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BANACH SPACES WHICH SATISFY LINEAR
IDENTITIES

BRUCE REZNICK

In 1935, Jordan and von Neumann proved that any Banach
space which satisfies the parallelogram law

\\χ + v\\2 + \\χ - y\\2 = 2(IM|2 + \\y\\η

for all elements x and y

must be a Hubert space.
Subsequent authors have found norm conditions weaker

than (1) which require a Banach space to be a Hubert space.
Notable examples include the results of Day, Lorch, Sene-
challe and Carlsson.

In this paper, we study nontrivial linear identities such as

(2) Σ ak\\ct(0)x0 + + Gk(n)xn\\p = 0 for all elements xt

on a Banach space X.

A necessary condition for (2) to hold in X is that \\x + ty\\v

must be a polynomial in t for all choices of elements x and y. A
sufficient condition for (2) to hold in X is that (2) must hold in the
field of scalars. Specific identities are presented including a generalized
parallelepiped law first observed by Koehler, and some isometric
results are stated.

2* The parallelogram law revisited. In 1909 [4], Frechet
proved the following result.

LEMMA 1 (Frechet). If g is continuous function on R and,
for all real r and s, equation (3) holds, then g is a polynomial with
degree less than N.

(3) 1L(-l)N

Proof. It is well-known that any sequence {an} satisfying

2r( — l)N~k( 7 )ak+M = 0 for all M is generated by a polynomial; that

is, there is a polynomial P with degree less than N for which an —

P(n).
In (3), put g{n) = an, s = 1 and let r range over the integers.

Then there is a polynomial P with P(n) = an = g(n). Now put
g(n/2) = bn, s = 1/2 and let r range over the half-integers. There is
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a polynomial Q with Q(n) = bn = g(n/2). Thus Q(2%) = P(n) for all
w and Q(a?) = P(a?/2), so #(w/2) = P(n/2). A repetition of this argument
demonstrates that P(w2~~m) = g(n2~m) for all integers m and w. By
the continuity of g, P(x) = g{x) for all x and the lemma is proved.

The parallelogram law has a second difference nature:
\\xJry\\2-2\\x\\2+\\x-y\\2 = 2\\y\\2, (see Johnson [6]). P u t t i n g
successively x = u + 2v, y = v and x = u + v, y — v and subtracting,
we get (4). Fix w and z, elements of any space in which (1) holds.

(4) Σ ( - l

Let u = w + rz, v = sz and substitute in (4). Setting \\w + tz\\2 =
flf(ί), we obtain (5). By the triangle inequality, | gί/2(t0) — gu\t^ \ ^
l*i — *ol llsll* hence g is continuous.

( 5 ) Σ(-ί

Applying Lemma 1 to (5) we see that g(t) is quadratic in t. Indeed,
if \\w + tz\\2 = A(^, u) + 2B(w, z)t + C(w, z)t2, then clearly A(w, z) —
\\w\\2 and C(wfz)= \\z\\2. It is not hard to verify that B(w, z)
satisfies the definition of a real inner-product and B(w, z) + iB(w, iz)
that of a complex inner-product. This provides an alternative proof
to the Jordan-von Neumann theorem.

We shall return to the parallelogram law in §6 as an em-
barkation point for a series of linear identities which hold in more
spaces than Hubert space. As an appetizer, consider (6), a generaliza-
tion of (1) to a three-dimensional parallelopiped.

\\x + y + z\\k + || a? + y — z\\k + \\x — y + z\\k + \\x — y — z\\k

- 2 ( | | a ? + y \ \ k + \\x - y \ \ k + \\x + z\\k + | | α ? - z | | f c

( } + \ \ y + z\\k + \\y - z\\k)

Observe that (6) holds for k = 2 in Hubert space and for k = 4 in
Hubert space and in L4(x, μ) for any (x, μ). Indeed, it may be verified
that (6) holds in any Banach space in which || rx + sy + tzW* is a
homogeneous polynomial in r, s, and t for fixed elements x, y, and z.
This condition turns out to be necessary as well, and the situation
will prove to be typical.

3* Spaces which satisfy linear identities* The main result of
this section will be Theorem 4, which follows from Theorem 2 by
an intervening lemma.
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THEOREM 2. Suppose X is a Banach space in which (7) holds for
all elements x and y, where ak Φ 0, p > 0, b0 = 0 and the bks are
distinct.

