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CONSTRUCTIVE FOUNDATIONS OF POTENTIAL THEORY

Y. K. CHAN

Classical potential theory is studied in the constructive
framework. Green's functions are constructed for a large
family of open regions.

()• Introduction* A constructive (as opposed to idealistic) theory-
is one in which every theorem is an explicit or implicit assertion about
some computations. For example, an existence theorem gives a
(general but not necessarily efficient) routine for the construction.

From this point of view, certain classical theorems become less
meaningful, as they assert the existence of mathematical objects
without providing means of their construction. An example in
potential theory is the Perron-Wiener-Brelot method of obtaining
Dirichlet solutions. Solutions for the Dirichlet problem are proved
to exist as the infimum of a certain family of superharmonic func-
tions associated to the boundary function. As the infimum of an
infinite family cannot in general be calculated in finitely many steps,
Perron-Wiener-Brelot's theorem, that the infimum (when certain
conditions are satisfied) is the solution, has a less interesting con-
structive interpretation, namely if we can construct the solution,
then it is the infimum of a certain family of functions—the wrong
direction as far as computation of the solution is concerned.

In this article we attempt to examine classical potential theory
from the constructive standpoint. The first step, also the harder
one, is to give precise computational meaning to the basic notions.
For instance, what kind of computations do we perform with a
superharmonic function? We believe the answer to be its averages
on balls rather than its evaluation at all points in an open set. Ac-
cordingly, a superharmonic function is defined as an integrable func-
tion (with certain properties) without the requirement that it be
everywhere defined. (The reader familiar with the literature in
constructive mathematics realizes, of course, that everywhere defined
functions on Ed which are not also continuous have not yet been
encountered). Thus the measure-theoretic approach is adopted to
replace the usual pointwise approach. For example, convergence for
superharmonic functions is always ^-convergence, rather than the
usual pointwise convergence, .^-convergence also furnishes con-
venient numerical measures of rates of convergence. Thus we are
able to talk about convergence in a constructive sense.

The main objective of this article, beyond a constructive formu-
lation of potential theory, is the construction of Green functions for
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a large class of regions. The generalized Dirichlet solutions can thus
be obtained for these regions.

Although the definitions and the statements of theorems will be
explained in detail, many proofs are left out because, with the outline
provided, the patient reader will find it easy to obtain constructive
proofs by modifying the usual classical proofs. We will give only
the proofs which are substantially different from their classical
counterparts. Moreover, classical theorems whose constructive intent
is clear, such as Herglotz's theorem, (see Helms 1969), will be left
out entirely. The reader can amuse himself in finding the more or
less routine constructive proofs. Also, there are many theorems
which are already constructive, e.g., Harnack's inequality for har-
monic functions. We will use them without hesitation, and refer
the reader to classical references. The constructive measure theory
of Bishop (Bishop 1967, Bishop and Cheng 1972) will also be used
without further comment.

1* Superharmonic functions* Let R be a nonempty open subset
of Ed{d ^ 2), equipped with the Lebesgue measure. A measurable
function u on R is said to be locally integrable if it is integrable
on every ball well contained in R. (A subset K is well contained
in R if some metric neighborhood of K is contained in R. In symbols
KcR). Local LΓconvergence will mean L^convergence on all such
balls.

Write Bxr for the closed ball in Ed with center x and radius r
(r > 0), and write Rr for {x e R: Bxr c R}. If u is locally integrable
on R, write ur for the continuous function on Rr whose value at x
is the average of u over Bxr. Our attention will be centered upon
those properties of u which are related to these averages. For this
reason, we assume in the following that every locally integrable
function u has been "regularized" by redefining u(x) = limr^0 ur(x)
with the domain of u being those x where the limit exists in
[— oo, oo]. For xeRr, the average of u on dBxr may not be defined.
When it is defined, we denote it by ur(x).

DEFINITION 1.1. A locally integrable function u on R is said to
be superharmonic if for all r > 0 we have u ^ ur a.e. on Rr; har-
monic if ^ is replaced by = . A measurable function u on R is
said to be lower semi-continuous if it is the a.e. limit of an increasing
sequence of continuous functions on R.

