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BANACH SPACES WHICH SATISFY LINEAR
IDENTITIES

BRUCE REZNICK

In 1935, Jordan and von Neumann proved that any Banach

space which satisfies the parallelogram law
le + yl* + llo — yl* = 2(l«]* + [»*
for all elements x and y

(1)

must be a Hilbert space.

Subsequent authors have found norm conditions weaker
than (1) which require a Banach space to be a Hilbert space.
Notable examples include the results of Day, Lorch, Sene-
challe and Carlsson.

In this paper, we study nontrivial linear identities such as

(2) ki aille(0)x, + -+ + ex(n)x,]|? = 0 for all elements z;

on a Banach space X.

A necessary condition for (2) to hold in X is that ||z + ty|?
must be a polynomial in ¢ for all choices of elements x and y. A
sufficient condition for (2) to hold in X is that (2) must hold in the
field of scalars. Specific identities are presented including a generalized
parallelopiped law first observed by Koehler, and some isometric
results are stated.

2. The parallelogram law revisited. In 1909 [4], Fréchet
proved the following result.

LEMMA 1 (Fréchet). If g is continuwous function on R and,
for all real r and s, equation (3) holds, then g is & polynomial with
degree less than N.

N N
(3) I;.)(—D”"’(}g)_q(r—'rks):o.

Proof. It is well-known that any sequence {a,} satisfying
(=17 * <]]¥ )ak+M = 0 for all M is generated by a polynomial; that
is, there is a polynomial P with degree less than N for which a, =
P(n).

In (8), put g(n) =a, s =1 and let r range over the integers.
Then there is a polynomial P with P(n) = @, = g(n). Now put
9(n/2) = b,, s = 1/2 and let » range over the half-integers. There is
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a polynomial @ with Q(n) = b, = g(n/2). Thus Q(2n) = P(n) for all
n and Q(x) = P(x/2), so g(n/2) = P(n/2). A repetition of this argument
demonstrates that P(n2 ") = g(n2™™) for all integers m and n. By
the continuity of g, P(x) = g(z) for all x and the lemma is proved.

The parallelogram law has a second difference nature:
lle + yII* — 2||=] + |le — y|* = 2]|y|[, (see Johnson [6]). Putting
successively # = u + 2v, y = v and x = w + v, ¥y = v and subtracting,
we get (4). Fix w and z, elements of any space in which (1) holds.

3 3
(4) ,g%(—l)k(k)nuwvnuo.

Let u = w + 72, v = sz and substitute in (4). Setting ||w + tz|} =
g(t), we obtain (5). By the triangle inequality, |g¢“*(t,) — ¢"*(t)| =
|t, — t,|+ || 2|, hence g is continuous.

3 3
(5) k%(—l)"(k)g(r—kks)zo.

Applying Lemma 1 to (5) we see that g(¢) is quadratic in ¢. Indeed,
if ||w + tz|]* = A(w, 2) + 2B(w, 2)t + C(w, 2)t*, then clearly A(w, z) =
lwl|? and C(w, z) = ||2z|*. It is not hard to verify that B(w, z)
satisfies the definition of a real inner-product and B(w, z) + tB(w, iz)
that of a complex inner-product. This provides an alternative proof
to the Jordan-von Neumann theorem.

We shall return to the parallelogram law in §6 as an em-
barkation point for a series of linear identities which hold in more
spaces than Hilbert space. As an appetizer, consider (6), a generaliza-
tion of (1) to a three-dimensional parallelopiped.

le+y+z2[F+llet+y—z"+le—y+z|f+]z—-y—2]
=2z +y|l* + lle —ylI* + llz + 2|[F + ||z — 2]
+lly + 2+ [ly — 2|*)
+4(|=]* + llyll* + [l2z]») = 0.

Observe that (6) holds for 4 = 2 in Hilbert space and for ¥ =4 in
Hilbert space and in L,(z, ) for any (z, #£). Indeed, it may be verified
that (6) holds in any Banach space in which ||7x + sy + tz||* is a
homogeneous polynomial in 7, s, and ¢ for fixed elements z, ¥, and z.
This condition turns out to be necessary as well, and the situation
will prove to be typical.

