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SYSTEMS OF FUNCTIONAL DIFFERENTIAL
INEQUALITIES AND

FUNCTIONAL DIFFERENTIAL SYSTEMS

G. S. LADDE

In this paper, by employing the theory of systems of
functional differential inequalities, a very general comparison
theorem for functional differential systems in the context of
vector Lyapunov functions is developed. Furthermore, this
comparison theorem has been applied to derive sufficient con-
ditions for stability of the equilibrium state of the functional
differential systems under structural perturbations caused by the
interactions among the states of the system. Finally, the role of
comparison theorem in the framework of vector Lyapunov
functions has been demonstrated by investigating the stability
analysis of hereditary interconnected systems.

One of the most versatile techniques in the theory of nonlinear
differential equations is the second method of Lyapunov. This method
has been successfully employed to study a variety of problems, in a
unified way, of ordinary differential equations, functional differential
equations (deterministic and stochastic), partial differential equations
and differential equations in abstract spaces. A systematic and unified
development of the theory and applications of differential inequalities in
the context of Lyapunov's second method can be found in a recent
monograph of Lakshmikantham and Leela [6].

Most of the results that have appeared for functional differential
systems, are in the framework of single Lyapunov functions. Therefore,
it is natural to expect its extension in the context of vector Lyapunov
functions. In certain situations, the use of vector Lyapunov functions is
more advantageous over the single Lyapunov functions (Lakshmikan-
tham and Leela [6], and Ladde [4]).

The obtained comparison theorems in the context of vector
Lyapunov functions and the theory of systems of functional differential
inequalities have been utilized to study the stability analysis of hereditary
interconnected systems. As a by-product of this analysis the presented
results extend the earlier results with regard to ordinary interconnected
systems, for example, results due to Bailey [1], Grujic and Siljak [2], and
Siljak [8,9]. Furthermore, these results provide an alternative approach
to the use of either vector Lyapunov functionals, or vector Lyapunov
functions in the context of a minimal class of functions [11].
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2. Notation and definition. Let Rn denote the n-
dimensional Euclidean space with any convenient norm || - 1 | . Let R+
denote the nonnegative real line while R will be used, as usual for
R\ Given T > 0 , let c€n = C[[- τ,0], Rn] denote the space of continu-
ous functions with domain [- r,0] and range in Rn. For ψ E ^ " , we
define \\φ\\0 = sup-τ*s*0\\φ(s)\\. Let ( ) τ denote the transpose of a
vector or a matrix. Suppose that x E C[[— r,°°), Rn]. For ί E JR+, let
xt denote a translation of the restriction of x to the interval [t-τ,t];
more specifically, xt is an element of c€n defined by xt(s) = x(t + s),
- T ̂  5 ̂  0. Let ̂ ΐ denote the set of all φ E ^ π such that φ(s) ^ 0 on
[-τ,0]. For x <ΞR\ let x = ((JC 1 ) 7 ",^ 2 ) 7 ",- ,(jcm)Γ)Γ, and for φ E <£", let
ψm =((φ)V' ' , (</>"T) T , where x ' 6 ^ , φ ' E <€\ (φι)τ = ( Φ W on
[-τ,0], and Σ " , n, = n. For p , > 0 , let Cp = {φ E <£": | | φ ' | | 0 < pw i E /}
and Sp = { x E ] ? n : | |JC'| | < Pn i E /}, where / = {1,2,3, , m}.

Consider the system of functional differential equations

(1) x =f(t,x,xt), xto=Φo

where x E i?", / E C[jR+xSpxCp, Λ n ] , and / is smooth enough to guaran-
tee the existence of solutions of (1) for t ^ t0. For existence theorems,
see Lakshmikantham and Leela [6]. We shall assume that /(ί, 0,0) = 0,
so that the system (1) possesses a trivial solution. Let jc(ί0, Φo)(0 be any
solution of (1) with an initial function φ 0 E Cp at t — t0.