We have defined lower semi-continuity as a measure-theoretic
property rather than a topological one. The term lower semi-con-
tinuity is retained only becanse of the lack of a better name.
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It can trivially be verified that a superharmonic function is lower
semi-continuous, and that sums, minimums, positive constant multi-
ples, as well as local Li-limits of superharmonic functions are again
superharmonic. Later we will prove that the a.e. limit of non-
negative superharmonic functions is also superharmonic. In case un

is the nth partial sum of a series of nonnegative superharmonic
functions, the a.e. limit will also be the local Lrlimit, hence obviously
superharmonic.

We next give the constructive version of the classical minimal
principle. Suppose u is superharmonic on R and suppose K is a
compact set well contained in R. Classically the infimum of u on
K exists because of idealistic considerations, and is attained because
of lower semi-continuity, the latter also coupled with idealistic argu-
ments. However, there is in general no way to compute this infimum.
To see this, construct a superharmonic function which is discon-
tinuous at one point. More specifically, let xn be a sequence in E3

converging to 0, but each unequal to 0. We will see later that the
functions \x — a?*!"1 are superharmonic on E3. Borrowing this fact,
let cn be a sequence of positive numbers such that Σ ^ I^ Γ1 c o n "
verges. Σ c» I ^ ~" s» Γ1 converges a.e. and is therefore superhar-
monic in x. Now let y be a point in E3 for which we are unable
to decide whether (a) y Φ 0 or (b) y Φ xn for all n. Let K = {y}.
If we could compute the infimum of u — Σ c n | — χn\~1 on K9 then
either the infimum would be <Σ C »I$»Γ 1 + 1> m which case we
would have y Φ xn for all n, or the infimum would be > ^cn\xn\~1

in which case we would know y Φ 0. Such a counter-example in
the style of Brouwer can be modified to show that the infimum can
also exist on K without being attained. For these reasons, superhar-
monic functions will be characterized by a lower bound principle,
rather than the classical minimal principle.

Let u be a lower semi-continuous function on R. We say that
u satisfies the lower bound principle on R if, for every positive
number a, for every harmonic function h on R, and for every com-
pact set K well contained in R, there exists a positive-measured
subset A of R — K such that (u — h)(A) — a ^(u — h)(K) a.e. (i.e.,
for almost every x e K and a.e. y e A we have u(y) — h(y) — a ^
u(x) — h(x)). In the cases of interest, u is locally integrable, and
the lower bound principle is satisfied on R iff, given a, h, and K,
there exists yeR — K such that u(y) — h(y) — a^(u — h){K). (Recall
that u is regularized.)

THEOREM 1.2. Let u be a locally integrable, lower semi-con-
tinuous function on R such that u(x) < ur(x) for some x e Rr(r > 0).
Then there exists an open set R\ compact set K, harmonic function
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h on R!, such that xeKaR' c B x r and such that for some a > 0
we have u f\h — h — a> u(x) — h(x) on R' — K.

The integrability condition will later be dropped. Thus a lower
semi-continuous function u on R is superharmonic if it satisfies the
lower bound principle on every open subset of R. The converse
follows (although not immediately) from the next theorem.

THEOREM 1.3. Let u be a locally integrable function on R and
let K be a compact subset well contained in R. Suppose u(x) <u — a
on R — K for some xeK and a > 0. Then there exists an arbi-
trarily small r > 0 and z eRr such that u(z) < ur(z).

The characterization of superharmonic functions by the lower
bound principle leads, as in the classical theory, to a third definition
of superharmonic functions: a locally integrable function u on R is
superharmonic iff ur ^ us on Rs whenever 0 < r < s.

We next note that, although a superharmonic function is defined
only a.e. on R, the averages ur(x) are defined and continuous on Rr.
First a real variable lemma which most likely is known although
we fail to locate it in the literature.

LEEMA 1.4. Let φ and ψ be concave functions on the interval

S b

\φ\ exists and similarly
a

for ψ). Then on any proper subinterval [a + h, b — h] we have

max \φ - ψ\ ^ Sh-'iWφW, + UUn\\ψ - till''2.

Using this lemma, we are able to prove the following theorem,
parts (i) and (ii) of which are of course well known.

THEOREM 1.5. Let u and v be superharmonic functions on R
and let y e R8. Then the following hold.

( i ) For every t e (0, s) we have ur\u in LJβByt) as r \ 0; in
particular u\y) is defined.

(ii) u\y) is a concave function of t~d+2 (if the dimension d is
>2) or of - logί (if d = 2).

