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GENERALIZED MONOFORM AND
QUASI-INJECTIVE MODULES

JoHN DAUNS

For a torsion radical F (arising from an idempotent filter of
right ideals) and a unital right R-module M over a ring R, let
DM be the F-divisible hull DM /M = F (EM /M), where EM is
the injective hull of M.

Let 0 # B: N— M be any nonzero homomorphism what-
ever from any F-dense submodule NCM. Then M is
F-quasi-injective if each such  extends to a homomorphism of
M —M; M is F-monic if B is monic; M is F-co-monic if
BN C M is F-dense.

Each module M has a natural F-quasi-injective envelope
JM inside M CJM C DM.

Tueorem III. Form the R-endomorphism rings A=
EndJM and A =End DM, and A*={A € A|AM =0} C A, the
annihilator subring of M.

When M is F-monic and F-co-monic and FM = 0, then

(1) A” is exactly the annihilatorA™ = {A € A|AJM = 0} of
the submodule JM C DM and A* C A is an ideal;

(2) A=A/A%

(3) A is a division ring.

For a torsion radical F and a torsion preradical G, let IM
be the (F, G)-injective hull of M; and, more generally, A the
ring of all those R-endomorphisms of IM with G-dense
kernels. The above is derived as a special case where G =1 is
the identity functor and IM = DM.

THeEOrREM II. (i) M is (F, G)-quasi-injective & AM C M.

(ii) The (F, G)-quasi-injective hull JM of M exists and
JM =M+ AM.

(iii) JM is the unique smallest (F, G )-quasi-injective mod-
ule with M CJM C IM.

Simple modules over a ring were at first generalized to quasi-simple
modules ([9]), and then these to strongly uniform or monoform ones ([15]
and [6]).

Here the monoform modules are further generalized to the F-monic
ones. The quasi-injective hull plays an important role in the theory of
quasi-simple modules ([8], [9], [15], and [6]). Furthermore, there is a
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sizeable amount of literature about quasi-injectivity ([7], [8], [5], [16] and
[14]). For these two reasons, a quasi-injective envelope is constructed
with respect to a torsion radical F and a torsion preradical G. Several
previously known facts about quasi-injectives and quasi-injective hulls
are generalized so that they can be obtained as corollaries from the more
general case. It has been shown ([16; p. 54, Theorem 4.4]) that for a
torsion radical F, a module M is F-quasi-injective if and only if it is
invariant in its F-divisible hull DM under the ring of endomorphisms of
DM. 1If IM is the (F, G)-injective hull of M, then M is shown to be
(F, G)-quasi-injective if and only if it is invariant under an appropriate
usually proper subring A in the full endomorphism ring of IM (Theorem
I). Furthermore, in the latter the hypothesis that F be a torsion radical
can be relaxed a little (see 2.2). Then by taking G as the identity functor
G =1, the previously known case of the F-quasi-injective hull now
becomes a corollary of the more general result.

A module is monoform ([6] and [15]) if and only if the endomor-
phism ring of its quasi-injective hull JM is a division ring. An analogue
of this is proved in Theorem III.

Attention is focused on the original results by labelling them as
Theorems I, II, III and Propositions A, B, and C. Preposition C shows
that M and JM have the same annihilator in A if and only if M CJM is a
rational extension of modules.

For these purposes it was first necessary to use recent new develop-
ments in [2] about (F, G)-injectivity. A module C has been called
(F, G)-injective provided any homomorphism a: A — C from an F-
dense submodule A C B of a module B with kernel @ = a™'0C A being
G-dense, extends to B — C.

Since some of the concepts used here have been studied indepen-
dently by several authors, in various guises, under totally different names,
their interconnection should be clarified.

The present 1-monic (Definition 3.2), the monoform ([6]), and the
strongly uniform modules ([15]) are one and the same; while the
quasi-simples ([8] and [9]) are the compressible monoform modules.

A “prefilter”” (Definition 1.2) here is the same as a “filter” in [16; p.
517, 1.7 and Definition 1.8]; and the present “idempotent filter”” (Defini-
tion 1.2), the same as an ‘“idempotent filter” in [15], or a ‘“‘strongly
complete filter” ([16; p. 521, 1.17]).

In [16; p. 517, Lemmas 1.7, 1.9] a one-to-one correspondence is
established between

torsion preradicals F ([2; p. 313, §1]),

prefilters (1.2), and

strongly complete, additive classes ([16; p. 515, 1.2]).

