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TOPOLOGIES ON THE SET OF CLOSED SUBSETS
FRANK WATTENBERG

In this paper the techniques of Nonstandard Analysis are
used to study topologies on the set I'(X) of closed subsets of a
topological space X. The first section of the paper investigates
the ‘“compact” topology developed by Narens and constructs a
variant of that topology which is particularly useful for non
locally compact spaces X. (When X is locally compact this
variant is shown to be identical with Naren’s original ‘“‘compact”
topology.) This new topology is a natural extension to I'(X) of
the one point compactification of X embedded in I'(X) in the
obvious way with the point at infinity corresponding to the empty
set. The second section shows that the techniques developed by
Narens can be used to obtain a natural characterization of the
Vietoris Topology by considering monads of non nearstandard
points. The final section uses this same approach to construct a
topological analog of the Hausdorff metric for normal spaces.

0. Introduction. Suppose that X is a topological space and
that I denotes the set of closed subsets of X. It is frequently desirable to
endow I with a topology of its own. Various topologies on I" have been
proposed and studied by several mathematicians. If X is a metric space,
Hausdorff (see [2], [6], [7]) defined a metric on I' in a natural way. With
this metric X is embedded isometrically as a closed subset of I' by the
mapping x » {x}. One drawback of this metric, however, is that it
depends in an essential way on the metric on X. That is, d and d' may
be two metrics for the same topology on X, but induce Hausdorff metrics
which do not give the same topology on I'. In [10] E. Michaels
investigates among other topologies the Vietoris or Finite topology on
I'.  This topology also has the property that X is embedded as a closed
subset of I" by the mapping x » {x}. Both the Hausdorff metric on I' and
the Vietoris topology on I' make I' into a compact space if and only if X
was originally compact. More recently, L. Narens [12] has introduced
an interesting topology on I' using the techniques of Nonstandard
Analysis. This topology always ma'.es I' a compact set with the empty
set SET acting (see Theorem 1.8, somewhat like the point at infinity of
the one-point compactification of X.

Nonstandard Analysis provides a particularly nice framework for
investigating topological questions. Intuitively, a topological space is a
set together with some notion of ‘“‘nearness”
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If X is any set and *X is a nonstandard extension of X then a
topology on X can be described by a relationship of “infinitely close’ on
some points of *X (see [9], [13], [14]). If X is a topological space, x € X
and y € *X we say y is infinitely close to x, written y ~x or y € u(x),
provided for every standard open set 0 if x € O then y € *0. In this
case x is called the standard part of y, denoted x = St(y). If A is an
internal subset of *X, let St(A)={x € X |u(x)N A# J}. Under suita-
ble conditions on *X St(A) is always closed. Now, if A, B € *X,
Narens defines A ~ B provided St(A)=St(B). He uses this relation-
ship to define a topology which he calls the compact topology. In the
present paper we will call this same topology the N-compact
topology. Although the relationship ~ provides a definition of the
N-compact topology, it is important for a full understanding of this
topology to obtain a description of the actual monads for this topology
(see [14], for an elucidation of this point).

The first part of this paper is devoted to the investigation of the
N-compact topology and a closely related topology we call the S-
compact topology. With either of these topologies I' is compact and the
one point compactification of X is embedded as a closed subset of I' by
the mapping x — {x} with o corresponding to JE€I'. When X is locally
compact, the S-compact and N-compact topologies are identical, both
are Hausdorff, and the monad, u(F), of a point FET is given by
w(F)={HE€*T'|F~H}. When X is not locally compact the S-
compact and N-compact topologies may be different, neither is Haus-
dorff and neither monad is given by {H € *I'|F ~ H}. The S-compact
topology has a good standard as well as a good nonstandard characteriza-
tion.