Now, we decompose (1) into m interconnected subsystems described
by the equations

(2) ϊ = ΛI(ί,xl,jc|) + H l(ί,x,Jcf), i e /

where JC, E Rn is the state of the /th subsystem, and represents the th
component of the state vector x and hx E C[i? + x 5Pί x Cp» Rn], and
H, E C [ i ? + x S p x Cp,i?"'], where 5P, = {xι E Jf?"- ||JC' || < p,}, and CPi =
{ φ β e « Λ i : | | Φ I | | O < A } .

We assume that interconnection functions Ht(t, JC, xt) depend on the
m x m interconnection matrices E = (el}) and L, = (^ί;)

(3) Ht(t,x,xt) = Hχt,et>x\e*x\ ' 9e
mxm,ίU\,€ϊx2

n -J7xη)

for / E/, where eiJ E C[R+, [0,1]] are coupling functions which are
elements of m x m ordinary interconnection matrix function £(ί)> and
for t E i?+, / j Έ C [ [ - τ , 0 ] , [0,1]] are coupling functions which are
elements of m x m hereditary interconnection matrix function L, /fjcl =
/'y(ί + ̂ )^'(ί + 5) for 5 E [ - τ , 0 ] .

When £( ί ) = 0 = Lt(s), from (2), we get the free or isolated subsys-
tems described by the differential equations.

(4) i ι = fc,(ί,xUί), i G ί
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where /ι,(ί,0,0) = 0, and xk' = 0 is the unique equilibrium of the /th free
subsystem.

DEFINITION 1. The trivial solution x = 0 of the system (1) is
connectively asymptotically stable if and only if it is asymptotically stable
in the sense of Lyapunov for all interconnection matrices E(t), Lt, i.e., for
each e > 0 , t E R+, there exists a δ > 0 such that | | φ o | | o < δ implies
\\x(to,φo)(t)\\<€ for all t ^ tθ9 and there is a δ o > O such that ||</>0||^<50

implies \\x(t0, φo)(t)\\-^O as *—»<», for all interconnection matrices E(t),
U

DEFINITION 2. The equilibrium x = 0 of the system (1) is exponen-
tially connectively stable if and only if there exist two positive numbers a
and K = K(p) such that

|| jc(ί0, ΦoXOll = κ II Φo||o exp [ - a(t - ί0)], t ^ t0.

Note that other stability and boundedness notions (Lakshmikan-
tham and Leela [6]) can be formulated analogously.

DEFINITION 3. A function a(r) is said to belong to the class K if
a E C[R+,R+], a(0) = 0, a(r) is strictly increasing in r.

For deriving the connective stability conditions, we need the defini-
tion of fundamental interconnection matrices E and Lt in which the
constant elements eιi and e\ take on binary values 0 or 1. In case of E,
elJ is 1 if the /th subsystem state x1 interacts the /th subsystem state x\
and it is 0 if xi does not interact JC'. Similarly, e1/ is 1 if the past state of
the th subsystem x} influences the ith subsystem state JC1', and it is 0 if JC;

has no influence on the /th subsystem JC'. Further note that the stability
conditions are derived for the fundamental interconnection matrices E,
L,, but are valid for all interconnection matrices E(t), L,, as required in
Definitions 1 and 2. Note that the symbols 0, 1 are used to denote real
numbers as well as functions defined on [- r, 0].

REMARK 1. Note that the notion of connective stability includes
the usual Lyapunov stability, whenever E(t)= E and Lt = Lt. In other
words, the interactions within the subsystems do not vary during the
operation of the system, i.e., the interactions depend on initial fixed
connections among the subsystems.

3. C o m p a r i s o n pr incip le. In this section, by employing the
concept of vector Lyapunov function, and the theory of functional
differential inequalities, we develop comparison theorems for the system
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(1). Our results can be considered as extension of the earlier scalar
results, Lakshmikantham and Leela [6].

Let V(Ξ C[[- τ,oo)χ Sp, R?], and φ E Cp. We define vector func-
tional

(5)

= lim sup I [ V(ί + fc, Φ(0)+hf(t, φ(0), φ))~ V(t, φ(0)].

On the basis of the comparison theorem for systems of functional
differential inequalities developed by Shendge [10], we now prove the
following result which plays an important role in studying the behavior of
solutions of functional differential systems.