(iii) Suppose [r + cc, s — a] is a proper subinterval of (r, s)
where 0 < r < s. Then for t e [r + ex, s — a], we have

\u - v\\y{ ^ c d r-" + V- 1 «- 1 (( \u\ + \ \v\ Y'Y( \u - v

where cd is a constant depending only on d.
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Following Helms (1969) we let PI(μ, B) denote the Poisson integral

1

\z - x

where tt is a measure on the boundary dB of a ball B = Byr, and
where σd is the total surface area of the unit sphere Byl. If μ has
a density / relative to the surface area measure, we also write
PI(f, B) for PI(μ, B). The reader is referred to Helms (1969) for
basic facts about PI(μ, B). The previous theorem shows that if u
is superharmonic on R and if Byr c R, then PI(u, B) is defined.
Using Theorem 1.2, it can be shown that if v is defined to be u on
R — B, to be PI(u, B) on B, then v is also superharmonic and u^v.

2. Green functions* With the lower bound principle charac-
terization of superharmonic functions, it is easy to show that for
xeEd, the function ux(y) = \y — x\~d+2 if d ^ 3, ux(y) = —log \y — x\
if d = 2, is superharmonic an Ed. We will sometimes write U(x, y)
for ttβ(2/).

DEFINITION 2.1. A harmonic function & on iϋ is called the
greatest harmonic minorant of a superharmonic function u on R if
h ^ u on R and if for every ε > 0 and compact set KcR there
exist an open set R' and compact set Kf such that K<cR' aK' cR
and such that for every harmonic function v on R' with v ^ u on
/?' we have v ^ h + ε on K.

Note the ε — δ form of our definition. Note also that h is unique.

DIFINITION 2.2. Suppose U(x, •) has a greatest harmonic minorant
H(x, ) on R for every α? 6 R. Then G(#, #) = U(x, y) — H(x, y) is
called the Green function for R. We also write hx for H(x, •)•

By showing first that the families {iί( , y)}yeκ and
are equicontinuous on any compact set K<^R, it is easy to prove
that H is continuous on R if it exists. In particular G: R x R —»
[0, oo] is continuous in the extended sense.

It is well known that for the interior B of a ball Bzr in Ed(d ^ 3),
the function GB(x, y) = U(x, y) - rd~2\x - z\~d+2\y - a;*\~d+2 is the
Green function for B. Here #* is the inverse of x relative to dB.
The condition in 2.1 can be verified by using the fact that for a
fixed xeB we have GB(x, y)—>0 as y approaches dB. Likewise
GB(x9 y) = log I z — x 11 y — x* \/r | # — x | is the Green function for JB
in £"*. Note that GB(x, y) = GB(y, x).

Let R be an open set which has a Green function G. Let μ and
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v be measures on R and let mB denote the uniform measure on a
ball with positive radius, i.e., mB is the Lebesgue measure on B
divided by the volume \B\ of B. We adopt the convention of writing

μf or fμ for \f(x)dμ(x), writing μF for \F(x, )dμ(x), writing Fμ for

S J r J

F(-,y)dμ(y), and μFv for li*7^, #)ώμ (x) v(#, 7/), provided the inte-

grals exist.
Let μ be a measure on iϋ such that for all I? c R, the Green

function G is integrable relative to μ(g)mB. (This is always the case
if μ has compact support.) We will call μG the potential of μ. The
potential of μ is superharmonic on R, and is harmonic away from
the support of μ. The Riesz decomposition theorem says that every
superharmonic function can be decomposed on a ball B into a potential
and a harmonic function. The constructive proof depends on the
following continuity theorem.

THEOREM 2.3. Let R be an open set with Green function G.
Let f be a continuous function on R with compact support well
contained in some integrable open set S of R. Let e > 0 be arbi-
trary. Then there exists δ > 0 such that for any measures μu μ2

whose potentials are defined^ and for any harmonic function on R
with I I μγG — μ2G — h | < <5, we have | μj — μj \ < e.

}s

THEOREM 2.4 (Riesz decomposition). Let u be a superharmonic
function on the open set R. Let B be the interior of some ball Bxr

well contained in R. Then there exists a measure μ on B such
that u = Gμ + PI(u, B) on B, where G is the Green function for
B. Moreover μ is unique.

