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MAXIMAL IDEALS IN ALGEBRAS OF
TOPOLOGICAL ALGEBRA VALUED FUNCTIONS

WILLIAM J. HERY

For a completely regular space T, topological algegbra A
and algebra X9 both commutative and having identity, let
C(Γ, A)={f: T-±A:fis continous}, C*(Γ, A) - {fe C(T, A):f(T)
is relatively compact} and ^(X) be the set of all maximal
ideals of codimension one in X endowed with the Gelfand
topology (i.e., the weak topology generated by {x: x e X},
where x(m) — x + m). When A is the real numbers, the
spaces ~^(C(Γ, A)) (=υT) and ^f(C*(Γ, A)) (=j8Γ) are well
known. If 1̂ is any topological algebra, te jΓand m e ^ ( 4
then Mttm = {feC(T9A):f(t)em}e^t(C(TfA))9 and (ί, m) ->
Mt>m is an injection of T X ^ ( 4 ) into ^t(C(Tf A)). It is
shown that if T is realcompact, A is a Q algebra with con-
tinuous inversion and either ~^(A) is locally equicontinuous
or T is discrete, then this injection is a homeomorphism.
It is further shown that if the assumption about T is reduced
to complete regularity, then ~^(C*(!Γ, A)) is homeomorphic
to {βT) x ^t(A)9 and if A is also realcompact, then ~^(C(T, A))
is homeomorphic to (υT) X ~^?(A). These results are obtained
for topological algebras over the reals, the complexes and
certain ultraregular topological fields (including all non-
archimedean valued fields) with no assumptions of local
convexity.

1. We assume that the reader is familiar with the properties
of C(T, A) and C*(T, A) for T completely regular and A the real
or complex numbers, as presented in Gillman and Jerison [4]. For
a development of analogous results when A is an ultraregular topo-
logical field (an ultraregular space is one whose topology has a base
of sets which are both open and closed), the reader is referred to
Bachman, Beckenstein, Narici and Warner [1], In this case, T is
also assumed to be ultraregular, the Banaschewski compactification
(/30Γ) is analogous to the Stone-Cech compactification (βT), jF-replete
is analogous to realcompact and the F-repletion (υFT) is analogous
to the realcompactification (υT). Except where noted, all pairs (Γ, A)
used below are assumed to satisfy either of two sets of conditions: T
is completely regular and A is a commutative topological algebra with
identity e over the real or complex numbers, or T is ultraregular,
A is a commutative topological algebra with identity e over a com-
plete ultraregular topological field F, and disjoint F-zero sets in T
(i.e., inverse images of {0} under continuous functions from T into
F) have disjoint closures in βQT (which will hold if the field is met-
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rizable). In either case, F denotes the underlying field, and wherever,
analogous proofs are applicable they are only written out for the
completely regular case. By a Q algebra (Q ring), we mean inver-
sion is continuous on the open set of units.

Results similar in spirit to ^€(C(T, A)) = T x ^f(A) have been
obtained by various authors. For a topological algebra X, let
HOM (X) = ( M e ^ f ( I ) : M is closed}; if X is a Q algebra, HOM (X) =
^f(X). For this paragraph assume that C(T, A) has the compact
open topology. Yood showed that if A is a J3* algebra and T is
compact, then HOM(C(Γ, A)) ~ T x HOM (A) (cf. [12, Theorem 3.1]);
Hausner [5] weakened the condition on A to being a commutative
Banach algebra. Using tensor products, Mallios weakened the con-
dition further to A is a locally multipicatively convex (lmc) algebra
whose completion is a Q algebra [8, Theorem 5.1]; and (again using
tensor products) Dietrich showed that HOM (C(T, A)) = T x HOM (A)
if T is a completely regular /b-space and A is a complete locally
convex algebra with HOM (A) locally equicontinuous [3, Theorem 4].
This author showed that ^T(C(Γ, i ) ) = Γ x ^T(A) if T is realcom-
pact and A = C(S, F) (with the compact open topology) for a locally
compact realcompact space S [6, Corollary 2]. In the first three
cases, HOM and ^ identical, but in the last two HOM (C(T(A)) can
be a proper subset of ^f(C(T, A)). Our goal is to generalize the
results of Yood, Hausner and Mallios about ^ to spaces T which
are not compact. No topological structure is imposed on C(Γ, A),
nor are convexity assumptions made about A.