THEOREM 1. Assume that there exist functions V(t,x) and
g(t, σ(0), σ) satisfying the following conditions:

(i) VεC[[-τ,oo)xSp,Λ?];
(ii) V(t, x) is locally Lipschitzian in x, for each t E R+;
(iii) gεC[Λ+xΛ+x«;,Λϊ],

g(ί, σ-(O), σ) is quasimonotone nondecreasing in σ(0) and nondecreasing in
σ for each t E R+, and

(6)D;ί}V(t,φ(0),φ)^g(t,V(t,φ(0)),Vt), for all (t,φ)ER+xCp,

and for all interconnection matrices E(t), L,, where Vt = V(t + s, φ(s)),

(iv) let r(t0, σQ) (t) be the maximal solution of the functional
differential system

(7) ύ = g(t,u,ut), uto = σ0,

existing for t ̂  ί0, ί0 E R+.
If x(t0, φ0) (t) is any solution of (1) existing for t ̂  t0 such that

(8) V^σ0,

then

(9) V(t, x (t0, φ0) (0) ̂  r(ί0, σ o) (ί), t ̂  to,

and all interconnection matrices E{t), Lt.
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Proof. Let x(to,φo) (t) be any solution of (1) satisfying (8), and
xt(t0, Φo)£ Cp. Set φ = xt(tQ,φ0), which implies that φ(0) = x(f0, Φo)
(t). Define

m(t)= V(t,x(to,φo)(t))9

so that

mt= V(t + s,φ(s)).

Since (8) holds, we have mto ̂  σ0. For sufficiently small ft ^ 0, we have

h)-m(t)= V(t + Kx(tQ,φo)(t + h))- V(ί, jc(f0,

Λ, φφ)+hf& φ(0), φ))- V(t, φ(0))

h,x(to,φo)(t

This together with the hypotheses (i), (ii) and (iii) yields the inequality

(10) D+m{t)^g(t,m{t\mt\ for t ^ t0.

From an application of Corollary 4 in Shendge [10] in the context of
Remark 3 in [10], we deduce that

(11) V(t,x(to,φo)(t))^r(to9σo)(t), t ^ t0.

Since the inequality (6) is valid for all E(t) and Lt, so also (11). This
completes the proof of the theorem.

The following variant of Theorem 1 is often more useful in applica-
tions.

THEOREM 2. Let the hypotheses of Theorem 1 hold except that the
inequality (6) is replaced by

ί, φ(0), φ) + A(t)V(t, φ(0))
(12)

^g(t,A(t)V(t,φ(0)),(AV)t%

for (t, φ)E R+x Cp, and for all E(t), Lt, where A(t) is an m x m
continuously differentiable matrix function defined on [r, o°) with values in
Rm2 such that ||A(f)||->°o as t-+™ and the matrix A~\t)A{t) has
nonnegatiυe off-diagonal elements for t ̂  0; (AV)t =
A(t + s)V(t + s,φ(s)) for - T ^ S ^ O . Then,
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(13)

implies

(14) V(t, x (to, φ0) (t))^R (to, Ψo) (t), t i= t0

where R(t0, ψ0) (t) is the maximal solution of the differential system

(15) ύ= - A\t)A(t)υ + A-\t)g(t,A(t)v,(AV)t\ vto= ψ0,

existing for t ^ t0.

Proof Setting

From (12), it is easy to see that

D(

+

υ W(t, φ(0), φ) = A (ί)Dί) V(U φ(0), φ) + A (t) V(ί, φ(0))

This shows that W(ί, φ(0)) satisfies all the hypotheses of Theorem 1, and
consequently, we have

(16) W(t, x(t0, φo) (0) ̂  r(t0, σ0) (t), t ^ t0,

where r(ί0, ^o)(O is the maximal solution of (7). It is easy to verify that
r(ίo, σ0) (0 = A (t)R (ί0, ψo) (ί) with A (ί0 + s)^o(s) = <ro(s). This together
with (16) and the definition W yields the desired inequality (14).