(7) Σ^lk + δ^ll^O.
fc=0

Then for every x and y in X, \\x + ty\\p is a polynomial in t. In
particular, p is an even integer.

Proof. Set A(u, v) = a011 u | |p + ΣΓ=i 11 w + bkv \ \p. By the hypotheses,
A(u, v) = 0 for all elements w and v and δfc =£ 0 for k ^ 1. Fix ele-
ments $ and 2/; let z be arbitrary. Then 0 = A{x + z, y — bτιz) —
A(x, y). Writing this out, we obtain (8). Notice that the term for
k = 1 in the sum in (8) vanishes.

0 = ao(\\x + z\\* - \\x\\η

( 8 ) + ± a h ( \ \ x + bky + (1 - δA" 1 )*! !* - II* + bky\\p) .

We repeat this procedure (due to Wilson [14]) and obtain (9), where
the inner sum is taken over all choices of 1 <| it < < iά ^ m.

( 9 ) 0 = Σ (-Ds(ΣA(x + jz, y - (b^1 + • + δζ.
i=oi=o

Equation (9) may be expanded using the definition of A{u, v) as (10),
where the inner sum is as before.

m (m\

0 = Σ ( - l W . )\\x + jzW
(10) W '

+ Σ a k Σ ( - i ) ^ l k + δ*» + (i - (̂ίT/ + + bτβz\\η.
fc=l i=0 3

For any fixed &, the 2m subsets of {1, •••, m} divide into two corre-
sponding classes: if k & I = {î  , iy}, then / and JU{&} are associated.
Using this pairing, the terms

( - l ) Ί I * + δ Λ + (j - δ.Cδζ1 + + δpzl l*

and (,-iy+1 | |^ + 6Ay + (i + 1 - δ ^ 1 + + δi}1 + δ^1))^!^ cancel out
in the triple sum. Hence, (10) reduces to (11).

(11) 0 =

As in §2, we choose u and v arbitrary nonzero elements in X, let
r and s be arbitrary reals and set x — u + rv, y = sv and
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\\u + tv\\p in (11). We obtain (12), and by Lemma 1, g(t) = \\u + tv\\p

must be a polynomial.

(12) 0 = Σ(-lW

As t~pg(t)—> \\v\\p Φ 0, g has degree p and as g(t) ^ 0, p is an even
integer.

LEMMA 3. Suppose X is a Banach space in which (13) holds
for all elements x and y, where ak Φ 0, p > 0 and the (bk9 ck)'s are
pairwise linearly independent.

(13)

Then \\x + ty\\p is a polynomial in t for all elements x and y.

Proof. We shall reduce (13) to (7). Permute the k's so that
[δo| ύ ^ \bm\ and let dk = biγck. If b0 Φ 0 then bk Φ 0; if δ0 = 0
then c0 Φ 0 and bk Φ 0 for & ̂  1 and the c£/s are distinct by the
linear independence. In the first case, rewrite (13) as (14) and then
put into it x — u — dov, y = v where u and v are arbitrary.

(14) Σ α * | δ * I Ί | s + d»y||* = 0 .

We obtain (15) which is in the form of (7).

(15) Σ ak\h\p\\u + (dlc - do)v\\p = 0 .

In the second case, let s be a number for which bk + sck Φ 0 and
put x — uf y ~ su + v into (13) where u and v are again arbitrary.
(If (δ, , Cy) and (δfc, cΛ) are independent then so are {bά + sc5 , c, ) and
(bk + scfc, cfc) ) We obtain (16) which now falls under the first case.

(16) Σα*ll(δ* + SGk)u + ckv\\p = 0 .

Carlsson [1] proved Lemma 3 for p = 2 and ak, bk, ck real.

THEOREM 4. Suppose X is a Banach space in which (17) holds
for all elements xi9 where ak Φ 0, p > 0, the (cfc(0), , cfc(w))'s are
pairwise linearly independent (n + l)-tuples, and for every i there
is at least one k with ck(i) Φ 0.

(17) Σ *k\\ck(0)x0 + - + ck(n)xn\\> = 0 .
&0
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Then, for all x and y,\\x + ty\\p is a polynomial in t.

