part of 3.3 appears as Corollary 10 of [2],
where it is shown that 2ω < 2ωi iff each compact extremally discon-
nected space of weight 2ω has c.c.c.

(2) Not every compact subspace of βN with c.c.c. is separable.
Let B denote the Boolean algebra of Lebesgue measurable subsets of
the unit interval, modulo sets of measure zero, and let X denote
the Stone space of B. Then X is compact, extremally disconnected,
has c.c.c, is not separable, and w(X) = 2ω. Hence Xcan be embedded
in βN. A discussion of X, together with references to further
sources of information about it, may be found in Example 7.5 of [7].

( 3 ) In Remark 2.3 (2) we have seen that if 2ωi = 2ω then βN has
some discrete C*-embedded subspaces of cardinality ωλ. It would be
interesting to know whether it is consistent that every discrete sub-
space of βN of cardinality ωί is C*-embedded in βN. More generally,
if one assumes, say, Martin's axiom [MA] but not CH, is it true that
each discrete subspace of βN of cardinality less than 2ω is C*-
embedded in βNΊ (It is known that MA plus not CH implies that
if K < 2ω then 2K = 2ω; see, for example, page 21 of [6].)

(4) There is an interesting parallel between Theorems 2.2 and
3.3 as follows. Lemma 1.2 of [1] asserts that each cozero-set of a
weakly Lindelδf space is weakly Lindelδf. Hence assuming the con-
tinuum hypothesis, a subspace of βN is C*-embedded in βN iff all
its cozero-sets are weakly Lindelof it is extremally disconnected and
C*-embedded in βN iff all its open subsets are weakly Lindelδf.
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