In case u has continuous second partial derivatives, the above
theorem follows at once from Green's identity

u = - σj'id - 2)"1 ( G( , z)Δu{z)dz + PI(u, B) ,
JBB

(say d ^ 3). In general u can be approximated by such smooth
superharmonic functions un. Theorem 2.3 (rather than the usual
compactness argument) then helps the passage to the limit in un =
Gμn + PI(un, B).

The Riesz decomposition can be used to show that a family of
nonnegative superharmonic functions bounded at the center of a ball
is uniformly integrable on the ball. To be precise, suppose Bxr c R
and ε > 0. Then there exists δ > 0 such that for all Lebesgue
measurable subset A of Bxr with Lebesgue measure m(A) < δ and
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for all nonnegative superharmonic function u on R with u(x) ^ 1

we have I u(y)dy < ε. As a corollary, we see that the a.e. con-
JA

vergence of positive superharmonic functions implies .^-convergence
on balls, and so the limit must also be superharmonic. Theorem 1.2
can now be strengthened by dropping the local integrability require-
ment, for every lower semi-continuous function u is the a.e. limit
of u A n(n—> <*>), the latter being locally integrable.

A subset Z of R is called polar if there exists a superharmonic
function v on R such that v(z) = + °o for every z e Z. (Recall that
v is regularized so that this means limr_0 vr(z) = + ©o for every
z e Z.) Since v is locally integrable, a polar set is of zero Lebesgue
measure. The next theorem, which is well known, says that polar
sets are ignorable in a stronger sense. A constructive proof is
presented here as it differs substantially from the classical com-
pactness proof.

THEOREM 2.5. Let Z be a compact polar set in R. Let u be a
superharmonic function on the open set R — Z. If u is locally
bounded from below, then u is also superharmonic on R.

Proof. Replacing u by u A n if necessary, we may assume that
u is bounded from above. Since u is locally bounded from below,
it is locally integrable on R. Let v be any superharmonic function
on R such that v(z) — + oo for every z e Z. We will show that
v + u is superharmonic. Suppose (v + u)(x0) < (v + u)rΰ(xQ) for some
xoeRro. Applying Theorem 1.2, we can find an open set R\ com-
pact set K, bounded harmonic function hγ on R! such that xoeKc
Rr c BXQr() and such that for some a > 0 we have

(v + u) A hγ — hx — a > (v + u)(x0) — hγ{xQ) ^ (v + u) A hx{xQ) — h^)

a.e. on Rf — K. So by Theorem 1.3, there exists rλ < ro/2 such that
((v + u) A /fci)(#i) < ((v + u) A fti)rι(#i) for some x1 e R'ri. We may even
assume that ((v + u) A K)^ = (vfa) + u{x^) A hfa). (One should
be careful here because all functions are assumed to be regularized.)
Repeating the argument, we have for each k = 1, 2, •

(v(xk) + u{xk)) A K(xk) A - Λ hk{xk) < ((v + u) A K A Λ hk)rk(xt)

where each hk is a bounded harmonic function on R{k) c BXk_irjc_l9

where xk e R[k\ and where rk < rk_J2. Since the right hand side of
the last displayed inequality is bounded by (hj)rk(xk) = hά(xk), (j =
1, •••, k), the left hand side must equal v(xk) + u(xk). In particular
v(xk) + u(xk) < hx(xk). Since both u and hx are bounded on BXQro there
exists M > 0 such that v(xk) ^ M for every k. Now | xk — xk-i I < rk_t
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and Σ rjc < °° Hence xk—>x for some a?. Moreover, the last dis-
played inequality implies (v + u)(xk) < (v + w)rfcfe) which in turn
implies d(xk, Z) ^ rk since v + w is superharmonic on R — Z. Con-
sequently xeZ, and v(x) = + oo. Thus there exists s > 0 so small
that vs(x) > M. But v8(xk) <; ^(%) <; M and so by the continuity of
vs we have vs(x) <* M, a contradiction. Hence ('y + w)(#0) ̂  (v + ̂ )ro(^o)
for all x0 e i2ro, namely v + u is superharmonic on R. Similarly
εv + u is superharmonic for all ε > 0. But εv + u converges to u
(locally Lt) as ε —>0. Therefore u is also superharmonic.