The technique Narens has developed suggests several different
topologies on I'.  In the second section we use this technique to obtain a
nice description of the Vietoris topology. This description elucidates
some of the properties of the Vietoris topology. In the third section of
the paper we define a new topology, called the fine topology on I'.  This
topology has many nice properties and, in particular, may be regarded in
some sense as the analog in the topological category of the Hausdorft
metric (see Theorem IIL8).

Throughout this paper, X, Y and Z will always denote Hausdorft
spaces (although I' may not be Hausdorff). When we are dealing with
several spaces X, Y and Z, their extensions will always be taken in a
single nonstandard model */#. That is, we let # be the complete higher
order structure on X U Y U Z and let */# be a higher order elementary
extension of  ([8], [9], [13]). If « is the cardinality of the universe of #
we will assume throughout that */# is at least «* saturated ([1], [3], [4],
[5], [11]). Thus we will assume GCH to insure that such an extension
exists.
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I. The N-compact and S-compact topologies. Suppose
throughout this section that X is a Hausdorff space and that I'y (or I’
where confusion is unlikely) is the set of closed subsets of X. We
topologize I' as follows

I.1. DEFiNiTION. Suppose FET and H €*I we write H~F
whenever St(H) = F. Then the premonad, m(F), of F in *T is defined
by m(F)={H € *T'|H ~ F}. A subset A CT is said to be N-open if
and only if for each FE A, m(F)C *A. It is easy to verify that the
N-open subsets of I form a topology which, modifying the terminology
of [12], we call the N-compact topology.

If FET the monad, un(F), of F in the N-compact topology is
defined in the usual way by

pin (F) = N *A

FEA, AN-open

It is immediate from these definitions that m (F)C ux~(F) although it
turns out (See 1.9) that frequently m(F) # un(F).

_ L2. Lemma.  Suppose O is an open subset of X. Define OCT by
O={F|FNO#J}. Then O is open in the N-compact topology.

Proof. Suppose FE€ 6@ and H~F. Since F € @ there is a point
x€EONF. Since O is open pu(x)C*0. Since St(H)=F,
x €St(H). Hence, u(x)NH# and thus *0 N H# . Therefore
He*0.

. 13. LEMMA. Suppose K is a compact subset of X. Define K CT by
K={FET|FNK =}. Then K is open in the N-compact topology.

Proof. Suppose F€EK and H~F If HgK then
HN*K#J. Let xEHN*K. Since K is compact y = St(x) exists
and is in K. Since St(H)=F, y€F Thus KNF#J and
F¢& K. This contradiction completes the proof.

I.4. ProprosiTION. I' with the N-compact topology is compact and
T..

Proof.

(i) IfHeT, HE m(St(H))C un(St(H)). Thus every point of
*T" is near-standard and T is compact.

(i) Suppose F,G €T, F# G. Without loss of generality we may
assume F\G# (J. Choose a € F\G. By Lemma 1.3 {Z} is open and
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GEe {\[1/} but F& {Z}. By Lemma 1.2 )?\E is open and G & }?\?? while
Fe X\G.

It is natural to ask when @' with the N-compact topology is
Hausdorff. The following proposition shows this occurs precisely when
the premonads, m (F), are actually the monads, u~(F).

I.5. PrROPOSITION. The following are equivalent.
(i) T is Hausdorff.
(i) For each FET, m(F)= unx(F).

Proof. (ii))— (i) is immediate since F# G implies m(F)N m(G) =
.

(i)— (ii)). We must show un(F)Cm(F). Suppose H& m(F).
Hence St(H)# F. Since I' is Hausdorff un(St(H))N un(F)=J. But
H € m(St(H)) C ux(St(H)) and, hence, H & un(F). This completes
the proof.

1.6. THEOREM. Suppose X is locally compact then T is Hausdorff
and, hence, by 1.5 for each FE€T, m(F)= uy(F).

Proof. Suppose A,B €T. Without loss of generality we may
assume A\B# J. Choose a € A\B. Since X is locally compact there
is an open set U such that a € U, U is compact and U N B = J. By
Lemma 1.2 U is open. By Lemma L3 U is open. Clearly UNU =
@. But A € U and B € U which completes the proof.