REMARK 2. Theorem 1 is generalization of Theorem 8.1.4 in [6],
and it is an extension of the result 4.1.1 in [6].

4. Connective stability conditions. In this section, by
employing the comparison theorems developed in the preceding section,
we shall present a result giving sufficient conditions for connective
stability. Other results can be formulated analogously.

THEOREM 3. Let the hypotheses of Theorem 1 hold. Further as-
sume that

(a) a( | | x | | )^S V,(t,x)^b(\\x\\), (t,x)ERxSp;

(17)

(b) g(t, 0,0) = 0, tER+.
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Then the stability or asymptotic stability of the trivial solution u = 0 of (7)
implies the connective stability or connective asymptotic stability of the
trivial solution of the system (1).

Proof. Let x(tih Φo) (t) be any solution of (1) existing for t ^ t{) such
that V(t0 + 5, ΦQ(S)) ^ σo(s). Hence, by Theorem 1, we have the follow-
ing inequality

V(t,x(t0, *o)(O) = r(h, σ(l)(ί), t g ί0,

which implies

(18) Σ Vt(t,x(to,φo)(t))^Σ ' .(Ό, *b) ( 0 , t^to
i = l i = l

For i E I, let p, > 6 > 0, t0ER^ be given. Assume that the trivial
solution of (7) is stable. Then α(e)/λ/m>0, t0ξΞR^ there exists a
δ i > 0 such that | |σo | |o=δi implies

(19) \\r(to,Φo)(t)\\<a(€), t^t{).

Choose δ > 0 such that δ = b'l(8{) and let | |φ o | | S δ.
From (18) and (19), we have

a(\\x(to,φo)(t)\\)^Σ V,(t,x(to,φo)(t))^Σ r,(ίo,σo)(O<α(e), t ^ t0
i = l i = l

which implies that

(20) \\x(to,Φo)(t)\\<e, ί ^ ί 0 ,

whenever

Since (20) is valid for all interconnection matrices E(t), Lf, the
stability is indeed connective. The proof of the connective asymptotic
stability of the trivial solution of (1) can be formulated analogously.

REMARK 3. Theorem 3 can be extended in order to study condi-
tional stability and conditional boundedness concepts (Lakshmikantham
and Leela [6]) for functional differential systems. The importance of
this theorem lies in the fact that we can obtain stability results for a
higher order systems (order n) by knowing the stability results of lower
order systems (order m). Furthermore, the dimension of a lower order
is the same as the dimension of the vector Lyapunov functions.
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5. Applications. The results obtained in the previous sections
are applied to study the complex system (1) that is formed by the
interconnection of simple isolated subsystems (4). The main idea is the
following: by decomposing a complex system into simpler and suitable
units, the stability of each unit is aggregated by a single Lyapunov
function, and an auxiliary or comparison system is formed on the basis of
the nature of interactions among the units of a system. Then, the
stability of the overall system is obtained by testing the stability of the
auxiliary system.

For each subsystem (4), we assume that there exists a scalar
Lyapunov function V,: [ — r, o°) x 5P, —> R+. Further we assume that Vn

and interconnection functions Ht in (2) satisfy the following conditions:
Ci. For each / E /, the function Vt satisfies the following proper-

ties:
(i) KC[[-τ,^)xSP i,i?+];
(ii) for (/,*'), (ί,y')Ei?+xS p,

where K, = K(pl)>0 is a constant
(iii) for ( U ' ) E J ? + x S P l

(22) αJjc1)^VΛί,x^Mll*' l l)

where a,, b, G K;
(iv) for (/, f)6R t xQ,

DUV,(t,φ (0),φ )^-a,(V,(t,φ'(0)))W}(V,(t,φ (0)))
(23)

+ β (V l)w2,(Vl),

where a, G C[R+, R+], β, G C\%+, R+], w\<ΞK, and w2,EC[<β+,R+],
w (̂0) = 0, and w](σ') is nondecreasing in σ' for σ' G c€'+.