Proof. Permute the fc's so that |co(O)| ^ 1 (̂0)1 ^ ^ |cm(0)|,
then co(O) Φ 0. If ck(0) = 0 for k ^ 1, put x1 = = xn = 0 in (17),
then α0||co(0)#o||

3> = 0 for all xQ, that is, X is trivial. Otherwise,
suppose ck(Q) Φ 0 for k ^ i , j ^ 1 and (17) may be rewritten as (18),
where dk{i) = CtWc^O)"1.

Σ | ) | | + W ^ + ••• +
(18) k

+ Σ ^ l i ^ ( l ) ^ + ... + ck(n)xn\\> = 0 .

From the linear independence, it follows that the ^-tuples
•••, dfc(w))} are distinct. Define the sets

Aik = \(slf --,sn)eCn\± sqdlQ) = Σ
I g = l g = l

These sets do not exhaust Cl and so we can find rq for which the
bk, defined by bk = Σ?=i rqdk(q), are distinct.

For arbitrary a? and y, let #0 = x, %k — ruy in (18). We obtain
(19) which is in the form of (13).

j

(19) Σ

This completes the proof.

To obtain the natural corollary we need a lemma.

LEMMA 5. Suppose f is a nonnegative function and q and r
are positive integers such that f9 and fr are polynomials. Then f8

is a polynomial, where s — (q, r), the greatest common divisor.

Proof. We have f\x) = Aq Π t i (x - XiY\ xt Φ xj9 A^O. Thus,
fr(x) = Ar Π<=i (x — Xi)x*r/9f and so q \ r\t. Write q = sq, r = sr, (q, r) —
1. As sq\srXi} q\\ and so fs = As Π*=i(^ "~ %i)h/ξ is a polynomial.

COROLLARY 6. Suppose X is a Banach space which satisfies (20)
for all elements xif where pk>0 and the same restrictions on constants
apply as in Theorem 4.

(20) Σ ak\\ck(0)x0 + + ck(n)xn\\*> - 0 .
fc=0

Then p k is an even integer for each k and \\x + ty\\p is a polynomial
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in t for all x and y , where p = (plf •••, pk), the greatest common
divisor.

Proof. F i x y 0 , -*-,yn a n d l e t bk == ak\\ck(O)yo + ••• + ck{n)yn\\pK
Let xk = Xyk for λ > 0, then by (20), Σ ϊ U bk\

Pk = 0. Upon collecting
equal pfc's as g/s we find that ΣS=* (Σj>Λ=gi bk)X9> = 0. Hence Σ P * - * A =
0. Thus X satisfies an equation of form (17) for each pk and | |x + ty \\Pk

is a polynomial in t. We now apply Lemma 5 to this situation and
conclude that fp is a polynomial.

4* The Class έ^2n. The necessary condition of Theorem 4 sug-
gests the following definition: a Banach space X is polynomial of
degree 2n if, for all elements x and #, ||a? + ty\\2n is a polynomial of
degree 2n in real t. The class ^ 2 Λ consists of all Banach spaces
which are polynomial of degree 2n.

THEOREM 7. (i) If X is in &if then X is a Hilbert space.
(ii) // m divides n9 then &*2m is contained in ^2n.
(iii) Ifr = (m, n), then ^ 2 w n ̂ U = ̂ r
(iv) // k is an integer dividing n, then for all measure spaces

(X, μ), L2k{X, μ) is in ^2n.
( v ) If p is not an even integer and (X, μ) is not trivial, then

LP{X, μ) is not in ^2n for any n.

Proof, (i) This is the Jordan-von Neumann theorem; see also

(ii) If 11 a? + ty\\2m is a polynomial and 2n/2m is an integer, then
\\x + ty\\2n is a polynomial.

(iii) Combine (ii) and Lemma 5.
(iv) It suffices to show that L2n(X, μ) is in ^ 2 ί l . Pick elements

/ and g in L2n(X, μ); then

11/ + tg\r = \\f + tg\»dμ = \(\f\2 + t(fg + fg) + t*)*dμ

- \lct(f, gψdμ ,

where ct{ff g) is a sum of terms of the form fafbgcgd with c + d = i,

a Λ b — 2n — i. As \(/|2ί*c£μ < °o and \\g\2ndμ < ©o, each c^/, flf) is

integrable by Holder's inequality. Thus | | / + tg\\2n = 21

and L2n(X, μ) is in ^2n.
(v) If (X, jtί) has two disjoint sets of positive measure, then

one may easily construct elements x and y in LP(X, μ) with \\x + ty\\p =
1 + \t\p. If p is not an even integer then (1 + \t\9fn/p is not a
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polynomial as it is not in CCp]+1. (See also Sundaresan [13].) The
embedding properties of ^2n will be described in a subsequent paper
[11]. We state without proof the following theorem.

