BIHOLOMORPHIC MAPPINGS BETWEEN WEAKLY PSEUDOCONVEX DOMAINS

JOHN ERIK FORNAESS

Assume we have a biholomorphic mapping between weakly pseudoconvex domains. It is an old question whether this extends to a diffeomorphism between their closures. The well known theorem of Fefferman states that this is true for strongly pseudoconvex domains. We will show that if the map has a smooth extension to the boundary, then it cannot map an analytic disc in the boundary to a single point.

This is an immediate consequence of the following theorem.

THEOREM. Assume Ω , W are bounded pseudoconvex sets with \mathscr{C}^2 boundary in \mathbb{C}^n , and assume $\Phi \colon \Omega \to W$ is a biholomorphic map with a \mathscr{C}^2 -extension $\Phi \colon \bar{\Omega} \to \bar{W}$. Then Φ is a \mathscr{C}^2 -diffeomorphism between $\bar{\Omega}$ and \bar{W} .

This theorem generalizes a similar result for strongly pseudoconvex domains by the author [2], see also Pinchuk [3].

The theorem is false in general for \mathscr{C}^1 -domains and maps Φ with \mathscr{C}^1 -extensions. To see this, let $\Omega = \{z \in C; |z+1| < 1\}$ and let $\Phi(z) = z/\text{Log } z$ and $W = \Phi(\Omega)$.

Also the theorem is false in general for proper holomorphic maps. For example, let $\Omega = \{(z, w) \in \mathbb{C}^2; |z|^2 + |w|^4 < 1\}, W = \{(z, w); |z|^2 + |w|^2 < 1\}$ and $\Phi(z, w) = (z, w^2)$.

Proof of the Theorem. Let us fix a point $p \in b\Omega$. We want to show that $\Phi'(p)$ is a nonsingular linear transformation. The proof is complete if this is true for all p in the boundary of Ω .

To simplify the computations, we will make affine complex changes of coordinates such that p becomes the origin in \mathbb{C}^n with variables (z_1, \dots, z_n) and $\Phi(p)$ becomes the origin in \mathbb{C}^n with variables (w_1, \dots, w_n) . We may arrange this such that

$$\Omega = \{z = (z_1, \dots, z_n); \ \rho(z) = \operatorname{Re} z_1 + R(z_1, \dots, z_n) < 0\}$$
 and $W = \{w = (w_1, \dots, w_n); \ \sigma(w) = \operatorname{Re} w_1 + S(w_1, \dots, w_n) < 0\}$

where R, S are \mathcal{C}^2 -functions which vanish to at least second order at the origin.

From Diederich, Fornaess [1] it follows that there exists a \mathscr{C}^2 -defining function $\hat{\sigma}$ of W such that $-(-\hat{\sigma})^{2/3}$ is strictly plurisubharmonic in W near the origin. It follows that $-(-\hat{\sigma})^{2/3} \circ \Phi$ is strictly

plurisubharmonic in Ω near the origin.

We apply the Hopf lemma to points in Ω of the form $(t, 0, \dots, 0)$ with $-1 \ll t < 0$. There must exist a K > 0 such that

$$-(-\hat{\sigma})^{2/3}(\Phi(t,0,\cdots,0)) \leq Kt.$$

Since σ is of the same order of magnitude as $\hat{\sigma}$, we obtain for a possibly different K, that

$$-\operatorname{Re} \varphi_1(t, 0, \dots, 0) - S(\Phi(t, 0, \dots, 0)) \ge K|t|^{3/2}$$

where we have written $\Phi = (\varphi_1, \dots, \varphi_n)$. Hence $(\partial \varphi_1/\partial z_1)(0, \dots, 0) > 0$. Consider the \mathscr{C}^2 -map $\Lambda(z_1, \dots, z_n) = (\varphi_1(z_1, \dots, z_n), z_2, \dots, z_n)$. Then $\Lambda'(0)$ is invertible. Therefore Λ maps the germ of Ω at the origin to the germ of a pseudoconvex set U with \mathscr{C}^2 boundary at the origin. We can describe U by

$$U = \{ \eta = (\eta_1, \dots, \eta_n); \tau(\eta) = \operatorname{Re} \eta_1 + T(\eta_1, \dots, \eta_n) < 0 \}$$

for some \mathcal{C}^2 -function T vanishing to at least second order at the origin.