2, Fixed ideals. Let N(f) = [t 6 T: f(t) is not invertible}. An
ideal / in C(T, A) or C*(T, A) is called free if f) {N(f):fel} = 0
(this is easily seen to be equivalent to Kaplansky's definition of free:
for each teT there is an fel such that f(t) = e [7, p. 172]). An
ideal is fixed if it is not free. The proofs of the following lemmas
are direct.

LEMMA 1. Let m be any ideal in A and teT, Then

( a ) MUm = {feC(T, A):f(t)em) and M?,m = {feC*(T, A):f(t)em}
are ideals in C(T, A) and C*(T, A) respectively,

( b ) C(T, A)/Mt,m and C*(Γ, A)/M*m are algebraically isomorphic
to Aim,

( c ) MUm and M*m are both maximal (of codimension 1) if and
only if m is a maximal ideal (resp. of codimension 1), and

( d ) M is a fixed maximal ideal in C(Γ, A) (C*(Γ, A)) if and
only if M = MUm (resp. M = Mfym) for some teT and m a maximal
ideal in A.
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LEMMA 2. Let Y be any commutative F-algebra with identity,
X a subalgebra of Y containing the identity and m e ^{ Y). Then

Lemma 1 suggests a natural way of identifying points of
Λ?(A) with ideals in ^£{G(T, A)) and ^(C*{T, A)) via the maps

h(t, m) = MUm and h*(t, m) = M*m. The complete regularity of T in-
sures the injectiveness of h and h*, allowing us to consider T x ^C(A)
as a subset of both ^€(G(T, A)) and ^t(C*(T, A)). The set T x
^t(A) then has three topologies under consideration: the product
topology, the relative topology from ^£{C(T, A)) (generated by the
family {f:feC(T, A)}) and the relative topology from ^(C*(T, A))
(generated by the family {f:feC*(T, A)}). The continuity of each
/ with respect to the product topology clearly implies the continuity
of h and h*. With this in mind, we say that ^€(A) is locally equi-
continuous if ^f(A) = HOM (A) and each m e HOM (A) has an equi-
continuous neighborhood in HOM (A) (identifying m e HOM (A) with
the unique continuous multiplicative linear functional of which it is
the kernel and HOM (A) as a subspace of the topological dual of A).

LEMMA 3 (Dietrich [3, p. 208]). Let ^f(A) be locally equicon-
tinuous. Then for each feC(T, A), / is continuous with respect to
the product topology; thus h and h* are continuous.

Dietrich also gives an interesting example to show that h need
not be continuous if HOM (A) is not locally equicontinuous. The next
lemma shows that we can insure the continuity of h and h* by im-
posing a restriction on T instead of A.

LEMMA 4. Let T be a discrete topological space. Then for each
feC(T, A), / is continuous with respect to the product topology;
thus h and h* are continuous.

Proof. By the definition of the topology on ^C(A), / is con-
tinuous on each slice {t0} x ^f(A). Since these slices form an open
partition of T x .^ (A) , / is continuous on T x ^{A).

THEOREM 1. Let T be completely regular and A be a commuta-
tive topological algebra with identity over the real or complex num-
bers, or T be ultraregular and A be a commutative topological al-
gebra over a complete ultraregular topological field. Then h: (t, m) —•>
Mt>m and h*:(t, m)-+M*m are relatively open maps. Therefore if
^f(A) is locally equicontinuous or T is discrete, h and h* are
homeomorphisms of T x ^&(A) onto subspaces of ^f(C(T, A)) and
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^Jt(C*{T, A)) respectively.