The converse of Theorem 1.6 is also true as a consequence of the fact
(Theorem 1.8) that the one-point compactification of X can be embedded
in I with the point at infinity corresponding to the empty set.

L.7. DerFiNITION.  Let X* denote the one-point compactification of
X with « denoting the point at infinity. We define an embedding
e: X*—T by
e(x)=9J
e(x)={x} if x#oo.
1.8. THEOREM. e: X*—T is a homeomorphism of X* into T.
Proof. (i) Suppose x€X. If y€u(x) then {y}~{x} so

*e(y)Em(e(x)). Hence e(u(x))Cm(e(x))C un(e(x)). Now, sup-
pose y & u(x) then there is a standard open set O such that x € 0 and



TOPOLOGIES ON THE SET OF CLOSED SUBSETS 541

y€*0. By Lemma 12 6 is open in T and e(x)E® but
*e(y) & 0. Hence, *e(y) & pn(e(x)). Thus e(u(x)) = pn(e(x)).

(ii) We must show ux(J)N *e(X )= A where A isgivenby A =
{SU{{x}|x € u(®)}. Notice that w(®)= Mg compaet *(X — K) U {}. By
Lemma I3 if K is compact K is open. But KNe(X*)=
@Ue(X —K). Hence un (@) N*e(X)C A. Now suppose
{y} & un(). Hence there is an open set OCI s.t. JEO but
{y}€*0. Let K ={x € X|{x} & 0}. Notice if x € *K then {x} € *, so
{x} & m () and hence x must be near-standard. Now, if {st(x)}€ O
then {x} would also be in *O so {st(x)} &€ O and St(x) € K. Thus, we’ve
shown for each x € *K, St(x) exists and is in K, so K is compact. Now
yE*K, so y & u(e). Hence A C un()N e(X") which completes the
proof.

1.9. CoroLLARY. The following are equivalent
(1) X is locally compact

(i) T is Hausdorff

(iii) For each FET, m(F)= un(F).

Proof. Immediate from L.5, 1.6 and 1.8 since X* is Hausdorff if and
only if X is locally compact.

We would like to obtain a standard description of the compact
topology on I'' Lemmas 1.2 and I.3 suggest a topology which is
analogous to Vietoris topology. This approach is developed in the
following pages. For locally compact spaces the two topologies are
identical. However, for more general spaces they may be distinct (see
Example 1.16).

1.10. DEFiNITION. A subset 0 of X is said to be cocompact
whenever X\O is compact. Suppose that O is cocompact and that
U, U, -+, U, are open subsets of X. Then let (O, U, U, -, U,)
denote the set

{FET|FCO andfor i=1,2,---,n FNU#J}

By Lemmas 1.2 and 1.3 the set (O,U, U,,---, U,) is open in the
N-compact topology. Let %3 denote the set of all such
(0,U,, Uy, - -+, U,). Notice the intersection of two sets in & is again in
B

(07 U17 UZ, Y Un> N <0”’ Vl’ V29 Y Vk>
= <0 N 0,, Ul, U2, Y Un; Vb VZ’ Y Vk)
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So, B forms a basis for a topology on I'.  This topology is called the
S-compact topology. By the above remarks every set open in S-compact
topology is also open in the N-compact topology. Hence, the S-
compact topology is compact. Furthermore, an examination of the
proof of Theorem 1.8 shows that e: X*—T is a homeomorphism of X*
into I' with the S-compact topology.

One of the basic lemmas in Nonstandard Topology is that if X is a
topological space, x € X and p (x) its monad then there is a *open set U
such that *x € U C u(x). For the N-compact topology we have been
working primarily with the premonad m (F) rather than the actual monad
u~(F) of F in the N-compact topology. It is not true that for this
premonad there is always a *open set U in the N-compact topology such
that *F &€ U C m(F). However, when. X is locally compact m(F)=
un(F) and such a U can always be found. In particular the following
lemma shows such a U can be found in *3.