We will study the map $\Psi = \Phi \circ \Lambda^{-1}$, $\Psi = (\psi_1, \dots, \psi_n)$. It suffices to show that $\Psi'(0)$ is a nonsingular linear map. We can describe Ψ by

$$\Psi(\eta_1, \dots, \eta_n) = (\eta_1, \psi_2(\eta_1, \dots, \eta_n), \dots, \psi_n(\eta_1, \dots, \eta_n)).$$

If $\Psi'(0)$ is singular, then we may assume, after a linear change in the (w_2, \dots, w_n) — and (η_2, \dots, η_n) — direction, that

$$\Psi'(0) = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
\frac{\partial \psi_2}{\partial \eta_1}(0) & 0 & \frac{\partial \psi_2}{\partial \eta_3}(0) & \cdots & \frac{\partial \psi_2}{\partial \eta_n}(0) \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \psi_n}{\partial \eta_1}(0) & 0 & \frac{\partial \psi_n}{\partial \eta_3}(0) & \cdots & \frac{\partial \psi_n}{\partial \eta_n}(0)
\end{bmatrix}.$$

Next we consider points $t_1=(t,\,0,\,\cdots,\,0)$ and $t_2=(t,\,t,\,0,\,\cdots,\,0)$ in U with $-1\ll t<0$. We then have the estimates, for $\tau_i=\varPsi(t_i)$, $i=1,\,2$:

$${ au}_i = \left(t, rac{\partial \psi_2}{\partial \eta_1}(0)\!\cdot\! t \,+\, 0(t^{\scriptscriptstyle 2}),\, \cdots, rac{\partial \psi_n}{\partial \eta_1}(0)\!\cdot\! t \,+\, 0(t^{\scriptscriptstyle 2})
ight),$$

i = 1, 2.

Define W_t to be the set

$$W_t = \{(w_1, \dots, w_n) \in W; w_1 = t\}$$
.

There exists some $\delta > 0$ independent of t such that

$$W_t \supset \{(t, w_2, \cdots, w_n); ||(w_2, \cdots, w_n)|| < \delta |t|^{1/2}\} = \widetilde{W}_t$$
.

Let us write $\Phi^{-1}: W \to \Omega$ as $\Phi^{-1} = (\mu_1, \dots, \mu_n)$. We then have that for some constant K > 0, independent of t, that

$$|\mu_2(t, w_2, \cdots, w_n)| \leq K$$

for all points in \widetilde{W}_t , since Ω is bounded. The points τ_1 , τ_2 are in \widetilde{W}_t and satisfy the estimates $||\tau_1|| \leq K_1|t|$, $||\tau_2|| \leq K_1|t|$ and $||\tau_1 - \tau_2|| \leq K_1|t|^2$ for some constant K_1 independent of t. It follows from Schwarz's lemma that for some constant K_2 , independent of t, we have

$$|\mu_{\scriptscriptstyle 2}(\tau_{\scriptscriptstyle 1}) - \mu_{\scriptscriptstyle 2}(\tau_{\scriptscriptstyle 2})| \le K_{\scriptscriptstyle 2} |t|^{3/2}$$
.

However, by construction we know that $|\mu_2(\tau_1) - \mu_2(\tau_2)| = |t|$ which is a contradiction for all small enough |t|.

REFERENCES

- 1. K. Diederich and J. E. Fornaess, Exhaustion functions and Stein neighborhoods for smooth pseudoconvex domains, Proc. Nat. Acad. Sci. USA, 72 (1975), 3279-3280.
- 2. J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer.
- J. Math., **98** (1976), 529-569.
- 3. S. I. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J., (1975), 644-649 (translated from Sibirskii Mat. Zhurnal, **15** (1974), 909-917).

Received May 12, 1977.

Princeton University Princeton, NJ 08540