Proof. The product topology is generated by the projections pt

and pm onto T and ^£(A) respectively. By the complete regularity
(ultraregularity in the ultraregular case) of T, the topology on T is
generated by C*(T, F)\ by definition the topology on ^€{A) is gen-
erated by {d:aeA}. The product topology is then generated by
{g°Pt- 9 € C*(T9 F)} \J {dopm:aeA}; we claim that each of these is
actually of the form / for some / e C*(T, A). Consider any g e C*(T, F)
and let f(t) = g(t)e; then

/(ί, m) = £(ί)β + m = g(t) = (g°pt){t, m) .

Next consider any α e A and let /(£) = a; then

/(£, m) = a + m = α(ra) = (d<>pm)(t, m) .

Thus each function generating the product topology is a function
generating both relative topologies, and h and fc* are relatively open.

3* The compact case* In the studies of C{T, F) by Gillman
and Jerison [4] and Bachman, Beckenstein Narici and Warner [1],
the fact that the F-zero sets are closed plays a central role. In
rings of algebra valued functions, the role of the F-zero sets is
played by the inverse images of the maximal ideals in A and the set
N of all non-invertible elements. It is therefore not surprising to
find the assumption that A is a Q algebra appearing in the remain-
ing theorems. That assumption, however, is not necessary: results
obtained by this author which were cited above apply when A =
C(S, F) (with the compact open topology) for any realcompact and
locally compact space S. But if S is not compact and F = C, A
will not be a Q algebra. For then the functions of compact support
are a proper free ideal which must be contained in a maximal ideal;
since S is realcompact, a free maximal ideal in C(S, F) cannot be of
codimension 1, and therefore is not closed (cf. [9, Prop. 2.9c, p. 13]).

We now show that h ( = h* in this case) is onto if T is compact
and A is a Q algebra; this will then be used in to obtain more gen-
eral results. We state and prove the theorem only for the real and
complex cases. The ultraregular case follows from the following
theorem of Kaplansky [7, theorem 24]: if T is a compact ultraregular
space and A is a Q ring, then every ideal in C(T, A) is fixed; i.e.,
h: (ί, m) —> MUm is onto.

THEOREM 2. Let T be compact and Abe a Q algebra over the real
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or complex numbers. Then every proper ideal in C(T, A) is fixed.
Thus, h: (t, m) —• MUm is onto.

Proof. Suppose I is a free ideal. Then for each teT there
exists an ft e I such that ft(t) — e. Let V denote the open set of
units in A, and Ut = fτ\V). Since T is compact, a finite collection
{Ut.} covers T. Let {AJ be a partition of unity subordinate to {Ut.},
and define gt(t) = h^fβY1 for te Ut. and gt(t) = 0 for ί ? UH.
Then gteC(T, A) and ΣftβiGL Direct computation shows that
Σfti(t)gt(t) = e for all teT; therefore I is not a proper ideal.

COROLLARY 1. If T is compact (compact and ultraregular), A
is a Q algebra over the real or complex numbers (resp. over a com-
plete ultraregular topological field) and either ^t(A) is locally equi-
continuous or T is discrete, then ^/έ(C(T, A)) ~ T x

COROLLARY 2(a). If T is completely regular and A is a Q alge-
bra over the real or complex numbers, then the maximal ideals of
codimension 1 in C*(T, A) are the ideals M%,m — {feC*(T, A):
βf(v) € m}, where p e βT and m e ^£(A). If ^£{A) is also locally
equicontinuous, then Λ?(C*(T, A)) = (βT) X ^f(A).

(b) If T is ultraregular and A is a Q algebra over a complete
ultraregular topological field, then the maximal ideals of codimen-
sion 1 in C*(T, A) are the ideals Mϊ,m = {feC*(T, A): βof(p)em],
where p e β0T and m e ^/f(A). If ^/f(A) is also locally equicontin-
uous, then ΛT(C*{T, A)) = (βQT) x

Proof. f—+βf and f—+βof are isomorphisms from C*(T, A) onto
C(/3T, A) and C(β0T, A) respectively.

Corollary 1 generalizes the theorems of Yood and Hausner. More
generally, if A is a locally convex Q algebra, ^f(A) is equicontin-
uous (cf. Warner [11, Theorem 6]), and the preceding results, as well
as those which follow, apply. They also apply when A is a locally
bounded algebra (cf. Zelasko [13, Chapter 1]). These algebras are
not necessarily locally convex.