3* Existence of Green functions* In this section let u stand
for a positive superharmonic function on an open set S in Ed. Let
R be a bounded open subset of S. {Bk} will denote a sequence of
open balls in R with the following properties, (i) Each Bk is well
contained in S. (ii) Each Bk appears infinitely often in the sequence
{Bk}. (iii) For every compact set K well contained in R we can find
an integer n so large that K c (JAU ^*

For each ball BcS define Φ(w, 5) to be the superharmonic func-
tion which is equal to PI(u, B) on B, and equal to u off B. Write
u° for u, and write uk for Φ(uk~\ Bk). Thus w*"1 ^ w\ The sequence
uk is said to be obtained by the sweeping process (of Poincare) for
u in R relative to {Bk}. We loosely say that the sweeping process
converges for u if the a.e. limit of uk exists on R. (Classically the
limit always exists, the sequence being positive and decreasing.)
The limit u°° is then harmonic on R since, for fixed k, it is the limit
of the subsequence {u3'} where j runs through the indices for which
Bj = Bk and where u3' is evidently harmonic on Bk. This section
studies the constructive convergence of uk: whether it is possible to
find an integer k so large that uk is arbitrarily close to being har-
monic, in a sense to be made precise. First a lemma about the
continuity of the map Φ.

LEMMA 3.1. Let B, C denote balls well contained in the ball B'.
Let u, w be superharmonic functions on B\ If C—>B (with respect
to the Euclidean metric) and if w—*u (in L^B')), then Φ(w, C) -+
Φ(u, B) (in ACB')).

THEOREM 3.2. // the limit u°° exists for the sweeping process,
then it is the greatest harmonic minorant of u on R in the sense
of Definition 2.1. In particular u°° is independent of {Bk}. Con-
versely, if u has a greatest harmonic minorant h, then uk \h a.e.

Proof. Suppose u°° exists. Let K be a compact set well con-
tained in R. Let p be an integer so large that Kc[JfBk. For
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each k9 let Ck c Bk c jB'fc be concentric balls well contained in S,
such that Kc \Jp

tC
k also. Let n be so large that un — u°° < ε on

U?Cfc, where e is an arbitrary positive number, (n exists because
un converges to u°° uniformly on compact subsets well contained in
R, thanks to Harnack's inequality.) Let w° = u and wk = Φ(wk~\ Ck).
According to the previous lemma, we can make the integral of
\wn — u*\ on U? -S'* arbitrarily small, if we choose Ck close enough
to Bk(k = 1, , n). It follows from Theorem 1.5 that we can make
\PI(un, Ck) - PI(wn, Ck)\<ε on \J\Ck. Now let v be any harmonic

function on (J? Ck dominated by u. Then v ^ Φ(w, C1) and inductively
v ^ wn. Hence for every k = 1, , p (again using the lemma) we
have v S PI(wn, Ck) < PI(μ*, Ck) + ε ^ un + ε £ u°° + 2ε on Ck. The
condition in Definition 2.1 is thus satisfied with Rf = (J? ^fc> provided
ε is so small that KcR'ε.

Conversely, assume that h is a greatest harmonic minorant of
u on iϋ. Let if be a compact set well contained in R and let ε > 0
be arbitrary. Let Kf and R' satisfy the condition in Definition 2.1.
Let p be so large that K' c\Jf Bk. Let wk be obtained from the
sweeping process for u in the region \J\Bk relative to {Bkmodp}.
We will later show that wk converges on U i ^ f c The limit w°° is
harmonic and dominated by u on Rf a\J\Bk. Hecce, by the defini-
tion of R', we have w°° ^ h + ε on K. Choosing k large enough,
we have wk £ h + 2ε on K. But the sequence {Bk mod p} is a sub-
sequence of {Bk}. Hence wk ^ un if n is chosen large enough. Com-
bining, we see that un ^ h + 2ε on if. As un ^ h also, {^} con-
verges uniformly on compact subsets of R to h, as asserted.

For the remainder of this section assume that S is an open ball
well containing R, and denote its Green function by Gs* From the
above theorem we see that R has a Green function if the sweeping
process converges for all ux(xeR), the choice of Bk and S being
immaterial. Our next task is to show that the sweeping process
does converge for a large family of open regions R. First we in-
troduce two assumptions on R which are classically trivial, but
which spell out necessary numerical data about R in our computa-
tions. Assumptions: (i) R is bilocated, i.e., we are able to compute
the distance from any point in Ed to R and to — R, (ii) R is strongly
Lebesgue measurable, i.e., given any ε < 0 we can find a compact
set KcR such that any Lebesgue measurable set contained in R — K
has measure at most ε. With these two assumptions, it is easy to
see that if uk converges a.e. on R then it also converges a.e. on
Ed. Thus v£ may be regarded as a superharmonic function on Ed.
By Theorem 2.4, we can write uZ — μxGs + h on S, where μx is a
unique measure independent of S, and h is harmonic on S. The
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measure μx is supported by dR since ux is harmonic on R as well
as off R. Averaging over x in a ball Byr c R and using the uniqueness