There is also a one to one correspondence ([16; p. 515, Definition 1.1,
p.- 521, Lemma 1.18]) between
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torsion radicals F ([2; p. 314, §1)),

idempotent filters (1.2) and,

strongly complete Serre classes ([16; p. 515, 1.1}).
The following are the same

preradical ([2; p. 313, §1]),

subfunctor of the identity ([16; p. 548, §5]);
also

torsion preradical ([2; p. 313; p. 314]),

concordant functor ([16; p. 548, §5]),

left exact subfunctor of the identity.

1. Filters, torsion preradicals, and semi-endomor-
phisms. The objects that will be investigated are first defined. Those
basic properties that are repeatedly used in subsequent proofs are
established so that later very short proofs of the main results may be
given.

NoraTioN 1.1. A module here means a right unital module M
over a ring R with identity. The notation N =M (or N < M) always
means that N is a right R-submodule (proper) of M. For m € M, define
m~'N =R as the right ideal m'N = {a € R|ma € N} of R.

DerINITION 1.2. A set & of right ideals of R is a prefilter provided
that

i) A BEF>ANBEZF,;

(i) RZADB, BEF > AEZ,;

(i) AEF bERSDPTAEF
The prefilter ¥ has been called an idempotent filter if for any B =R,
AEF

(iv) {a'Bla€eA}CF > BeZ.

1.3. Parentheses will be omitted when the meaning is clear from
the context by taking all quotients M/N of modules M and N first and
applying any functors F last, e.g. FM/N=F(M/N). For m €M,
abbreviate m™7(0)=m™0=m"*={r € R|mr =0}; for any subset M
whatever of a module, set M* = {r € R| Mr = 0}.

1.4. There is a bijective correspondence between prefilters & and
torsion preradicals F given by ¥ ={A =R|FR/A =
R/A}. Conversely, the F-torsion submodule of a module M is FM =
{meM|m'0e F}.

Consequently, first, a torsion preradical F is idempotent, or FFM =
FM for all modules M. Secondly, for any two or finite number of
F-dense submodules A = C, B = C their intersection A N B = C is also
F-dense in C.
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Any prefilter ¥ is idempotent if and only if F is a torsion radical, if
and only if density is transitive, i.e. for any three modules N <M < W

FM/N = M/N, FW/M = W/M = FW/N = W/N.

A special case is the zero and the identity functors F=0, G =1
corresponding to ¥ = {R} and (0) € 4.

Any homomorphism B: N — M of any submodule N = M into M is
called a semi-endomorphism.

A preradical G is a torsion preradical if and only if modules V< W
satisfy, either GV = V. N GW, or the condition that all submodules of
any G-torsion module are G-torsion.

For the injective hull EM of M the torsion submodule
F((EM)/M)=FEM/M = DM/M defines the F-divisible hull DM =
EM. For preradicals F and G, define IM=DM by IM-=
M+ DM N GEM.

Since IM/M C DM/M N(M + GEM)/M, and (M + GEM)/M =
GEM/(M N GEM), it follows that if either F or G is a torsion
preradical, then M = IM will be F- or G-dense, respectively. When G
is a torsion preradical, GEM N DM = GDM and IM = M + GDM.

For various facts, definitions, and terminology, [2] should be
consulted. When F is a torsion preradical and G a preradical, then IM
is (F, G)-injective if and only if IM D DM N GEM. ([2; p. 320, 2.5
(d)]). In case F is a torsion radical (while G is still a preradical), IM is
the (F, G)-injective hull of M ([2; p. 321, Cor. 2.7]).

For any two modules, the additive abelian group of R-
homomorphisms IM —IM will be abbreviated Hom (IM,IM)=
(IM,IM).

For any right R-module W, and preradical G, G-End W will denote
the set G-End W C (W, W) of all those R-endomorphisms whose kernels
are G-dense ([2; p. 315, 1.4 (b)]) in W. When G is a torsion preradical,
G-End W is a ring. Define I' and A to be I'=G-End DM C
(DM, DM), A = G-EndIM C (IM,IM).

DEeriNITION 1.5.  For preradicals F and G, a module M is (F, G)-
quasi-injective if any semi-endomorphism B: N— M of any F-dense
submodule N=M, FM/N = M/N, and G-dense kernel B0 <M,
GM/B7'0 = M/B7'0, extends to an element of A, i.e. a: M— M such
that the restriction a [N = g: N—> M.