I.11. LemMMmA. Suppose X is locally compact and F €T'.  Then there
is a set U € *RB such that F € U C m(F).

Proof. (i) For each xZ F let W, be in an open set such that
x € W,, W, is compact and W, N F = (. By a straightforward enlarge-
ments argument there is *compact set K such that K N F = and for
ecach x€F, W, CK. Let 0=X-K.

(i) For each x € F choose a *open set U, such that x € U, C
m(x). By a straightforward saturation argument there is an internal
*finite collection of *open sets {V,, V,,---, V,} such that for each
i=1,2---,v, VQO*F# and for each x e F, U, €{V,, V,,---, V,}.

(i) Let U=(0,V,,V,---,V,)E*RB. 1t is straightforward to
verify that *F &€ U C m(F).

I.12. CoroLLARY. Suppose X is locally compact. Then B is a
basis for the N-compact topology on T'. Hence, the S-compact topology
and N-compact topology are identical.

Proof. Immediate from Lemma I.11.

Example 1.16 will show that the S-compact and N-compact to-
pologies may be distinct when X is not locally compact. In view of this
fact if FET we denote its monad in the S-compact topology by
us(F). Notice, un(F)C us(F). In order to obtain a characterization
of us(F) we need a definition.

1.13. DerINITION. Suppose X is a topological space and x €
*X. x is said to be a far point provided for every standard compact
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subset K of X, x € *K. Let FAR(X)={x € *X|x is far}, when X is
locally compact, the far points of *X are precisely the nonnearstandard
points.

I.14. ProposITION. Suppose F €T and H € *T' then H € ps(F) if
and only if

(i) FCSt(H) and

(ii) Forevery x € H either x € FAR(X) or St(x) exists and St(x) €
F.

Proof. (—) (i) Suppose x € F and U is a standard open set with
x € U. Therefore Fe(X,U) so HeXX,U) ad HN
*U#J. Hence, by a straighforward saturation argument H N
p(x)#9. So x € St(H).

(ii) Suppose x € H and x £ FAR(X). Therefore there is a stan-
dard compact set K with x € *K. Thus, St(x) exists and St(x) € K.

Now suppose St(x) & F. Since K is compact there is an open
subset U of K such that St(x)€ U and UNF=. U is compact since
it is a closed subset of K and x € *U since St(x)€ U. Since UNF =
@, FE(X\U). But *UNH#J, so HZ *(X\U) contradicting H €
ws (F).

(<) Suppose FE(O,U,, - -, U,). First, suppose HZ *0, then
HN*X\0)#J. So t€ HN*(X\0), St(t)€ X\O; so FZ *0, con-
tradicting FE€(O,U,,---,U,). Now, FNU,#J. Therefore there is
anx € FNU. Butu(x)C*U, and by (i) thereisay € u(x)NH. So
HN*U #J. This completes the proof.

1.15. COROLLARY.
(a) Suppose FET and H € ux(F) then
(1) FCSt(H) and
(ii) For every x € H either x € FAR(X) or St(x) exists and
St(x)E F.
(b) The mapping u: ' X' —>T defined by u(H,F)= HUF is con-
tinuous in the S-compact topology.

Proof.

(@ wun(F)C us(F).

(b) For (H,F)ET'XTI, w(H F)=us(H)X us(F) and clearly
H' € us(H), F' € us(F) implies H' U F' € us(H U F).

By Corollary 1.12 if X is locally compact u is continuous in the
N-compact topology. However, without this assumption the author
does not know whether u is continuous in the N-compact
topology. Clearly, if H'€m(H) and F'€m(F) then H'UF' €
m(H UF). However, although this provides some evidence for the
continuity of u, it is not by itself sufficient to prove u is continuous.
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The following example shows that the N-compact and S-compact
topologies are distinct.