of the decomposition, we have \Byr\~λ I μxdx — μy. So μx is called

the harmonic measure relative to R and x, (see e.g., Helms 1969).
In particular, for every continuous function / on dR, we see that
μj is harmonic in x on R. Thus, if we can construct the Green
function for R, or equivalently show that u™ exists for all x e R,
then μj is the generalized Dirichlet solution for the boundary
function / .

In the following we consider the sweeping process as an opera-
tion on measures on Ed with compact support. More precisely, let
μ be such a measure relative to which the open ball B is measurable.
Define Ψ{μ, B) to be the measure whose value at a continuous func-
tion / on Ed is

= \ fdμ+(rσd)-Λ \ f(z)(r*-\x-y\2)\z-x\-ddσ(z)dμ(x)
J-B JxeB JzedB

where we have let Byr be B, and σ the surface area measure on
dB. We will write μn or Ψ(μ, B\ , Bn) for Ψ(Ψ{ -(μf J51)-. •), Bn).
The next lemma states some well known properties of Ψ.

LEMMA 3.3. (1) Ψ is linear in μ, and \Ψ(μ, B)\ = \μ\.
(2) Ψ(μ, B) is supported by -B, and by dB if μ(-B) = 0.
(3) If μ is supported by Bs, then for every measurable subset

C of dB

(2rydσ^sσ(C)\μ\ ^ Ψ{μ, B){C) ^ (2r)σ^s-dσ(C)\μ\ .

(4) Φ(μU, B) = Ψ(μ, B)U.

LEMMA 3.4. Let e and a be positive real numbers. Then there
exists r = r(ε, a) > 0 such that for every measure μ on Ed supported
by the r-neighborhood Cr of some (d — 2ydimensional sphere C (i.e.,
C is the intersection of two spheres in Ed) having radius a, with
μll^ 1 on Ed, we have \μ\<Z ε.

The proof of this lemma is typical in classical potential theory,
and is sketched as follows. Let v be the measure on C with density
1. Elementary calculation then shows that vU^ cd\og(a/r) on dCr,
where cd is a constant. Thus the harmonic functions h = μU and
g = {cd log {alr))~λv U on Ed — Cr obeys h <Ξ g. In particular h(x) ^
g(x) where x is the center of C. But g(x) = (cd log (a/r))"%^19 where
vd_γ is the total surface area of the unit sphere in Ed~x. Similarly
h(x) ̂  (a + r)~d+2\μ\. Combining, we see that \μ\ ^ cϊ1vd_1α

d+2/log(α/r)^



CONSTRUCTIVE FOUNDATIONS OF POTENTIAL THEORY 415

ε, if we let r = a exp ( — c^v^a^jε).

LEMMA 3.5. Let D, a, e be positive real numbers and let n be
a positive integer. Then there exists a positive number an = an(D, a, e)
with the following properties. Suppose R is the union of open
balls B\ , Bn whose diameters are at most D and whose centers
are at least a units apart, and suppose σ(dBk — B1 — — Bh~ι) ^
σ(dBj - B1 - - Bj - - Bh), (1 ̂  j ^ k ̂  n and Λ signifies
omission). Suppose μ is a measure supported by R Π (dBι\J \JdBn)
with total mass \μ\ > ε and with μll^l. Then

Ψ{μ, βn)(3R) ^ an

where βx — {B1} and βn is the finite sequence of balls obtained from
i8n_! by adjoining B\ , Bn-1 in the front and adjoining Bn at
the end. (For example β4 = {JS1, B\ B\ B\ B\ B\ B\ B\ B\ B%)

Proof. The lemma is trivially true for n = 1. Let D, a, ε and
n > 1 be given, and assume that an_γ has been constructed for
D, a, εβ. Let r = r(D, a, έ) > 0 be so small that for every measure
v supported by the set \Jϊzϊ (B* - Bΐ) (\ dB* (where B\ *>Bn are
arbitrary balls as in the hypothesis) with y£7<;i, we have \v\ ̂
(ε Λ α»_i)/6. The number r exists because of the previous lemma
and because the balls have diameters at most D and centers at least
a apart. We will show that