DEFINITION 1.6.  An (F, 1)-injective (or (F, 1)-quasi-injective) mod-
ule will be simply called F-injective (or F-quasi-injective); and similarly
for (F, 1)-injective (or (F, 1)-quasi-injective) hulls of modules.
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1.7. The ordinary concepts of injectivity (or quasi-injectivity) are
included in this much more general framework as the special cases of
(1, 1)-injectivity (or (1, 1)-quasi-injectivity).

Whenever M is injective, M=EM =DM =IM and A=TC
(M, M). The case G =0 is uninteresting, for then every module is
(F, 0)-injective and A =T =0.

1.8. For torsion preradicals F and G a module M satisfies the
following:

(i) J1€er'© GDM =DM = IM =DM > T'=A.

(i) INEAS GIM=IM & GM =M & IM = GDM.

(i) F=0or G=1>A=T.

(iv) When F and G assume the values below, then DM, IM, A and
I' are as follows (where a blank means the entry is arbitrary):

F G DM IM
0 M M A=T
0 1 M M A=T=(M,M)

1 DM A =T = (DM, DM)
1 1 EM EM A =T = (EM, EM)
1 EM M + GEM

LEmma 1.9. Suppose A =B, C are any modules, ¢: C— B any
homomorphism, and F any torsion preradical with filter %. Then

(i) A=BisF-dense > VD <B, AND =D is F-dense;

(i) ANYC=yC is F-dense & y'A = C is F-dense;

(i) A =B is F-dense > ¢y'A = C is F-dense.

Proof. (i). Since D/A N D = (A + D)/A, (i) holds.
(it). If y € C is arbitrary, then

C C

FW:‘/’_—IA Sy WTTA=Wy)'AEF & Vx EYC,
yC . YC

ANyYyC ANYC’

TA=x(ANYC)EF & F

(@iii). (i) and (ii) > (iii).

A limited form of transitivity is formulated below for torsion
preradicals. Note that below in 1.10, if M C W C M + HEM, then
W=M+WNHEM =M+ HW.
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1.10. If F, G, and H are any torsion preradicals and M < W any
submodule such that M < W = M + HW, then

(i) VN <M such that HM/N = M/N = also HW/N = W/N.
Whenever M C W CIM = M + GDM, the above property (i) holds
when either

(i) H=G,or

(i) H=F and IM =M + FIM.

Frequently in subsequent proofs only transitivity of density with
respect to F will be all that is required, which will be guaranteed by the
following standard hypothesis.

HypotHesis 1.11. Either the torsion preradical

(1) F is a torsion radical; or

(2) IM=M + FIM.
(In the above, GDM = F(GDM) = IM = M + FIM. The converse is
false.)

1.12. LEMMA (a). Given torsion preradicals F and G, an extension
M < W of modules, any semi-endomorphism V=W, y: V> W of W
induces a semi-endomorphism B: N=M N ¢'M — M of M. Consider
the following hypotheses:

(@A) FW/M = W/M,

(b) FW/V =W/V,

(c) GW/y'0=W/y0.

Then
i (o) > B'0< M is G-dense.
(i) (a) S>Y "M==V, N=MnNYV,
and M NV =V are F-dense.

(b) > M NV =M is F-dense.
(a) and (b) > M NV =Wis F-dense.

(iii) (a), (b), and F is a UM=W, MNV=W, N<W
torsion radical = are all F-dense.

(iv) (a), (b), (c), hypothesis  ¢'M =IM, N <IM are F-dense;
1.11 and M = V=IM > B7'0<IM is G-dense.

Proof. (i) By 1.9 (i), B7'0=M N¢~'0< M is dense.

(i) (a). Use of (a) and 1.9 (iii) show that y "' M=V is F-
dense. Byl9(),N=MNy ' M=MN V,and M NV =V are too.

(ii) (b). Again, by 1.9 (i), (b) implies that M N V = M is F-dense.

(ii) (a) and (b). For any torsion preradical, the intersection of any
two dense modules is always dense.

(ii). By(iallofy" M=V, N=MNV MNV=V, V=W are
F-dense, and (iii) follows by transitivity of density.



GENERALIZED MONOFORM MODULES 55

(iv). The density of y 'M <V, N<M, B7'0<M, 1.10, and 1.11
show that these are also dense in IM.

1.13. LemMa (B). Starting with torsion preradicals F, G and mod-
ules M < W assume that

() FW/M = W/M and

(b) GW/M=W/M.
Now, conversely suppose B: N — M is any semi-endomorphism from any
F-dense submodule N = M and with B7'0 <M G-dense. Consider the
following two pairs of possible additional hypotheses

(fl1) F is a torsion radical; (gl) G is a torsion radical;

(f2) W=M+FW. g2) W=M+GW.
Then B, when regarded as a semi-endomorphism of W, has the following
properties

(i)  Either (f1) or (f2) > N < W is F-dense.
(i1) Either (gl) or (g2) > B7'0< W is G-dense.
In particular, if M C W CIM, then
(ili) Hypothesis 1.11 > FW/N = W/N, and GW/B~'0= W/B'0.

