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WHEN ARE WITT RINGS GROUP RINGS? 1I

ROGER WARE

It is known that if F' is a superpythagorean field or a
nonformally real field with (finite) u-invariant equal to the
number of square classes then the Witt ring of quadratic
forms over F' is isomorphic to a group ring Z/nZ[G] with
n=20,2, or 4 and G a subgroup of the group of square
classes of F. In this paper, we investigate those fields with
Witt ring isomorphic to a group ring Z/nZ[G] for some n =0
and some group G. It is shown that G is necessarily of
exponent 2 and such a field is either superpythagorean or
is not formally real with level (Stufe) s(¥) =1 or 2 (so
n=20,2, or 4). Characterizations of these fields will be
given both in terms of the behavior of their quadratic
forms and the structure of their Galois 2-extensions.

1. Fields whose Witt rings are group rings. In notations and
terminology we primarily follow [11]. All fields F' will have charact-
eristic different from two, F denotes the multiplicative group of F,
F* the subgroup of nonzero squares, and for a in F, [a] will denote
the image of a in the group of square classes Q(F) = F/F:. If ¢
is a quadratic form over F' then the value set of ¢ is Dy(¢) = {[a] €
Q(F)|a is represented by ¢}. Isometries of quadratic forms will be
written = and ¢ L +, ¢ ® + will denote, respectively, the orthogonal
sum and tensor product of two forms ¢ and . We will write ¢ =
{ay, @y +++, @,y to mean that ¢ has an orthogonal basis ¢, e, ---, ¢,
with ¢(e;) = a,€ F. In this case the determinant of ¢ is detg =
[a.a; -+ a,] €Q(F). The Witt ring of quadratic forms over F' is
denoted by W(F).

The mapping [a] — <{a) identifies Q(F') with a subgroup of units
of W(F) and induces a surjective ring homomorphism ¥ from the
integral group ring Z[Q(F')] onto W(F'). Then ¥ (Z) = Z/nZ for
some integer n and by a theorem of Pfister, F' is not formally real
if and only if » > 0. When this happens, » = 2s where s = s(F) is
the least positive integer such that —1 is a sum of s squares in F.
The integer s(F') is called the level (Stufe) of F and is a power
of 2. We will adopt the convention that s(F) = 0 for a formally
real field F. Thus for any field F' with level s, W(F') is a Z/2sZ-
algebra.

PROPOSITION 1.1 (Compare [11, Exercise 8, p. 335]). Let F be a
field and n a natural number. If W(F) is a free Z/nZ-module then
n = 2s(F) and s(F) = 0,1, or 2.
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Proof. Let s = s(F'). The equality » = 2s follows immediately
from the freeness assumption together with the fact that if s >0
then the additive order of 1 in W(F') is 2s. Now assume s > 0.
Then every odd dimensional form is a unit in W(F'). But any Z/nZ-
basis for W(F') necessarily contains an odd dimensional form so by
multiplying the basis elements by its inverse we can find a basis
{¢.};c; containing the form (1). If D,(K1, 1) C{[1], [—1]} then s < 2
so we may suppose there exists [a] in Dp(K1, 1)) with [a] # 1,
[—1]. There exist basis elements ¢, --+, ¢, and integers =, ---, n,
such that {(—a) = >} n,6, in W(F). By comparing determinants,
we see that there exists an index j such that =, is odd and
det ¢; = 1, [—1]. Since [a]e D1, 1)), 21> + 2{—a) = 0 in W(F)
and hence 2<1> + >\ 2n,6, = 0. Then the linear independence of
the ¢,’s forces 2n; = 0 (mod 2s) which implies that the level s of F
divides the odd integer n;. Thus s = 1.

As a consequence of the foregoing proof we have

COROLLARY 1.2. Let F be a field such that W(F') is a free Z|nZ-
module with n #= 2. Then Dy ({1, 1)) C {1, [—1]} with equality 1f and
only if n = 4.

PROPOSITION 1.3. Let F be a field, G a group, and nw =0. If
W(F) = Z/nZ[G] then G is a group of exponent 2.