C2. Assume that the interconnection functions H, in (2) satisfy the
following constraints: for (/, φ)E R+x Cp

(24)

where eι\ ί\J are elements of the m x m fundamental interconnection
matrices E, L,; αi; E C[R+, R+], ai}{u) for all i,j are nondecreasing in u€
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for £ϊ i, and βη E C\%™, R\ βij(σ) are nondecreasing in σ E <£?; w),
w] are defined in Ci(iv); and

(25) V(ί, φ(0)) = (V,0, ̂ (0)) , V2(ί, </>2(0)), , Vm(t, φm(0))Y.

By Λ(σ(0)) and B(σ), we denote the raXm matrix function and
functional on R? and <#? into R + 2 with the coefficients

(26) α ί

and

ί8(σ') + K H^lloA-ίσ), i =j

respectively, where αi7 j3/? αίy, βiy, e\ £ιi as defined before.
We note that the conditions (Q) and (C2) as outlined above can be

considered as extension of the decomposition-aggregation technique [2,
8, 9] for functional differential systems.

Consider the comparison system

(28) ύ = A{u)w\u) + B(ut)w2(ut)= g(t, u, ut),

where u E i?Γ, A(u) and B(ut) are defined in (26) and (27); w\u) and
w2(w) are defined by

w\u) = (wKii1), wj(«2), * * wl{um)Y> w2(n f)
(29)

Under the conditions (Ci) and (C2), we prove the following:

THEOREM 4. The trivial solution x = 0 o/ (1) ί5 connectively stable or
connectively asymptotically stable, if the comparison system (28) is stable
or asymptotically stable.

Proof. Let us consider the vector Lyapunov function V(t, φ(0)) as
defined in (25). It is obvious that it is continuous on [R+ x SP,R + ] and
Lipschitzian in φ(0) for fixed t E JR+. From (22), we have

(30) * ( | | * I N Σ v; (ι; jθ^(l |χ | | ) , (t,χ)eR+χsp
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where

'a(\\x\\)=Σa,<\\χ \\), *(||x||)= Σ M k l D
1 = 1 1 = 1

Now, by using (21), (23), (24), (25), (26), (27) and (29) for t G R+, φ E Cp,
we compute

D;l)Vl(t,φ (0),φ))=\im sup-J- [Vi(t + h,φ (O)+hf,(t,φ(O),φ))

-V,(t,φ (0))]

=i lim suphv,( t + h, φ (0)+ hh,(t, φ (0),φ ))
Λ0* h

+ lim sup I [ V, (ί + h, φ (0) + hf, (t, φ(0), φ))

^ DJ, V,(ί, φ'(0), φ') + K, ||H,(/, (0),

for i E /, (ί, φ)Λ + x Cp which is equivalent to

(31) D(

+,> V(ί, φ(0), φ)£g(t, V(t, φ(0)), V,)

where

g(t, V(t,φ(0), V,) = A(V(t,φ(0)))wι(V(t,φ{0))

By applying the comparison Theorem 1, we obtain

(32) V(t,x(t0φo)(t))^r(toσ0)(t), t ^ t0

whenever

(33) V^σ0.

Now from the hypothesis that the trivial solution of (28) is stable or
asymptotically stable, we can conclude the connective stability or connec-
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tive asymptotic stability by the application of Theorem 3. This com-
pletes the proof of the Theorem.

One may think that Theorem 4 looks like perturbation theorems
given by Lakshmikantham and Leela in [6] and by Halanay
[3]. However, the difference is obvious. In fact, it is easy to see that
for each fixed / E /, the subsystem (2) can not be treated as perturbation
(in the sense described in [3,6]) of the corresponding isolated subsystem
(4). Moreover, earlier perturbation results [3, 6] are inadequate for
studying such cases. In addition to this, we have made use of vector
Lyapunov functions that are more advantageous over single Lyapunov
functions. For further usefulness of vector Lyapunov functions over
single Lyapunov functions, see Lakshmikantham [5], Lakshmikantham
and Leela [6], and Ladde [4, 11].

In this wo|"k, we have not shown the usefulness of the concept of
connective stability, the role of interconnection matrices, the stability and
other properties of the hereditary systems, and its further
applications. However, these results are under study and will be
reported elsewhere.
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