The next corollary establishes a correspondence between the en-
domorphisms of IM with G-dense kernels and the semi-endomorphisms
from F-dense submodules of M with G-dense kernels.

1.14. CoRrROLLARYTO LEMMA (a). For torsion preradicals F, G each
A € A induces a semi-endomorphism A: M N A~'M — M with the follow-
ing properties

i) ATM=IM, MNA'M =M are F-dense, while MNA'0=M
is G-dense.

Conversely, for any semi-endomorphism B: N — M from an F-dense
N = M and with B7'0 <M G-dense, if

(ii) Fis a torsion radical; then = 3 € A such that the restriction
AN =B.

Proof. (i). Immediate from (a). (ii) A consequence of [2; p. 320,
Theorem 2.5 (d)].

2. (F, G) quasi-injective hulls. For a torsion radical F
and a torsion preradical G, the (F, G)-quasi-injective hull of a unital
module M will be constructed. The next theorem generalizes a charac-
terization, that is a necessary and sufficient condition for both ordinary
quasi-injectivity and F-quasi-injectivity.

The notation of the previous section is continued. In this section it
will be necessary to assume for most of the results that F is a torsion
radical and G is a torsion preradical.
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2.1. THEOREM I. For a torsion radical F and a torsion preradical G,
form IM C DM the (F, G)-injective module IM and the F-divisible hull
DM of a unital module M (see 1.4); let A and T be the rings of all
endomorphisms of IM and DM whose kernels are G-dense in IM and
DM.

Then the following holds:
(i) M is (F, G)-quasi-injective & AM C M.

The next corollary observes that the hypothesis that F be a torsion
radical is not needed.

2.2. CoroLLARY 1 TO THEOREMI. For torsion preradicals F and G
(i) M is (F, G)-quasi-injective > AM CM and TM CM.

2.3. CoRroOLLARY 2 TO THEOREM 1. If in addition to the above
hypotheses in the previous Theorem I, G is a torsion radical and
G(DM/M) = DM/M, then

(ili) M is (F, G)-quasi-injective & I'M C M.

Proof. 2.1(i), 2.2 (ii), and 2.3 (iii) = : If M is (F, G)-quasi-injective
and AEA (or AET), let B: N=MNA'M—>M be the semi-
endomorphism induced by A. By 1.14 (i) and hypothesis, B extends to
a: M — M with the restriction a|N = B. Assume (A —a)M# 0. Then
since M = EM is essential, let

0Fm=An—an€(A—-—a)MNM#0 m,n € M.

Since An =m +an € M, we have n EN. But A|N = a|N = ; hence
m =0, a contradiction. Thus (A —a)M =0, AM =aM CM, and as
required AMCM (or TMC M).

2.1 (i), and 2.3 (iii) < : Conversely, assume AM C M (or 'M C M)
and take any semi-endomorphism B: N— M with N<M, B7'0<M
being F, G-dense. By 1.14 (ii) (or [12; p. 61]) B extends to a map
A: IM —IM (or, since F is a torsion radical, to A: DM — DM). Since
M <1IM and B7'0 < M are G-dense it follows from Lemma (B) (ii), that
B'0<IM is G-dense and hence that A € A. (Since B7'0<M < DM
are all G-dense in 2.3, it follows from Lemma (B) that again A '0 < DM
is G-dense and thus A €I'.) By hypothesis AM C M. Finally, the
restriction and corestriction @ of A to @ =A |[M: M — M is the required
extension of B to M — M with a|N = B.

For G =1, IM and A become IM = DM and thus A =T. A result
in [16; p. 541, Theorem 4.4] is the special case when G = 1 in the previous
Theorem 1.
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2.4. COROLLARY 3 TO THEOREM I. With the notation and hy-
potheses of Theorem I for G = 1:

M is F-quasi-injective & I'M C M.

The following well-known fact is a special case of the previous
Theorem I with F=1 and G =1 (or of 2.4).

2.5. CoROLLARY 4 TO THEOREM 1. If A is the R-endomorphism
ring of the injective hull of a module M, then

M is quasi-injective & AM C M.