THEOREM 8. (i) If X is a real two-dimensional space in ^ 4 ,
then it is isometrically isomorphic to a subspace of L4[0, 1],

(ii) There exists a three-dimensional space in ^ which is
not isometrically isomorphic to any subspace of L4(X, μ) for any
(X,μ).

(iii) There exist two-dimensional spaces in &2n{n ^ 3) which
are not isometrically isomorphic to any subspace of L2n{X, μ) for
any (X, μ).

5* The sufficient condition* In this section, we prove that the
classes ^2n form the finest possible gradation of Banach spaces ac-
cording to the linear identities they satisfy: if an identity of type
(16) holds with p = 2n for one space in ^2n then it holds for all
spaces in 0>ln. We begin with a few preliminaries.

LEMMA 9. Suppose a function g(ult ---,un) is a polynomial in
each of its variables separately, that is, (21) holds for each r,
1 ^ r ^ nf where the gk,rS are continuous and a carat over a
variable signifies its omission.

sr

(21) g(ulf , un) = Σ 9k,r(u>i, -- ,ur, , un)uk

r .

Then g is in fact a polynomial in the variables together.

Proof. The proof will be by induction on n. The theorem is
certainly true for n = 1. Suppose it is true if n — m. For n =
m + 1 we have by hypothesis a representation of g(ulf , um+1) in
the form (22). Let M = max sr + 1.

m - l

(22) g(ulf , um+ι) = Σ Qk,n+i(ulf , um)uk

m+1 .

fc = l

Define t h e Mth d i f ference ΔMh(r, v)(ulf •••,%,) b y (23).

M (M\
(23) Δ*K(r, v)(u19 , u . ) = Σ ( - 1 ) * " ' . )h(ulf •• , u r + i v , - , u.) .
Since ΔM is certainly linear, we can compute for 1 ^ t ^ m
Δ*g{t, v)(ulf •••, um+ί) obtaining (24).

M

(24) ΔMg{t, v)(ulf , um+1) = Σ ΛMgk>m+1(t, v)(uίf , um)uk

m+ι .
i Q
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Since a representation of form (21) holds for t and the Mth difference
annihilates all polynomials with degree less than M, JMg(t, nXitlf * ,
um+1) = 0. Thus, ΔMgk,mΛ.ι{tf v)(uίf , um) = 0 fof each t. By Lemma 5,
0fc,m+i(̂ i> " Ί um) is a polynomial in each ut separately. The induction
hypothesis for n = m ensures that #/t,w+i(Wi, •••, t θ is a polynomial
in #!, , um together. By (22), g(uίf , wm+1) is therefore a polynomial
in wlf •• , ^ m + i . This establishes the induction step and completes
the proof.

LEMMA 10. A space X is in ^ 2 n if and only if, for all m and

elements xu ||ίoseo + ••• + tmxm\\2n is a polynomial in tQ> •••, t^.

Proof. It is easy to see that ||£oa?o + ••• + tmxm\\2n must be a
homogeneous polynomial if it is a polynomial at all, and that this
condition is equivalent to ||a?0 + Mi + + tmxm\\2n being a polynomial
in t19 •••, tm.

If ||α?0.+ txxx + ••• + tmxm\\2n is a polynomial, set xQ = x, x1 =
y,%%-= = xm = 0, arbitrary x and y. We find that X is in ^ 2 % .
To prove the converse, define f(tί9 , ί j = ||a?0 + Mi + + £w^m!Γw

Fix all variables save έr, then f(tlf , tm) is a polynomial in tr with
coefficients depending on tίf , £r, , tm. For any polynomial ί?(έ) =
2 αfc£

& of degree 2n we have the formulae ak = Σi=o citkp(j)f where
C/,fc can be found by solving the linear system: -Σα*i* = p(j), 0 ^ j <>
2n. Now f(tlf ••-,*») can be put into form (25) for each r and by
the above, we can write ak,r(tlf •••, ΐrf •••, O = Σ i = o ^ ,fc/(^ # ^

(25) /(*,, • , ί J = Σ αtf,(*,, , ΐr, , tm)t*
fc0Σ
fc=0

Hence aktr(ti9 , ί r, , t Λ ) is a sum of t e r m s || a?0 + M i + + 3®-r +
*»»«ll2* e a c ^ °f which is continuous in tlt •••, ίr, * , ί Λ . We can
now apply Lemma 9 and conclude t h a t f(tίf , tm) is a polynomial
in t,, . . . , t Λ jointly. As I M , •• , O I ^ (Noll + l*il ll»ill + ••• +
l*«l ll^mll)2% / has degree a t most 2n.