1.16. ExampLE. We first state carefully two facts necessary for this
example.

(i) If ACT then A is closed in the N-compact topology if and
only if for each F € *A, St(F)€ A. This equivalence is an immediate
consequence of Definition I.1.

(i) If A CTI then A isclosed in the S-compact topology if and only
if for each FE€ *A and each H €', F € us(H) implies H € A. Notice
that since I' is not Hausdorff there may be many HE€ A such that
F € us(H). This equivalence is an immediate consequence of Defini-
tion 1.10.

Now let Q denote the rationals and let G denote the set of closed
subgroups of Q. We claim G is closed in the N-compact topology but
not in the S-compact topology. The first assertion was proved by
Narens in [12] by means of (i) above and the observation that if F is a
*closed *subgroup of a topological group then so is St(F). We proceed
to the second assertion.

By a straightforward enlargement argument there is an « € *Q such
that

i) a€u()

(i) For each standard integer n

na € FAR(Q).

Now let H = {na |n € *Z}, where Z denotes the set of integers. H is
clearly a closed subgroup of *Q. By Proposition 1.14 H € u,({1}). But
{1} is not a subgroup of Q. This completes the proof.

Although the N-compact and S-compact topologies on I' have some
very nice properties they also lack some desirable properties. In
particular certain constructions on I' which one might like to be continu-
ous are not continuous with these topologies. We close this section with
several such examples before going on to discuss other topologies on I' in
the remainder of this paper.

1.17. ExampPLES. (i) Suppose f: X — Y is a continuous map. f
induces a map f: I'x —»T'y defined by f(A)=f(A). One might desire
that f be continuous. However, this need not be so. In particular, if f
were continuous this would imply that f had a continuous extension to
g: X*"— Y" with g(®)=c. No such extension exists, for example, if
f:(0,1)— R is the usual inclusion of the open unit interval into the real
line.

(i) Suppose again that f: X — Y is continuous. f induces a map
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f:Ty—>Tx defined by f(A)=f"'(A). Again one might hope that f
would be continuous. However, this need not be so. In particular if f
is a bijection then the continuity of f would imply f is a homeomorphism
which is, in general, false.

(iii) Let X =R and define f: ' >T by

f(A)={x ER|aE A, a=x}

f is not continuous since if a is any negative infinite nonstandard real

{a} € un (@) but f({a}) = [a,*) & us(D) = us(f(D)).

II. The Vietoris topology. Some of the difficulties noted at
the end of §I result from the fact that knowing H € uy(F) gives us little
or no information about the non-nearstandard points in H and *F. In
order to obtain a topology on I' which takes these points into considera-
tion we need a notion of monads for points which are not near-
standard. One such notion is the coarse ‘‘monad system’” defined in [14]
and [15]. We suppose throughout this section that X is a T, space.

I1.1. DEfFINITION.  Suppose x € *X the coarse monad of x, denoted
c(x) is defined by

c(x)= N *U.
XxE*FC*U, F standard closed,
U standard open

We collect some results about ¢(x) in the following proposition.

I1.2. PROPOSITION.

i) IfreX c(x)=p()

(i) Ifx,y€*X x€c(y)ey€Ec(x)

(iii) X is regular <> for every nearstandard x, c(x)= u(St(x)).

(iv) Xisnormal & ifx,y € *X eitherc(x)=c(y) orc(x)Nc(y)=
.

(v) If f: X—=Y is continuous then for every x € *X *f(c(x))C
c(*f(x)).

Proof.

(i) Clear.

(i) If x & c(y) then there is a standard closed set F and a standard
open set U such that y € *F but x € *U. But then x € *(X\U) and
y € *(X\F) so y & c(x).

(iii) and (iv) see [14].

(v) Clear.
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I1.3. DEFINITION. Suppose FET and HE*I. We say H +~ F
whenever for every x € *F there is a y € H such that y € ¢(x) and for
every y € H thereisan x € *Fs.t. y € ¢(x). The c-monad of F, ¢(F)is
defined by ¢(F)={H € *T'|H ~ F}. Notice, in particular, that ¢(&)=
{}.