2.6. For torsion preradicals F and G and any module M, AIM C
GDM and in particular AM C GDM.

Proof. Since A = G-End IM, AIM CIM C DM.

Again by 1.9 (iii), under the map R— IM, r — yr, the inverse image
of the G-dense submodule A "0 <IM is y (A7'0)= (Ay)'0 <R and it is
G-dense in R. So Ay € GEM, and AIM C GEM.

2.7. When F and G are preradicals and V < W any extension of
modules, then there is a natural inclusion IV CIW.

Proof. By the definition of the preradical functor, the maps
EV/|V - (EV + W)/W — EW/W induce by restriction

EV _EV+W _EW
Py =P =y

and the image of DV/V is

DV DV+W_ _EV+W_DW
v > w SEFw S

Hence there are natural inclusions DV C DW and 1V CIW.

2.8. THEOREM II. For a torsion radical F, a torsion preradical G,
and a unital right R-module M, let EM be the injective hull of M, and DM
be the module DM/M = FEM/M. Form the (F, G)-injective module
IM =M+ GDM C EM ([2; p. 321, 2.7]), and the ring A of all those
R-endomorphisms of IM whose kernels are G-dense in IM.
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(i) Existence: 3 an (F, G)-quasi-injective module (see 1.5) JM in
MCIM CIM.

(i) Intrinsic characterization: JM = M + AM and thus JM is the
unique smallest A-invariant submodule containing M inside IM.

(i) Uniqueness inside IM: Any (F, G)-quasi-injective submodule
W with M C W CIM satisfies JM C W; JM is the unique smallest
(F, G)-quasi-injective submodule of IM containing M.

Proof. In general for a preradical F, for any module W in M =
W = DM, also DM C DW C D(DM). When F is a torsion radical as is
the case here, D(DM)= DM =DW. When M = W =DM, then
EW =EM, DW=DM, and consequently IW =W+ GDM =
W +1IM DIM. If moreover, in addition W is futher restricted to
M= W =1M, then IW = W +1IM = IM for any torsion preradical G;
furthermore, the subring QO C (IW,IW) whose kernels are G-dense in [W
is {1 = A the same as that of IM.

(i) and (ii). Since A C(IM,IM), the image AM is in AMC
IM. Use of the above for W =M + AM with M = W = IM shows that
IM+AM)=1IM. Set IM=M + AM. Those endomorphisms QC
(IIM,1IJM) with G-dense kernels in IJM=IM are just Q=
A. Because QJM CJM, Theorem I shows that JM is (F, G)-quasi-
injective.

(i) For an (F, G)-quasi-injective W with M = W =1IM as in (iii),
by the above IW =IM and = A. By Theorem I, AWC W. Thus
AM C W and hence IM=M+AMCW.

3. Endomorphism rings of F-monic modules. This
section can be read independently from the previous ones, provided one
only assumes the existence of an F-quasi-injective module JM where
M CJM = (EndIM)M C DM. Here G will be G =1 so that all sub-
modules are G-dense.

NoraTiON 3.1. The previous notation is continued for arbitrary F
but G =1. When F is a torsion radical, then IM = DM is (F,1)- or
F-injective, or F-divisible, and A = (DM, DM ) = End DM now is the full
endomorphism ring. For any W=DM, ‘W denotes ‘W=
{A € A|]AW =0}. Let A* be the subring A*="M CA. When F is a
torsion radical, IM = DM is the F-injective hull of M, and the F-quasi-
injective hull JM of M exists and JM =AM. Set A=EndJM =
(JM,JM). Define % C A as the multiplicative semigroup of all en-
domorphisms 0 # a: JM — JM such that the image aV of every F-dense
submodule V =JM is also an F-dense submodule aV =JM. Ideals
(two-sided) are denoted by “<”.
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DEFINITION 3.2. A module M is F-monic with respect to a preradi-
cal F provided any nonzero semi-endomorphism 0 # B: N — M with an
F-dense domain N=M in M is monic, i.e. 7'0=0.

For F =1, the 1-monic modules have already been called simply
monoform ([6]) or strongly uniform.

DEerINITION 3.3.  For a preradical F, a module M is F-co-monic if
for every nonzero semi-endomorphism 0 = 8: N — M from any F-dense
submodule N = M, its image BN is also F-dense BN =M in M.

The module M is weakly F-co-monic if for every R-endomorphism
0# a € EndM of M, the image aM = M is F-dense.