(6)

3. Spaces which satisfy linear identities. The main result of
this section will be Theorem 4, which follows from Theorem 2 by
an intervening lemma.
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THEOREM 2. Suppose X is a Banach space in which (7) holds for
all elements x and y, where a, #0,p > 0,b, =0 and the b’s are
distinct.

(7) Siaulla + byl = 0.

Then for every x and y wn X, ||z + ty||® s o polynomial in t. In
particular, p is an even integer.

Proof. Set A(u, v) = a,||ul||” + S ||w+b,v||°. By the hypotheses,
A(u, v) = 0 for all elements % and » and b, = 0 for £ = 1. Fix ele-
ments x and ¥; let 2z be arbitrary. Then 0= A(x + z, y — b'2) —
A(z, y). Writing this out, we obtain (8). Notice that the term for
k=1 in the sum in (8) vanishes.

0=aflle + 2lI” — l|=I)
(8) + ez + by + L= bb2ll — [lz + byll) .

We repeat this procedure (due to Wilson [14]) and obtain (9), where
the inner sum is taken over all choices of 1 < ¢, < +v¢ < %; < m.

(9) 0= §<_1)f(2A(x + gz, y — (i} + -+ + biD2)

Equation (9) may be expanded using the definition of A(u, ») as (10),
where the inner sum is as before.

m (m .
0= £,-2("7 ile + salp
aw T,
+ ]‘z,lak%(_l)j(Z‘Hl? + by + (G — Db + -+ - 4 b)z]]?)

For any fixed %, the 2™ subsets of {1, ---, m} divide into two corre-
sponding classes: if k¢ I = {7,, ---, 1;}, then I and TU {k} are associated.
Using this pairing, the terms

(=LY [z + by + (5 — bu(bi," + -+ + b:))z|?

and (—1)*|le + by + (5 + 1 — by(bi' + -« -+ + b3 + br"))z||” cancel out
in the triple sum. Hence, (10) reduces to (11).

m

(11) 0= ji:o(—l)f(j)nx + gzl

As in §2, we choose % and v arbitrary nonzero elements in X, let
r and s be arbitrary reals and set x = u + 7rv, y = sv and g¢g(t) =
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[l +tv||? in (11). We obtain (12), and by Lemma 1, g(¢) = ||u + tv||*
must be a polynomial.

(12) 0= ,2:, (—1)"(7;/>g('r + js).

As t7?g(t) —||v]|* #+ 0, ¢ has degree » and as g(t) =0, p is an even
integer.

LEMMA 3. Suppose X is a Banach space in which (13) holds
for all elements x and y, where a, * 0, p > 0 and the (b, c,)’s are
pairwise linearly independent.

(13) 3 adlibis + cylle = 0.

Then ||z + tyl|® is @ polynomial in & for all elements x and y.
Proof. We shall reduce (18) to (7). Permute the k’s so that

[by| £ +++ =< |b,]| and let d, = bi'¢c,. If b, % 0 then b, # 0; if b, =0

then ¢, #0 and b, % 0 for =1 and the d,’s are distinct by the

linear independence. In the first case, rewrite (13) as (14) and then
put into it # = u — dw, ¥y = v where u and v are arbitrary.

(14) S albllle + eyl = 0.
We obtain (15) which is in the form of (7).
(15) Sy albul? |u + (ds — dw|P = 0 .
In the second case, let s be a number for which b, + sc¢, # 0 and
put * = u, ¥y = su + v into (13) where w and v are again arbitrary.

(If (b;, ¢;) and (b, ¢;) are independent then so are (b; + sc; ¢;) and
(b, + sci, ¢,).) We obtain (16) which now falls under the first case.

(16) S a1, + se)u + e]P = 0.
Carlsson [1] proved Lemma 3 for »p = 2 and a,, b,, ¢, real.

THEOREM 4. Suppose X i1s @ Banach space in which (17) holds
for all elements x,, where a, + 0, p > 0, the (¢,(0), «--, c,(n))’s are
pairwise linearly independent (n + 1)-tuples, and for every i there

18 at least one kb with c¢,(¢) # 0.

an S a0, + <o+ + euma, |7 = 0.
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Then, for all x and y, ||z + ty||* is a polynomial in t.