I1.4. THEOREM. Suppose F €T, then ¢(F) is the monad of F in the
Vietoris topology.

Proof. First recall that a basis for the Vietoris topology on I’ is
given by sets of the form (O, V,,---, V,)={F€E€T|FCO and for i =
1,2,--,n FNV,#J} where 0,V,,---,V, are open subsets of X.

(i) Suppose FE(0,V,,---,V,) and H € ¢(F). For each yEH
there is an x € *F such that y € ¢c(x). Since F is closed and FC O
c(x)C*0. Hence HC*0. Since FE(O,V,,---,V,) there is an x €
FN YV, foreachi. Since{x}isclosed c(x)C *V, andsince H - F there

isay€HNc(x). Hence HN*V,#. Thus HC O, V,,---, V,).

(ii) Suppose H & ¢(F). There are two possibilities.

(a) For some x € *F there is no y EH such that y €
c(x). Hence, by a straightforward saturation argument there is a
standard open U and closed T with x€*TC*U and *UNH =
. But then Fe (X, U) and HZ *(X, U).

(b) For some y € H there is no x €*F such that x €
c(y). Hence by a straightforward saturation argument there is a
standard open U andclosed T withy E*TC*U and UNF=. But
then FE€(X\T) and H & *X\T).

Thus, in either case H & ¢(F) implies HZ monad of F in the
Vietoris topology, completing the proof.

Notice, that the mapping X —TI defined by x —>{x} is a
homeomorphism into using the Vietoris topology but e: X*—T is not
even continuous (unless X is compact) since ¢J is an isolated point of I’
with the Vietoris topology. In addition it is clear that the mapping
u:I'xI'>T defined by u(F, H) = F U H is continuous with the Vietoris
topology.

With the Vietoris topology the mapping f defined in Example .17
will be continuous if the range is normal. To see this we first observe
that Definition I1.3 can be extended to the full *power set of X, denoted
*P(X).

IL5. DEFINITION.  Suppose  A,BE *P(X). We say A+ B
whenever for each a € A there is a b € B such that a € ¢(b) and for
each b € B there is an a € A such that a € c(b).
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I1.6. LEMMA. Suppose A € *P(X) and A is the *closure of A then
A~ A.

Proof. Since A C A we need only show that for each x € A there
is an a € A such that a € c(x). Suppose x E*F C*U. F standard
closed and U standard open. Since *U is *open and x €A, AN
*U#(. Hence, by a straightforward saturation argument A N
c(x)# .

I1.7. PrROPOSITION.  Suppose f: X — Y is continuous, Y is normal
and f: 'y =Ty is defined by f(F)= f(F). Then f is continuous in the
Vietoris topology.

Proof. Since Y is normal it is easy to see using Proposition I1.2 (iv)
that ~ is transitive on *P(Y). From Proposition I1.2 (v) it is clear that
F~ H implies f(F)~ f(H) but f(F)~ f(F) and f(H)~ f(H) by the
preceding Lemma and, hence by transitivity f(F)~ f(H).

Although the coarse monad system imposes some control on the
non-nearstandard points of X, this is not a very natural monad system,
and, in fact, the coarse monads are much too large. As one result the
Vietoris Topology has the following interesting property.

I1.8. MONOTONE LiMIT THEOREM. Suppose Fi,C F,C -+ is an as-
cending sequence in I'. Let F= UF,. Then in the Vietoris topology
Lim,_.F, = F.

Proof. Suppose FE€{(0,U,,---, U,)

(i) F C O implies F, C O for each k

(ii) For each i, FN U, #J. Hence there is an x € FN U, and
since U, is open (UF,)NU#J. Therefaore for some k;, F,N
U#J. Let K=max(k, -, k,).

Now for each k=K, F, €(0, U,,---, U,).