LemMA 3.4. For a torsion radical F and a module W in M= W =
DM, W is F-co-monic if every semi-endomorphism 0# a: V — W with
V C M satisfies

V =Mis F-dense = alsoaV =JM s F-dense.
The converse holds if W is F-monic.

Proof. Let V=M and FM/V = M/V. Firstly by transitivity of
density, any extension that can be formed from any two modules below
will be an F-dense extension

V=M=W=DM, V=M=JM=DM.

Secondly, any a: V— W extends to a map A: DM — DM. Since
V=M, aV=JM=AM. Thus aV=JM.

> :Since V=M, V=W, and W = DM are F-dense, and since W
is F-co-monic, it follows that aV = W, W = DM, aV = DM, and hence
aV =JM are all F-dense.

<& : For any semi-endomorphism 0 # y: U — W from an F-dense
U=W, set V=UNM and 0Za=vy|V: V—>W. By hypothesis
0# aV =JM is F-dense. ThusJM = DM, aV = Dm, and in particular
aV = W are all F-dense. But then aV = yU = W shows that yU =W
is F-dense. Thus W is F-co-monic.

Lemma 3.5. For a module M that is F-monic with respect to a
torsion radical F, any nonzero semi-endomorphism 0 # a: V — DM from
an F-dense submodule V = DM satisfies:

(i) either a is monic on all of Vor a(M N V)=0.

(ii) In particular, M = V = either a is monic on V or aM = 0.

Proof. Note that a™'M =a (M N aV) by definition. Set N =
MNa'™™ and let B=a|N:N—>M be the induced semi-
endomorphism.
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Since M =DM, V=DM are F-dense, so are M NV = DM,
MNV=YV, and a'M=V. Hence the intersection N =
MNVNa'™M =V of two F-dense submodules of V is F-dense in
V. The fact that N = V and V = DM are both F-dense with respect to
a torsion radical, by transitivity implies that N =DM is F-dense
too. (Alternatively we may argue that a 7'M <V, N=MNa M=
MNV, MN V=DM being F-dense imply — again by transitivity —
that N = DM is F-dense.)

Assume alternative (i) does not hold. So suppose that a(M N
V)#0 and also that a™'0# 0. Because M = DM is essential, also
B'0=MNa0#0, and there exists 0Zan E M Na(M N V) with
nEMNYV. Hence n€N, Bn#0, and B#0. On the other hand,
since N=M is F-dense, since M is F-monic, and 0# B: N— M, it
follows that 3770 =0, a contradiction. Hence either a(M N V)=0 or
a”'0=0.

3.6. PROPOSITION (A). When M < W is F-dense with respect to a
torsion radical F, then

(i) Wis F-co-monic > M is F-co-monic;

(i) Wis F-monic > M is F-monic.
If, in addition to the above hypotheses, M < W is essential, and FM = 0,
then the converse holds:

(iii) M is F-co-monic > W is F-co-monic;

(iv) M is F-monic => W is F-monic.

Proof. (i) and (ii) = : For (i) and (ii), given any 0 # B: N— M with
N=M, FM/N = M/N, also N= W is F-dense in W because F is a
torsion radical. Now regard 0 # B: N — M as a semi-endomorphism of
W. (i) Thus BN =W is F-dense, and M is F-co-monic in case of
(). (i) By (ii), B is monic, and M is F-monic.

(iii) and (iv) = : In both (iii) and (iv) for any 0 # a: V— W with
FW/V=W/V, form N=MNa'M and B=a|N: N> M. Since
V=W, a'M=V are F-dense, so are the intersections N =
MNa™M=MNYV and MN V=M. By transitivity N=M is F-
dense. Since M < W is essential and a#0, there is a v € V with
0#av €EaVNM. Then v'M = R is F-dense because M < W is, and
FM =0 requires that there is a nonzero element 0 # an € (av)v™'M C
M NavR with n€ VNAM. Thus n €N, Bn=an#0, and B# 0.

(i) In case of (iii), BN = aN = M is F-dense. Again by transitiv-
ity aN = W will be F-dense. Thus W is F-co-monic.

(iv) By (iv), B is monic B'0=MNa™'0=0. Since M =W is
essential, also a™'0 =0 and W is F-monic.

3.7. PROPOSITION (B). The following conclusions hold under the
assumptions on a module M and torsion radical F that
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(a) M is F-monic.

() A*<A;
() A*IM =0, and “JM =M = A*;
(i) A=A/A%

(iv) The maps in A\A* and in A\{0} are monic; A\A* is a
multiplicative semigroup and A is an integral domain.