Proof. Permute the k’s so that [¢,(0)| = |e(0)| = -+ = |e.(0)],
then ¢(0) #0. If ¢, (0)=0for k=1, put , = .--- =g, = 0 in (17),
then @,||¢(0)x,||” = 0 for all xz, that is, X is trivial. Otherwise,
suppose ¢,(0) = 0 for ¥ < j, 7 =1 and (17) may be rewritten as (18),
where d,(1) = ¢,(3)e,(0)7.

S a1 u0) 7|2 + du(L)as + «++ + du(m)a, ||?
(18) k=0
+k:12_+1akllck(1)x1 +oeee Fo(n)x,]?P=0.

From the linear independence, it follows that the n-tuples {(d.(1),
-+, dy(n))} are distinct. Define the sets

A= {8 -+ 8) €€ 2 5,die) = 3 5,du(@)]} -
These sets do not exhaust €, and so we can find », for which the
b, defined by b, = >\», r,d,(q), are distinct.

For arbitrary x and y, let o, = 2, x, = 7,y in (18). We obtain
(19) which is in the form of (13).

19 SalaOPle+ byl + (5 Slerp)iylr=o0.
This completes the proof.
To obtain the natural corollary we need a lemma.

LEMMA 5. Suppose f s a nonnegative fumction and q and r
are positive integers such that f* and f are polynomials. Then f°
18 a polynomial, where s = (q, r), the greatest common divisor.

Proof. We have fU(x) = A*IIL, (2 — x)%, ©, # x;, A = 0. Thus,
fr(x) = A" T1k., (¢ — x,)%™?, and so q|rn,. Write ¢ = sq, » = s7, (7, 7) =
1. As sq|sFn;, @\ and so f° = A° [k, (¢ — 2,)*/7 is a polynomial.

COROLLARY 6. Suppose X is a Banach space which satisfies (20)
for all elements x;, where p,>0 and the same restrictions on constants
apply as in Theorem 4.

(20) ;:Loa,,lick(O)xo + oo +oey(n)x,|Pr=0.

Then p, is an even integer for each k and ||x + ty||* is @ polynomial
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wm t for all x and y, where p = (o, -+, D), the greatest common
divisor.

Proof. Fix ¥, +--, y, and let b, = a,[[c,(0)y, + -+ + cu(n)y. |
Let xz, = My, for N > 0, then by (20), >, b1 = 0. Upon collecting
equal p,’s as ¢;’s we find that 3_; (3,,-q; 0:)A9 = 0. Hence 3,0, =
0. Thus X satisfies an equation of form (17) for each p, and ||z + ty||**
is a polynomial in . We now apply Lemma 5 to this situation and
conclude that f? is a polynomial.

4, The Class &,. The necessary condition of Theorem 4 sug-
gests the following definition: a Banach space X is polynomial of
degree 2n if, for all elements x and y, ||« + ty|[** is a polynomial of
degree 2n in real t. The class &5, consists of all Banach spaces
which are polynomial of degree 2n.

THEOREM 7. (i) If X is in G5, then X is a Hilbert space.

(ii) If m divides n, then &5, is contained in .

(ii) If r = (m, n), then Fow N\ Fon = G-

(iv) If k is an integer dividing n, then for all measure spaces
(X, ), Lu(X, 1) is in .

(v) If p is not an even integer and (X, p) is not trivial, then
L,(X, 1) 18 mot in F, for any n.

Proof. (1) This is the Jordan-von Neumann theorem; see also

§2.

(ii) If ||= + ty|™ is a polynomial and 2n/2m is an integer, then
||z + ty|™ is a polynomial.

(iii) Combine (ii) and Lemma 5.

(iv) It suffices to show that L,(X, p¢) is in &3,. Pick elements
f and g in L,,(X, p); then

1f + talpr = \1f + talap = \( £ 1 + Fg + Fo) + trdu
= |2ets, e,

where ¢,(f, g) is a sum of terms of the form f°f’¢°g* with ¢+ d =1,
@+b=2n—i. As le}“dp < oo and Slg]“d# < o, each ¢(f, g) is
integrable by Holder’s inequality. Thus ||f + tg|** =2 Sci( 5, g)dp-tt

and L,(X, p) is in &,.