From our point of view some insight into this theorem can be
obtained from the following example.

I1.9. ExaMPLE. Suppose x € *R is an infinite positive nonstandard
real and A is a standard set with x € *A. Then c(x)N *A contains
arbitrarily small and large infinite numbers i.e. for each infinite positive
YyE*R, c(x)N*AN@O,y)#J and c(x)N*AN(—-y,x)#J. The
proof of this is a straightforward saturation argument.

In the next section we consider a monad system on X which gives
more control over the non-nearstandard points.
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III. The fine topology. In [14], [15] we obtained a very
natural monad system for non-nearstandard points. This monad system
enables us to define a topology on I' which provides a great deal of
control around non-nearstandard points. Throughout this section we
will restrict our attention to normal spaces.

II1.1. DEFINITION.

(i) Suppose U is a *open subset of *X and F is a *closed subset of
*X with FC U. The pair (U, F) is said to be a quasi-standard pair,
Q.S.P. provided there is a standard locally finite collection % =
{(U,, F.,)}ses of pairs (U, F,) such that each U, is open, each F, is closed,
F,C U, and (U, F)€ * (See [14], [15]).

(i) If x € *X we define the monad of x, u(x) by

p(x)= N U.
xEFCU,(UF)aQ.S P.
We recall the following facts about this monad system from [14],
[15]. Our assumption that X is normal is important here.

II1.2. PROPOSITIONS.
@) If x is standard, wu(x) is the usual monad p(x)=
xEU, Ustandard open * U
(ii) If x is nearstandard p(x)= pu(St(x))
(i) For each x,y € *X either u(x)=pu(y) or p(x)Nu(y)=4.
(iv) If f: X—=Y is continuous then for every x € *X, *f(u(x)) C
m(*f(x)).

Proof. [14], [15].

II1.3. DEeFINITION.  Suppose H, F € *I' we say H+ F whenever for
everyx € H, u(x)NF# Jandforeveryy €EF, u(y)NH#J. Inview
of Proposition I1I1.2 + is an equivalence relation. For each F € *T,

@ (F)is given by @ (F)={H € *T'|H+ F}. The topology defined by the
& monads is called the fine topology on T'.

We can obtain a standard characterization of the fine topology in the
obvious way.

II1.4. DEeFINITION.  Suppose U ={U,}.es is a locally finite collec-
tion of open subsets of X and O is an open subset of X. Then define
(0,%)={FET|FCO and for each U, €U, U NF#£J}. Let F=
{{0,U)|0 C X open, U ={U,}.es a locally finite family of open sets in
X}

IIL.5. THEOREM. & is a basis for the fine topology on T.
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Proof.

()" Suppose FET, FE(O,U) and H € #(F). We must show
that H € (0, U ).

(a) Fe(0,U) implies FC 0. Hence for each x€F, u(x)C
*0. So, clearly H C *0.

(b) For each U,€ U choose x,€ U, NF. Given U, € *U
(Up{xs}) is a QS.P. so wu(x)C U, and since u(x)N H# D,
U NH#J.

(ii)) Suppose FE€T, and HZ n(F). We must find an 0, % such
that F€(0, U) but HEZ (0, U).

(@) Suppose for some x €E€*F, u(x)NH=. Then by a
straightforward saturation argument there is a locally finite collection of
pairs % = {(U,, F,)}.cs containing a pair (U, F3) € * such that x € F;
and UyNH=. Let VY={U,|FNU,#J}. Then FE(X,¥) but
HZ(X, V) since U; € *V.

(b) Suppose forsome y € H, u(y)N F = . By astraightforward
enlargement argument there is a locally finite collection of pairs % =
{(U, F.)}scs such that for some B, yE€F; but UsN*F=. Let
T =U.,.csrnr-oF,. Since U is locally finite, T is closed. But F&
(X\T,) and H & (X \T, D).

This completes the proof.