THEOREM 11. / / an identity of the form (17) {with restrictions
on constants as in Theorem 4) holds for one space in <0*Zn, then it
holds for all spaces in ^2n. In particular, an identity holds in
^2n if and only if it holds in Hilbert space.

Proof. An ordered p-tuple (ί0, , iί,_1) of nonnegative integers
is a p-partition of d if ΐ0 + + ip-x — d. For each p and d there
are a finite number of such partitions. Suppose (17) holds for X in
^*2n. The ίth (m + l)-partition of t, (π(t, i, 0), , π(t, i, m)) will be
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called π(t, i) for short. We write π(n, i) = π{i). In (17), we restrict
$t to a one-dimensional subspace of X generated by x, \\x\\ = 1: xt =
£.#, llajill = \zt\f complex s,. We obtain (26), which can be rewritten
as (27) using \z\2n = ( |s | 2)\

(26) Σα*|c*(0)s 0 + • + c,(mK| 2 w = 0 .

(27) Σ α*(Σ Σ ck(i)chU)z<zi)* = 0 .

Index the (m + l)-partitions of n from 1 to s, then (27) can be
written as (28); where φ denotes ck(Q)πχ>{0) ck(m)π*>{m), zπp denotes
£op(O) z%lm\ βkq and z*v are defined analogously, where the double
sum ranges independently over all pairs of (m + l)-partitions of
n and where dp>q is the positive multinomial coefficient depending on
τrp and πq,

(28) Σ % Σ Σ d^φciisfpz** = 0 .
k=0 p==0 g=0

We now rewrite (28) as (29).

(29) Σ Σ dpJ Σ W Φ )«•*«•• = 0 .
p=0 g=0 \fe=O /

A polynomial in z0, z0, , zm, zm which vanishes identically must have
vanishing coefficients. As dp,q > 0 we deduce (30) for all partitions
7tp and πq.

(30) Σ aicΦcl* = 0 .

Now let Y be a space in ^2n and fix elements x0, , xm in Y*.
Write /(^0, , zm) = |]^o^o + + 2m#mlΓ* for complex zk = vk + iwk,
(vk, wk real). Then /(«0, . , zm) = || v0^0 + + vmα?m + wo(i»o) + +
wΛ(άOII2* is a polynomial of degree 2n in v0, •••, vmf w0, •••, wOT by
Lemma 10, From 2vk = zk + zk, 2ίwk = zk — zk, it follows that
f(zQ, * , O is a polynomial in #& and zk of degree 2^. Rewrite
f(z0,

 m

 fzm) in form (31), where the sum is taken over all (m + 1)-
partitions of t and 2n — t, indexed by j and k respectively, where
the btjtk8 are the coefficients and the condensed z*ιtJ) is as before.

(31) f(z0, , zm) = Σ Σ Σ ί ^ , ^ " - ^ - ' ^ .
t=0 π-(t,j) JΓ(2Λ—t,fc)

Because /(^0, •••,«») = f(eiθz0, •••, e w θ » ( 3 1 ) does not depend on 0.
Viewing (32) as a polynomial in e w having as coefficients polynomials
in z and z9 it follows that bt)j>k = 0 unless ί = n.
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(OQ\ V p{2t-2n)iθ V V ft ~π(t,j)-zπ(2n-t,k)

ί = 0 • π(t,j) π{2n—t,j)

We can thus rewrite (31) as (33), and insert this into (17).

s s

p—0q—Q

We obtain (34).

(34) Σ a>k 11 <5*(0)α0 + + c]c(m)xm \ \2n

8 \ s s r

Op,qCkVCkΊ\ = ZJ ZJ Vp,q Zj UkCkPCkq = U

This last equality is a consequence of (30).