(v) If (X, p) has two disjoint sets of positive measure, then
one may easily construct elements z and y in L, (X, z) with ||z + ty||* =
1+ ]t]’. If p is not an even integer then (1 + |t|?)**/® is not a
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polynomial as it is not in C*1*!, (See also Sundaresan [13].) The
embedding properties of &, will be described in a subsequent paper
[11]. We state without proof the following theorem.

THEOREM 8. (i) If X 1s a real two-dimensional space in G,
then it is isometrically isomorphic to a subspace of L0, 1].

(ii) There exists a three-dimensitonal space in P, which 1is
not isometrically isomorphic to any subspace of L,(X, p) for any
(X, ).

(iii) There exist two-dimensional spaces in F,(n = 3) which
are not isometrically isomorphic to any subspace of L,,(X, p) for
any (X, p).

5. The sufficient condition. In this section, we prove that the
classes &2, form the finest possible gradation of Banach spaces ac-
cording to the linear identities they satisfy: if an identity of type
(16) holds with » = 2n for one space in &, then it holds for all
spaces in &,. We begin with a few preliminaries.

LEMMA 9. Suppose a function g(u, ---,u,) 18 & polynomial in
each of its wvariables separately, that s, (21) holds for each 7,
1= r<n, where the g,.s are continuous and a carat over «
variable signifies its omission.

A

(21) g(u/“ °T %y un) = /Z; gk,fr(ulr ey Upy o0y un)ul;: .
Then g s in fact o polynomial in the variables together.

Proof. The proof will be by induction on #. The theorem is
certainly true for n = 1. Suppose it is true if » = m. For n=
m + 1 we have by hypothesis a representation of g(u, ---, u,,,) in
the form (22). Let M = maxs, + 1.

m—1
(22) Iy, v o0y Upyy) = kg} Trvmir(Uyy = ooy U Wrnir -

Define the Mth difference 4*h(r, v)(u,, --+, u,) by (23).

(23)  A"h(r, V)(Uyy -0y U,) = é(_l)M—i<J’;{>h(uu e U T, e, )

Since 4% is certainly linear, we can compute for 1 <¢t<m +1
A g(t, v)(Uy, -+, Uny,) Obtaining (24).

M
(24) A, v) Uy =y Upsy) = % A G mir(ty V) Uy ooy U Uy -
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Since a representation of form (21) holds for ¢ and the Mth difference
annihilates all polynomials with degree less than M, 4¥g(t, v)(#, -+,
Upe)=0. Thus, 4%g; n..(t, v)(%y -, %,,)=0 for each t. By Lemma 5,
Gimii(Uyy ***y U,,) iS @ polynomial in each u, separately. The induction
hypothesis for # = m ensures that g, ,..(%, *<*, %,) is a polynomial
inu, --, %, together. By (22), g(u,, **+, Un4,)is therefore a polynomial
in Y, -+, n.. This establishes the induction step and completes
the proof.

LEMMA 10. A space X is in &, of and only if, for all m and
elements x;, ||, + ++ ¢ + t.2,|* 45 @ polynomial in t, -, t,.

Proof. It is easy to see that ||tu, + --- + t.2,/" must be a
homogeneous polynomial if it is a polynomial at all, and that this
condition is equivalent to ||z, + t%, + -+« + ¢,%, | being a polynomial
int, - -, tn

If ||+ ¢, + «+- + ¢,.2.]™ IS a polynomial, set z, = x, x, =
Y, €, = +++ = %, = 0, arbitrary x and y. We find that X is in ZA,.
To prove the converse, define f(t,, -« -, t,) = ||@, + E2£, + -+ + Entn |
Fix all variables save ¢,, then f(¢, ---, t,) is a polynomial in ¢, with
coefficients depending on ¢, ++-, £,, +++, t,. For any polynomial p(t) =
3, a,tt of degree 2n we have the formulae a, = 3%, ¢;,.0(5), where
¢;., can be found by solving the linear system: Ya,j* = p(j), 0 j <
2n. Now f(t, ---, t,) can be put into form (25) for each » and by

the above, we can write a,,(f, ««+, &, oc o, tn) = SSP0Cinf by <o+,
jy "ty tm)'

20 “
(25) f(tu M) tm) = k=20 ak,r(tu *t tn ct tm)tf .