_ IIL.6. PropPOSITION.  Suppose  f: X—Y is continuous and
f:Tx—Ty is defined by f(F)= f(F). Then f is continuous in the fine
topology.

Proof. Entirely analogous to that of Proposition I1.7.

Notice that as with the Vietoris topology the mapping x — {x} is a
homeomorphism into of X into I' but e: X*—T is not (unless X is
compact) since J is an isolated point of I". In addition the mapping
u:I'xI'>T given by u(F, H)= F U H is easily seen to be continuous in
the fine topology. It is easy to see that the Monotone Limit Theorem is
false in the fine topology. In fact a counterexample is provided by the
sequence F, =[—n, n] of subsets of R.

In general, the compact topology is coarser than the Vietoris
topology which in turn is coarser than the fine topology. Of course,
when X is compact all three topologies are identical.

For metric spaces the Hausdorff metric provides a very natural
topology on I'.  One difficulty with this topology, however, is that it
dependes in an essential way on the metric on X. Recall the definition
of the Hausdorff metric.

II1.7. DEFINITION. Suppose X is a metric space with metric d.
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(i) If x€X and F €T define
P'(xF)=infd(xy) it FAQO

= if F=g
(i) If A,B €T define

o'(A, B)=max (sup p'(a, B), sup p'(b, A)).
acA bEB

Finally we define the Hausdorff metric p,(A,B) by pis(A,B)=
min (1, p'(A, B)). (See, for example [2] or [6] and [7]).

Since this topology depends in an essential way on the given metric
d, it is natural to look for a topology related to the Hausdorff metric
which is independent of the metric d.

IIL.8. DEFINITION. Suppose X is a metrizable space. If d is a
metric on X let 7, denote the set of open subsets of I' with the metric
pse Let B = umemeonxTe B is clearly a basis for a topology on T.

II1.8. THEOREM. Suppose X is metrizable space. Then R is a basis
for the fine topology on T.

Proof.

(i) Suppose FEAE€r, We must show g(F)C*A. Since
A € 7, there is a standard € > 0 such that for every H € *T’, *p,(H, *F) <
€ implies H € *A. But, now by [14, Theorem 2.12] for every x,y € *X,
y € u(x) implies *d(x,y)~0. Hence, H € g (F) implies *p,(H, *F) ~
0;s0 HE*A. Thus g(F)C Nueq *A.

(ii) Suppose H & p(F) we must find some A € & such that FE A
but HZ *A. Since H & i (F) there is an open set 0 and a locally finite
collection U ={U,}.es of open sets such that Fe& (0, %) but
HZ *(0 U). There are two cases.

(@) HZ*O0. Since F is closed and F C @ there is a continuous
function o: X — [0, 1] such that o(x)=0 for x €F and o(x)=1 for
x& 0. Let d be any metric on X. Define a new metric § on X by
8(x,y)=d(x,y)+|o(x)—a(y)|- Itisstraightforward to verify that § is
a metric on X. But if z€ H\*0 and x €*F, §(x,y)=1; so
ps*(H,*F)= 1 and, thus, HZ *{T|ps;(T, F) <1} which is in 7, and,
hence, %.

(b) For some BeE*¥$, HNUs,=. For each a choose
x, € U, NF and choose a continuous function o,: X —[0,1] so that
o.(x.)=1ando,(y)=0if y € U,. Let d be any metric on X and define
a new metric 8 on X by 8(x,y)=d(x,y)+ max,|o.(x)~ a.(y)|.
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Notice for y € H, *8(x,,y)=1 so *ps(*F,H)= 1. Therefore, we
need only verify that § is a metric on X. But this is a straightforward
verification after noticing that for given x and y there are neighborhoods
U of x and V of y in which only finitely many o, ’s are nonzero and, thus,
max, |0.(x)— o.(y)| is continuous.

In view of Theorem II1.8 the fine topology may be regarded in some
sense as the analog of the Hausdorff metric in the topological category.
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