Theorem 2 shows that if A is a Q algebra and T is compact,
then all ideals in C(Γ, A) are fixed; if A is not a Q algebra in the
sense that the set of regular elements of A is not open, it is always
possible to find a compact space T such that C(T, A) has free proper
ideals. Let {aa: a e Λ} be a net of noninvertible elements of A con-
verging to e and T = Λ U {°°} the one point compactification of the
discrete space Λ. Define fa(cc) = e and fjt) = 0 for t Φ a and aeT;
fco(°°) — e a n d fco(a) = Q>a for a e Λ. {fa: aeT} then generates a proper
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free ideal in C(T, A). This ideal is contained in a free maximal ideal,
but that ideal may not be of codimension 1 (e.g., if A = C(S, F)
with S locally compact, realcompact but not compact).

When A = F and T is realcompact (i^-replete in the ultraregular
case), T can be recovered from the space of maximal ideals in C(T, A)
of codimension 1 (up to a homeomorphism); this is not generally pos-
sible for topological algebras A, even if T is compact and A is a
Banach algebra. Let S be an infinite product of copies of [0, 1] with
the product topology, T, = [0, 1], T2 = {0} and A the £* algebra
C(S, C). By Corollary 1, ̂ t(C(Tl9 A))^T,xS^S and ^T(C(T2, A)) =
T2 x S = S, but 2\ and T2 are clearly not homeomorphic. Further-
more, T cannot be recovered from C(T, A) in any other manner:
from a theorem of Yood [12, Theorem 3.1], both C(T19 A) and C(T2, A)
are isomorphic to C(S,

4* The general case. We next examine ^/f(C(T, A)) when T
is not compact. As in the case of C(T, &), the realcompactness of
T is used to show that all maximal ideals of codimension 1 are fixed
and the realcompactification of T is used to "fix" the free maximal
ideals of codimension 1. Two preliminary results are needed first
(the real and ultraregular cases requiring different proofs): they es-
sentially say that every proper ideal in C(T, A) is "fixed" in βT.

THEOREM 3. Let A be a Q algebra over the real or complex
numbers and I a proper ideal in C(T, A). Then f] {c\βτ N(f):f£ 1}
is not void.

Proof. Suppose that the intersection is empty. Since βT is
compact, there is a finite set {/J in I such that Γ\{^βτN(fi)} = 0 .
The complements (in βT) of these sets form a finite open cover of
βT) choose a partition of unity subordinate to that open cover. The
restriction to T of these functions is then a partition of unity on T
subordinate to the open cover {T\N(fi)}. Denote that partition of
unity by {ht} and define gt(t) = h^Ut)'1 for t in T\N(ft) and gt(t) = 0
elsewhere. Then Σ Qtfi e I a n ^ Σ Qifi — e> showing that I is not
a proper ideal.

THEOREM 4. Let Abe a Q ring, T ultraregular and I a proper
ideal in C{T, A). Then Π {&βQτN(f): fel] is not void.

Proof. Proceeding as in the previous proof, we obtain a finite
set {/J in I such that β.TXNifi) is an open cover of β0T. Since β0T
is ultraregular and compact, this open cover can be refined by a
finite clopen partition (a clopen set is one which is both open and
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closed). The characteristic functions of these sets form a partition
of unity, and the remainder of the proof is the same as that of
Theorem 3.

THEOREM 5(a). Let T be realcompact and A a Q algebra over the
real or complex numbers. Then every maximal ideal of codimension
1 is fixed. If ^£{A) is locally equicontinuous or T is discrete,
then ^(C(T, A)) = T x ^f(A).