α = (ε/3) Λ D^σ^φ^σjnχε Λ a^/6

has the desired properties. Thus let J51, « ,1?% and μ be as given
in the hypothesis. Write R' f or B1 U U Bn~\ The

Ψ(μ, B\ , 5-1) - Ψ(μ\R', B\ , B-1) + μ\dR' ΓΊ Bn

= {Ψ(μ\R',B\ . . . , ^

+ {Ψ(μ\R\ B\ , B - 1 ) ! ^ ' Π β%) + μ\dR' Π 5%}

= î + 2̂ + ^3, say .

Since | vx \ + | v2 \ + | vs \ = | /̂  | > e, at least one of the following alterna-
tives holds.

( i ) I v21 > ε/3. Then, since v2 is supported by dRf — Bn a dR,
we have

Ψ(μ, βn)(dR) ^ Ψ{v» β»-» B"){dR) = V2(3i2) = |i; f | > e/8 ^ α. .

(ii) |v3| > ε/3. Note that v3 is supported by dRf. Hence
(Vz> β»-i) = v* On the other hand, since vsU^μU^l and so
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vB(dR' n (Bn - Bΐ)) g ε/6 by the choice of r, we have v3{Bn

r) > ε/6.
Therefore

Ψ(μ, βn)(dR) ^ Ψ{Vs, βn_» B*)(dR)

= Ψ(vif B*)(dR)

^ Ψ(v31 Bn

r, Bn)(dBn - B1 - - Bn~ι)

(iii) ] vx I > 6/3. Then, since vγ U ^ 1 and since vt is supported by
#'Π (dB1 U U 55*-1), the induction hypothesis implies Ψ{vuβn_λ){dRf)>
an_λ. Hence if we write v4, v5 for W(vt1 βn_x)\(dRf - Bn) and
F ^ , J5w_i) 13i2' n 5 % respectively, then either | v4 \ > α^.i/S or | v5 \ >
an_xβ. Thus the arguments in (i) or (ii) can be repeated with v4 or
v5 respectively, ε being replaced by an_19 in either case yielding again
¥(μ, βn)(dR) ^ an.

THEOREM 3.6. Let R be the union of the open balls B\ •••, Bn

with distinct centers. Then the sweeping process for ux (x e R)
relative to {Bkmodn} converges.

Proof (given for d ^ 3 only). Since Φ(u, B) ^ u in general, it
suffices to prove that the sweeping process converges for some
subsequence of Bk = Bk m o d n. We may assume that xeB1 so that
3XU = ux <£ M for some M > 0 on — B1. (Here δx is the unit mass
at x.) In particular δlU = u1 ^ M on J^d. Let ε > 0 be arbitrary.
Let μ = ?F(δβ, J81, , .B%). Then clearly μ is supported by dBι{J U
di?\ Let 8̂Λ and αΛ be constructed for the balls B\ •••, Bn and for
ε as in the previous lemma. Let 7k stand for the sequence βn

repeated k times. Let N be an integer greater than a~ι. Suppose
Ψ(μ, ΎN)(R) > ε. Then Ψ(μ, Ύk)(R) > ε for all k ^ N. Hence

Ψ(μ, ΎN)(dR) ^ Ψ{μ, ΊN_x){dR) + Ψ(Ψ(μ, ΊN^)\R, βn)(3R)

a contradiction. Hence Ψ(μ, ΎN)(R) ^ ε. Therefore Ψ(μ, 7k)(R) I 0,
and Ψ(μ, Ίk) converges (w*) to some measure supported by dR. As
a consequence, Φ(ux, B\ , Bn, Ύk) = Ψ(μ, Ίk) U converges (locally LL)
to some ul°.

In the proof of the next theorem we need a simple consequence
of Theorem 3.1: if the sweeping process for a superharmonic func-
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tion u converges on the open subsets R and R\ to u°° and u°°r re-
spectively, then u°° ^ u°°' provided R c Rr.

THEOREM 3.7. Let f be continuous function on Ed such that
f(x) —• + oo as I x I —> oo. Then except for a countable set of real
numbers a, the open set R(a) = {x e Ed: f(x) < a} has a Green function.