6* The parallelopiped law* Frechet [5] proved that any Banach
space which satisfies (35) for all elements x, y, and z is a Hubert space.

/ o r x l l α + 2 / + z l l 2 - I I & + 2 / I I 2 - I I ® + a l l 2 - 1 1 ? / + z l l 2

(ΰOJ

Jordan and von Neumann reduced (35) to (1) by putting z = —y and
proving that the new condition is as strong as the old. The same
sort of reduction applied to Theorem 12 will lead to a generalized
parallelopiped law.

THEOREM 12. If X is in ^2n and m > 2n, then for all elements
%i, ##>#m> equation (36) holds, where the inner sum is taken over
all k-tuples 1 <; ix < < ik ^ m.

Proof. In light of Theorem 11 it is sufficient to prove the
theorem for elements in Hubert space, indeed, we need only prove
that (36) holds for all complex numbers z3-. The sum on the left-hand
side is, in any case, a polynomial in the z/& and z/s.

A monomial zr

3\ sjj ^iί sjj with Σrk = Σtk — n, rk + tk > 0 will
occur in \zh+ ••• + zik\

2n either with multinomial coefficient

or not at all depending on whether the JΊ'S are contained in the iks
or not. Because rk + tk > 0, s ^ 2n < m, hence each monomial occurs
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in (37). Indeed, for k i> s, the i/s are contained in precisely ί*jj ~ 8)

λ -tuples and so, altogether, a monomial sjj «Jj«ίj z)*8 will occur

in (37) with total coefficient (38). As ΣΓ="o8 ( - l ) y ( W τ *) = 0, the

sum in (38) vanishes and so so (37) is proved.

The identity holds in Hubert space and hence in all ^2n.

THEOREM 13 (The parallelopiped law). If X is in ^2n and r>n,
then for all elements x19 •••, xr, the identity (39) holds in X, where
the inner sum is taken over all choices of sign et = ± 1 and all
ordered k-tuples with 1 ^ ix < < ik ^ r.

(39) Σ (~ ϊ)k2'-kΣ 11 ε.Xu + + e Λ , | \2n = 0 .

Proof. In Theorem 12, let m = 2r, ^fc,! = &i and α;2fe = — x'k for
1 ^ & <: r. Each term ε^^ + 4- εfcί»ίfc will appear in (37) 2r~k times
depending on the joint inclusion or exclusion of the pairs xi3 ^x + x2j

for j Φ ix. If the primes are dropped, (36) becomes (39) and the
result follows.

Another identity which is satisfied in ^2n is the following.

THEOREM 14. / / X is in ^ 2 n and 4k > 2n, then for all real

at with ΣΓ = 1 ^ = 0, equation (40) holds for all elements xlf •••, xm.

(40) ΣaiΛ - ahk\\xh ± xh ± . ± xhk\\^ = 0 .

In (40), the inner sum is taken over all choices of sign ± 1 as the
i/s range independently from 1 to m; the sum has 22A:~1m2fc terms.

The proof is reserved for [11]. Krivine [9] introduced an ine-
quality which determines whether a space X is isometrically isomorphic
to a subspace of LP. For technical reasons, the proof in [9] fails
when p = 2n. Theorem 14 illustrates what happens to Krivine's
inequality in this case. Further implications will be considered in
[11].

7* Koehler's G2n spaces* In 1970, Koehler [8] defined a G2n

space to be a complex Banach space on which a form (x19 •• ,^ 2 n )
is defined satisfying (41)-(44).

(41) (x, ••-,*> = | | s I f
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(42) (x19 , x2n) = (x2n, , a?t>

(43) < > is linear in x19 - >,xn

(44) < > is conjugate linear in xn+1, — ,x2n.

Various properties of G2n spaces are then discussed which parallel
the development of Hubert spaces. Among them are a proof that
any G2n space satisfies (39) and the construction through a polarization
formula of a form (xlf , x2n) on any complex Banach space which
satisfies (39). Thus, by Theorem 6, we can identify G2n and P2n and
deduce the following corollary. (Note that one direction is immediate
upon consideration of (x + ty, •••,# + ty).)

COROLLARY 15. A form (xίf •••, x2n) satisfying (41)-(44) can be
defined on a complex Banach space if and only if \\x + ty\\2n is a
polynomial in t for every x and y in X.
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