Proof. (i) Always AA*CA”*. For any 0#y€A* and any
0#A €A, wehave 0 # M NAM Ckery. Since yA: DM — DM is not
monic, it follows from 3.5 (ii) (with V = DM and @ = yA), that yAM =0,
and hence that yA € A*. Thus A* <A.

@ii) Since JM =AM, by (i) A*JM =0. Always A*="M D*JM,
because M CJM. Hence ‘JM =*M.

(iii) The restriction map A—A of elements of A to the A-
submodule JM C DM induces a ring isomorphism A = A/*JM = A/A”.

(iv) Take a, b€ A\A*, a=a+A*, B=b+A*€EA. Note that
ay = ay for every y EJM. If a were not monic, then by 3.5 (ii) (with
V =DM),aM =0and a € A*. Thus aM # 0; a, b are monic, baM # 0,
and ba € A\A*. Hence A\A* and A\{0} are semigroups of monic maps.

The next corollary is merely a continuation of the previous
proposition. It attempts to determine how close A is to being a division
ring.

3.8. CoroLLARY 1 To ProprosITION (B). Under the assumptions of
the previous Proposition 3.7.:

(v) X is a subgroup of the multiplicative group of units of A\{0}; and
3 consists of automorphisms of JM.

(vi) JM is weakly F-co-monic = A is a division ring.

Proof. (v) Since any a €% is monic by 3.7 (iv), the semi-en-
domorphism aJM — JM, ay — y from the F-dense submodule aJM =
JM, extends to B: JM — JM with Ba =1, and 8 € A. In order to show
that B €2, it will suffice to show that for any F-dense W =JM
submodule, B(W N aJM)=JM is F-dense. Because B is a left inverse
of «, a straightforward verification shows that B(W N aJM)=
a”'W. Buta'W =JM is F-dense. Thus B € 2. Since X is a semi-
group, Ba = af =1. Thus X is a group of automorphisms of JM.

(vi) By 3.7 (iv), A\{0} is a semigroup, and by the argument in 3.8 (v),
each element has a left inverse. Thus A is a division ring.

3.9. CoroLLARY 2 TO ProposiTioN (B). For a torsion radical F,
define 2*={a €E A|aJM =JM is F-dense}. Then

(i) 3* is a semigroup with 3 C3*.

(i) 3.7(a) => 3.8 holds for 3* in place of %.
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Proof. (i) For a,B € 2%, since JIM/aJM — BIM/BaJM is epic,
BaJM C BJIM is F-dense. Hence %* is a semigroup. (ii) is clear from 3.8.

A few of the results of this section are combined and summarized
below.

THEOREM III.  Starting with a torsion radical F, a unital right
R-module M, its F-injective or F-divisible hull DM and the R-
endomorphism ring A = (DM, DM) of DM, form the F-quasi-injective
hull IM = AM of M, and its R-endomorphism ring A= (JM,IM); let
A*={A EA|AM =0} ="M, *JM ={A € A|AIJM = 0} be the annihilator
subrings of M, JM in A.

(i) If FM =0, then

M is F-co-monic (respectively F-monic) <& JM is likewise.

The subsequent conclusions hold under the assumption that

(a) M is F-monic.

(i) A”* is exactly the annihilator of the A-R-bi-submodule JM of
DM ; hence

A IM =0, *M="JM, A*<A, and A=A/A".

(iii) A is an integral domain; furthermore, each nonzero map of A is
monic.
Finally, when in addition to (a), it is assumed that

(b) FM =0 and M is F-co-monic,

(iv) then A is a division ring.

4. Arbitrary endomorphism rings. Without any restric-
tive assumptions on the unital module M, but some restrictions on the
torsion preradicals F and G, the subring A C(IM,IM) will be
considered. It should be stressed that

F=1 G=1.1IM=EM, A=(EM,EM);
F arbitrary, G =1:1IM = DM, A= (DM,DM);,

are included as special cases. Here, some information is obtained about
the G-endomorphism ring of the (F, G)-quasi-injective hull JM of
M. The simplest way of doing this is to consider any A-R-bimodule W
in M =W =IM. This approach also seems to be the shortest because
W=M, W=JM, or W=IM are frequently used special cases.

NotATION 4.1. The notation of the previous sections will be con-
tinued.

For any subset W C IM, define *W ={A € A|AW =0}. From now
on W will be a A-R-bimodule in M = W =1IM; in this case define
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Q= G —End W as the subring 2 C (W, W) of all endomorphisms of W
whose kernels are G-dense in W. If AW C W, then * W <A, where “<1”
denotes (two-sided) ideals. Set Q% ={y €Q|yM =0}. Unless stated
otherwise, in this section F will be a torsion radical and G a torsion
preradical.