Hence @ ,(t;,*+, tyy o+, t,) is a sum of terms ||x, + t,x, + «-+ + jz,+
t.¥.|[" each of which is continuous in %, «--, £, «--,t.. We can
now apply Lemma 9 and conclude that f(¢, ---, ¢,) is a polynomial
in by =o 0y b jOintIY- As lf(tv tt tm)] = (on” + ]tll ”x1” e 4
[t.] |21 f bhas degree at most 2n.

THEOREM 11. If an identity of the form (17) (with restrictions
on constants as in Theorem 4) holds for one space in %, them it
holds for all spaces in &,. In particular, an identity holds in
P, if and only if it holds in Hilbert space.

Proof. An ordered p-tuple (4, ---, i,_,) of nonnegative integers
is a p-partition of d if 4, + «++ + 4,_, = d. For each p and d there
are a finite number of such partitions. Suppose (17) holds for X in
Z,.. The ith (m + 1)-partition of ¢, (z(t, ¢, 0), - - -, w(t, %, m)) will be



BANACH SPACES WHICH SATISFY LINEAR IDENTITIES 229

called =(t, ) for short. We write n(n, ) = 7(¢). In (17), we restrict
#; to a one-dimensional subspace of X generated by =, ||z]| = 1.2, =
2%, ||z;]| = |2;|, complex z;, We obtain (26), which can be rewritten

as (27) using |z* = (Jz])".

(26) Igak[ck(O)zo Foeee + c(m)z, " = 0 .
@0 3 a3 3, e)0)es)" = 0.

Index the (m + 1l)-partitions of # from 1 to s, then (27) can be
written as (28); where ci» denotes ¢,(0)*2® «.. ¢,(m)"»'™, z*» denotes
2500 oo 2™ T and z%» are defined analogously, where the double
sum ranges independently over all pairs of (m + 1)-partitions of
n and where d,, is the positive multinomial coefficient depending on
7, and 7,.

8

(28) S a4, 3 . ciEEE = 0
k=0 =0 ¢=0
We now rewrite (28) as (29).
(29) > > dm(i akckak)zz =0.
p=0 ¢=0 k=0

A polynomial in 2, 2, * -+, 2., 2, Which vanishes identically must have
vanishing coefficients. As d,, > 0 we deduce (30) for all partitions
7, and 7,.

(30) % @i = 0 .

Now let Y be a space in &, and fix elements z, -+, %, in Y.
Write f(zy =+ ) Zm) = |20 + +* + 2a2,|* for complex 2, = v, + Tw,,
(Vs wireal). Then [f(2, -+, 2m) = [|0& + =+ * + Vullm + Wo(4%) + ++ - +
Wa(12,) | is a polynomial of degree 2n in vy, « <, Vp, Wy *++, W, DY
Lemma 10, From 2v, = 2z, + %, 2iw, = 2, — %, it follows that
Sf(zy +++, 2,) is a polynomial in z, and %, of degree 2n. Rewrite
f(zyy +++, 2,) in form (81), where the sum is taken over all (m + 1)-
partitions of ¢ and 2n — ¢, indexed by j and %k respectively, where
the b, ;,’s are the coefficients and the condensed z**? is as before.

2n o
(31) SRy ooy 2a) = 2 D0 3L byt RN

t=0 n(t,j) n(2n—t,k)
Because f(2o, ** ) Zn) = S(€¥%, -+, €2,), (81) does not depend on 4.
Viewing (382) as a polynomial in ¢ having as coefficients polynomials
in z and %, it follows that b, ;, = 0 unless ¢t = n.
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(32) i e® i 51 N P, ZrhdgEensth
t=0 z(t,9) m(@n—t,5) 3

We can thus rewrite (31) as (83), and insert this into (17).

(33) F(Boy = vy 2) = 33 b, 275 .

$=0 §=0

We obtain (34).

B FaullaOu + - + clmwa|

r

LI s s r
=2 ak(Z Y bp,inPE;Iq) =3 3b,,> aciEin = 0.
k=0 Pp=0 ¢=0 ' =0

=0 q=0

This last equality is a consequence of (30).

6. The parallelopiped law. Frechét [5] proved that any Banach
space which satisfies (35) for all elements z, ¥, and z is a Hilbert space.

e +y +zIF—llz+ylf—llz+ 2] —lly + 2|

®5) FllwlE e+ zlE=0.