Proof (given for d ^ 3 only). Let x be an arbitrary point in
Ed. We will first show that the sweeping process for ux converges
for all but countably many a. It suffices to consider those α's in
[0, 1]. Let S be a ball containing i?(l), and let p be any positive
integer. Construct a step function gp on [0, 1] in the following
manner. For each k = 1, 2, , 2P let Rk be a union of finitely open
balls such that R((k - l)2~p) c Rk c R(k2~p). This is possible since /
is continuous. By the previous theorem, the sweeping process for
ux converges on Rk, say to the limit uι

x

k). Define gp to be the step

function whose value on ((k — l)2~p, k2~p] is 1 u{k\ In view of the
JS

remark before this theorem, gp is a decreasing function on [0, 1].
Moreover, if n > p, then the values of gn on ((fc — 1)2""*, k2~p] lie in
the interval [gp((k — l)2~p, gp(k + 1)2"*)]. Consequently gp converges
a.e. (Lebesgue) to a function g. The function g, being decreasing,
is continuous except at countably many points. Suppose a is a point
at which g is continuous. Let ε > 0 be arbitrary. Then there exist
a', a" such that (i) ar < a < a", (ii) g(a') — g(a") < ε, and (iii) gp~>g
at af and a". Pick p so large that gp{ar) — gP{a") < 3ε, and that
a' < (k - 1)2-* < &2-*> < α < (j - 1)2-* < ^2"* < a" for some fc, j =
1, , 2P. Then we have gp{ar) ^ ^(fc2-p) ^ ^0*2-*) ^ flrp(α"), whence
gp{k2~p) - gp(j2~p) < 3ε. Equivalently ( ux

k) - ( ^ Ί < 3ε. Now let
JS JS

{B*} be a sequence of open balls associated to R(a) as in the beginning
of this section. By the definition of ux

k\ there exists a sequence of
balls C\ - , Cq such that \φ(uβ, C\ , Cq) - [ux

k) < ε and C1 U
• U Cq c i2fe c R{k2~p) c i?(α). Let i be so large that

\ Φ{ux, B\ •• ,Bi)<:\ Φ(ux, C\

Combining, we see that for any given ε, there exist i, j as above

with ( Φ(ux, B\ . , 5 0 ^ flrpθ'2"*) + 4ε ^ ( Φ(^, J81, . . , B*) + 4e. It
J5 r Js

follows that 1 Φ(^x, JS1, , Bι) converges as i —> oo. The Monotone
Js

convergence theorem then implies that Φ{ux, B
1, , B%) converges

a.e. as w c o . In other words the sweeping process for ux on R(a)
converges. Now let {xin)} be a dense sequence in Ed. We already
know that except a countable set of α's, the sweeping process con-
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verges for every ux{n) on R(ά). Now let α be a fixed number not
in the exceptional set. Suppose x e R(a). By passing to a subsequence
we may assume x(n)—>x. Let {Bk} be a sequence of open balls
associated to R(a). There is no loss of generality in assuming that
x 6 B1. Let ε > 0 be arbitrary. Then for some n large enough we
have Φ(uχ{n), Bι) + ε ^ Φ(ux, B

ι) ^ Φ(uχ{n), B1) — ε, according to Lemma
3.1. Hence

Φ ( u χ { % ) , B \ . . . , B k ) + ε^ Φ ( u x , B \ . . . , B k ) ̂  Φ ( u x { n ) , B \ . . , B k ) - ε .

Since \ Φ(ux{n), B\ , Bk) converges, we see that I Φ{ux9 B\ , Bk)~

S JS JS

Φ(ux, B\ , Bk+P) ^ 2ε if k is large enough. By the monotone
s

convergence theorem we see that the sweeping process for nx on
R(a) converges. Theorem 3.2 therefore implies that R(a) has a Green
function.

COROLLARY 3.8. // an open set R is such that R = {x e Ed:
x — χQ + rf(z)z for some r e [0,1) and z e dB01} where xQ is a fixed
point in R and where f is a continuous function on the unit sphere
dBOί, then R has a Green function. In particular a bounded convex
open set has a Green function.

Proof. We may assume that x0 — 0. Define a continuous func-
tion F on Ed by F(x) = r if x = rf(z)z. Then clearly R = R(ΐ) =
{x: F(x) < 1}. By the previous theorem, there exists a > 0 such that
R(a) has a Green function. The observation that R(ί) = a~ιR{a)
together with a scaling argument yields the assertion.
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