When F is a torsion radical, then W is (F, G)-quasi-injective by
Theorem II.

Note that (iii) below provides a means of contructing (F, G)-quasi-
injective A-R-bimodules.

LEMMA 4.2. With the notation and the hypotheses of 4.1 (as well as
1.11), if m: A— Q is the map induced by restricting A to W, and if V=W
is an R-submodule, then

(i) the exact sequence of modules induces an exact commutative

diagram of ring homomorphisms

IM/W «—IM < W

0>'W—A 5Q -0

0—->*"W—->A*"->0"—>0
(ii) In particular,

TA=Q=A/W O =aA*=A*/*W; and
‘W= (IM/W,IM).
(iii) AV=QVand V+QV is a A-R-bimodule.

Proof. 1In (i) and (ii) in general, that is when F as well as G are only
torsion preradicals, the sequences need not be right exact and 7 induces
only ring monomorphisms with 7A C Q, #A* C Q*. In this case in (iii),
AV CQV and V+QV is not necessarily a left A-module.

(i), (i), and (iii). However, when F is a torsion radical, for any
BEQ, use of MC W and B7'0= W =IM C W+ GEM shows that B8
extends to a map A € A with 7A = A |W = 8.

LeMMA 4.3. Under the assumptions of 4.1 that G is a torsion
preradical and F is a torsion radical, all of the five conditions (i)}—(v) are

equivalent.
(i) A'=*(M+AM);
(i) A*<A;

(i) Q*<Q;
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(iv) M =M+ AM is a rational extension of modules;
v) (M+AM)M,M + AM)=0.

Proof. First note that since M CM+AM, always A*D
M+ AM). Also A* is a left ideal AA* C A* always.

(i) = (ii)). Since A*AM =0, A*ACA”* and A*<A. (i) > (i): If
A*<9A, then A*ACA* and A*(M+AM)=0. Thus A*=
“(M+AM). So far for (i) © (ii), the hypothesis that F is a torsion
radical was not needed.

(ii) = (iii). However, the fact that F is a torsion radical was used to
show in 4.2 (i) that the image of the subring A*/*W C A/*W under the
isomorphism A/*W = Q is exactly Q*. Thus if A*<JA, then necessarily
also 0*<Q).

(i) > (). In42@G), A —7mA)W=0forA EA,and 7A*=0Q”. In
4.2 (iii) for V = M, since M C W, also AM C AW C W, and consequently
ANMAM =7 A*7 AM =Q*QM =0, since Q*QCQ*. Thus A*C
‘(M + AM) and hence A*=*(M + AM).

In the remainder, let B represent any map 3: V—>M+ AM for
M<V=M+AM with BM =0.

(iii) = (iv). Since B extends to A €A with A |V =8|V, we get
A EA*. Thus (i) A*<A implies that A(M + AM)=0. Hence M=
M + AM is rational. Always, (iv) = (V).

(v) > (iv). By Theorem II, M +AM =JM, the (F, G)-quasi-
injective hull of M. Therefore a typical B as above extends to y € G-
EndJM, y: M+ AM —> M+ AM. Due to BM = yM =0, y induces a
map « € (M +AM)/M,M + AM). Thus by (v) @ =0, y =0, and B =
0. Hence M =M + AM is rational. Clearly, (v) = (i).

In the next proposition the results of this section are specialized to
W =JM.

4.6. ProrosiTION (C). For a torsion radical F, a torsion preradical
G, and any unital right R-module M, form its quasi-injective and injective
(F,G)-hulls JM, IM with M CJM CIM. Abbreviate the R-
homomorphisms between any two modules whatever by Hom (IM,IM) =
(IM,IM). Take the subring A = G-EndIM, A C (IM,IM) consisting of
all endomorphisms with G-dense kernels and let A* be the annihilator of
M in any ring A (i.e. A*M =0 and A*C A C(IM,IM)). Similarly for
IM, form Q*CQ=G-EndJM C(JM,JM). The annihilator of any
submodule such as JM of IM in A is denoted by “JM (e.g. ‘M =
A*).  Then the following hold.

(i) A*<A is an ideal © V*'AQ S AN IM=05M=IM is
rational & (JM/M,JM) = 0.

(i) Q=A/MIM; “IJM =AM/IM,IM).

(iii) If the conditions in (i) hold then Q= A/A* and ‘M =*JM =
A" =(IM/IM,IM).
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