Jordan and von Neumann reduced (35) to (1) by putting 2 = —y and
proving that the new condition is as strong as the old. The same
sort of reduction applied to Theorem 12 will lead to a generalized
parallelopiped law.

THEOREM 12. If X is in &, and m > 2n, then for all elements
Xy, o0y Ly equation (36) holds, where the immer sum is takem over
all k-tuples 1 <14, < »++ < 4, £ m.

(36) S (-1F S llwg + -+ wg =0,

Proof. In light of Theorem 11 it is sufficient to prove the
theorem for elements in Hilbert space, indeed, we need only prove
that (36) holds for all complex numbers z;. The sum on the left-hand
side is, in any case, a polynomial in the z;,’s and Z,’s.

(37) é<—1)k2[zil 4 oeee ziklzn -0.

A monomial 27! - 2}-Z - - Zis With 2o, = 3¢, = n, r, + ¢, > 0 will
oceur in |2z, + --- + 2, | either with multinomial coefficient

(DVIGADEREN AP (ADEEEN(RY

or not at all depending on whether the j,’s are contained in the ¢,’s
or not. Because r, + ¢, > 0, s < 2n < m, hence each monomial occurs
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in (87). Indeed, for k = s, the j,’s are contained in precisely (/'Z B :)
k-tuples and so, altogether, a monomial 27 --- 272z} - - - Zjs will occur
in (37) with total coefficient (38). As Z;-’;,"(—l)"(m; s) =0, the
sum in (88) vanishes and so so (87) is proved.

- S> (n!)y

— g/ e E e 8] °

m m

1)k
(38) (-1 (k
The identity holds in Hilbert space and hence in all &,.

THEOREM 13 (The parallelopiped law). If X is in A, and r>n,
then for all elements x,, - -+, x,, the identity (39) holds in X, where
the inmer sum 18 taken over all choices of sign &, = 1 and all
ordered k-tuples with 1 <1, < -++ < 7, £ 7.

(39) ki_‘, (=127 " |le@, + +++ + &2, [ = 0.
Proof. In Theorem 12, let m = 27, %,,_, = «; and x,, = —ux; for

1=k <r. Each term ex; + --- + &, will appear in (87) 2" times
depending on the joint inclusion or exclusion of the pairs x,;_, + @,;
for j #4,. If the primes are dropped, (86) becomes (39) and the
result follows.

Another identity which is satisfied in &, is the following.

THEOREM 14. If X is in F, and 4k > 2n, then for all real
a; with >\, a, = 0, equation (40) holds for all elements x, +--, %,.

(40) Sa; .- aiz,,llle funflt 70 K e xizk”% =0.

In (40), the inner sum is taken over all choices of sign +1 as the
7,’s range independently from 1 to m; the sum has 2% 'm* terms.

The proof is reserved for [11]. Krivine [9] introduced an ine-
quality which determines whether a space X is isometrically isomorphic
to a subspace of L,. For technical reasons, the proof in [9] fails
when p = 2n. Theorem 14 illustrates what happens to Krivine’s
inequality in this case. Further implications will be considered in
[11].

7. Koehler’s G,, spaces. In 1970, Koehler [8] defined a G,,
space to be a complex Banach space on which a form (=, ---, 2,
is defined satisfying (41)-(44).

(41) <x9 * % il7> = “wH%
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(42) <xn ) xzn> = <x2m ) x1>
(43) { > is linear in x, -+, 2,
(44) { > 1is conjugate linear in x, ., ---, @, .

Various properties of G, spaces are then discussed which parallel
the development of Hilbert spaces. Among them are a proof that
any G,, space satisfies (39) and the construction through a polarization
formula of a form (x, ---, #,,) on any complex Banach space which
satisfies (89). Thus, by Theorem 6, we can identify G,, and P,, and
deduce the following corollary. (Note that one direction is immediate
upon consideration of {x + ty, ---, x + ty).)

COROLLARY 15. A form (&, ++-, &,,) satisfying (41)-(44) can be
defined on a complex Banach space if and only if ||z + ty|]*™ s a
polynomial in t for every x and y in X.
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