(b) Let A be a Q algebra over a complete ultraregular topolo-
gical field and T an ultraragular F-replete space in which disjoint
F-zero sets have disjoint closures in β0T. Then every maximal
ideal of codimension 1 is fixed. If ^£{A) is locally equicontinuous
or T is discrete, then ^{C(T, A)) = T x

Proof. Let M be a maximal ideal of codimension 1 in C(T, A).
By Theorem 3, there is a peβT such that peΓi{c\βτN(f):feM}.
M n C*(Γ, A) is a maximal ideal of codimension 1 in C*(T, A)
(Lemma 2); therefore M Π C*(T, A) = M*tm with g e β Γ a n d m e
(Corollary 2). Then

pefl {dpτN{f):fe I } C Π {cl βτN(f):fe M n C*(T, A)}

Cn{N(βf):feMnC*(T, A)}

thus p = q and I n C*(T, F) = (Mn C*(T, A)) f] C*(T, F) = m* =
{/€ C*(Γ? F): βf(p) = 0}. I n C(2\ F) e ,Y/(C(T, F)) (Lemma 2), and
therefore, by the realcompactness of T, M Π C(Γ, F) = mt =
{feC(T, F):f(t) - 0}, where t e T. Using this, we see that
M ΓΊ C*(T, F) is also equal to mf thus t = p. Then Λf̂ m c M, whence
Λf = MUm and h: {t, m)-+Mt,m is onto. Bicontinuity follows from
Theorem 1. The proof of part b uses Theorem 4 in lieu of Theorem
3 and is otherwise the same except for notation.

COROLLARY 3(a). Let T be completely regular an A a Q algebra
over the real or complex numbers which is realcompact. Then the
maximal ideals of codimension 1 in C(T, A) are the ideals of the
form Mp,m = {fe C(T, A): υf(p) e m}, with peυT and m e ̂ {A). If
^/f(A) is locally equicontinuous or T is discrete, then ^/S(C(T, A)) =
(uT) x ,//{A).

(b) Let A be a Q algebra over a complete ultraregular topolo-
gίcal field F, T an ultraregular space in which disjoint F-zero sets
have disjoint closures in β0T and A F-replete. Then the maximal
ideals of codimension 1 in C(T, A) are the ideals of the form Mp>m =
{feC(T,A):υFf(p)em}, with peυFT and m e ^ A ) . // ^f(A) is
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locally equicontinuous or T is discrete, then ^f(C(T, A)) = (oFT) x

Proof. f—*υf and f-+υFf are isomorphisms of C(T, A) onto
C(υT, A) and C(υFT, A) respectively.

COROLLARY 4. If T is a realcompact kspace, A is a locally
convex Q algebra over the real or complex numbers and C(T, A) is
given the compact open topology, then every maximal ideal of codi-
mension 1 in C(T, A) is closed.

Proof. Use Theorem 5 and Dietrich's theorem [3, Theorem 4].

Note that if T is a ά-space which is not realcompact, there exist
maximal ideals of codimension 1 which are not closed; i.e.,
HOM (C(T, A)) Φ ̂ €(C{T, A)). Brooks has examined the relationship
between HOM (X) and ^£{X) with the hull-kernel topologies for
complete lmc algebras in [2]. He defines the X-realcompactification
of X, υx(ROΉl(X)), in a natural way and proves that ^X(HOM (X)) =
^(X) [2, Theorem 1.9]. Call X regular if {x:xeX} is a regular
family of functions on ^t(X) (note that this differs from Brooks
terminology in that he only requires it to be a regular family on
HOM (X)). The proof of Proposition I page 222 in Naimark [10] can
be used here to show that the hull kernel topologies on ^£{X) and
HOM(X) are the same as the Gelfand topologies used elsewhere in
this paper if and only if X is regular. Furthermore, if X — G(T, A),
the imbedding of C(T, <ST) into C(T, A) via g(t)->g(t)e and the com-
plete regularity of T imply the regularity of C(T, A); thus the hull-
kernel and Gelfand topologies on ^/t(C(T9 A)) coincide. We now
have a final corollary to Theorem 5.

COROLLARY 5. Let T be realcompact and A be a complete lmc
Q algebra over the complex numbers, and give C(T, A) any com-
patible topology which makes it a complete lmc algebra (such as the
compact open topology). Then υciτ>A) (HOM (C(T, A))) ~ T x ^f(A).
If T is only assumed to be completely regular, but A is assumed
to be realcompact, then υciTyA) (HOM (C(T, A))) - (υT) x ^/ί(A).
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