Proof. We may assume G is a subgroup of units of W(F)
which is also a Z/nZ-basis for W(F'). If n = 0 then for any geG
and any homomorphism o: W(F') — Z, 0(¢*) = 1 so since W(F') = Z[G]
is torsion free, ¢*=1. If n > 0 then n = 2s with s = s(F) =1 or
2 and any element g in G can be written g = 1 + ¢ with dim ¢ even.
Then ¢g*=1-+24+¢* and ¢*=2¢" for some form ¢'. Now 1 and ¢* are
in the basis G, s#0 in Z/nZ, and s-1+s-¢g*=s-1+ s(1 + 24 + 2¢") =
2s + 2s(¢ + ¢') = 0 forcing ¢* = 1.

We now record a result which will be used several times
throughout the paper.

Exact Sequence 1.4 [11, Th. 3.4, p. 202]. For a quadratic ex-
tension K = F(V' d ), the following sequence is exact

1— {1, [d]} — QUF) —— Q(K) 1> Q(F) .

Here, ¢ is the map induced by inclusion, and N is the homomorphism
induced by the norm Ny, ;.
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THEOREM 1.5. For a field F the following statements are equi-
valent.

(1) W(F) = Z|nZ|G] for some integer n > 0 and some group G.

(2) VAF)=Z|nZ[H] where either n=2 and H = Q(F) or
n =4 and H ts a subgroup of index 2 in Q(F) with [—1]¢ H.

(3) For every binary anisotropic form B, |Di(B) = 2.

(4) For every quadratic extemnsion K of F, the image of
e QUF) — Q(K) has tndex 2 in Q(K).

(5) F is mot formally real and |Dy(¢) < dimg¢ for all an-
isotropic forms ¢.

(6) |Du(p) = dim ¢ for all anisotropic forms 4.

(7) For every finite subset S of Q(F') there exists an anisotropic
form ¢ such that Dg(¢) = S.

(8) For every finite subgroup H of Q(F) there exists an an-
isotropic form ¢ such that D.(¢) = H.

(9) F s mot formally real and DKL, a)) = {1, [a]} for all
[@] =1, [—1].

(10) The Kernel of the mapping ¥: Z[Q(F)] — W(F') is the ideal
generated by 1 + [—1] and 2(1 — [—1]). Moreover, 1 + [—1] generates
Ker ¥ if and only if s(F') = 1.

REMARKS. 1. If Q(F) is finite then we recover the C fields
introduced in [5] and also studied in [16].

2. If Fis a field satisfying statement (6), and hence statement
(8), of Theorem 1.5 then s(F')=1 or 2. In particular, F' is not
formally real. Moreover, if s(F) #1 then D ({a, a)) = {[a], [—a]}
for all a in F. Indeed, if {(a, a) is isotropic then s(¥) =1 and if
{a, a) is anisotropic and [b0] € D;({a, a)) with [b] # [a] then {a, —b) =
(b, —a) is anisotropic. If [b] # [—a] then |D;({b, —a))| = 2 implies
that {[a], [—0]} = {[0], [—«a]} which is impossible. Thus D;({a, a)) =
(la], [~a]} and s(F) = 2.

Proof. We will prove the equivalence of the statements (2)
through (10) and then, with the help of two lemmata, show that these
are equivalent to (1).

2)=(3). If n =2and H = Q(F), this is obvious. Thus suppose
n =4, QUF) H)=2, [—1]¢ H, and let 8 = {a, b) be anisotropic over
F. 1If [c]e Dy({a, b)) then <(a) + <(b) = {c) + {cab) in W(F). If
{a) = {b) then 2{(—a) = 2{a) = 2{¢) = 2{—¢) so [c]€{[a],[—a]} and
|Dz({a, b))] = 2. Next suppose 2{a, b) = 0 in W(F'). Then 2{=+a) +
2{=+b) = 0 so, since {a, b) is anisotropic, {a) = <b). Finally, using
the relation (&) = —{(—x), we can rewrite <{a) + <b) = {¢) + {cab)
" 1 would like to express my thanks to the referee for pointing out an error in the
original version of this remark.
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as nx + nY = nu + nw with 2 = (Fa), ¥y = (£b), u = {(*¢), v =
{#caby, n; = +1, and «, y, u, ve H. If u = xv then <{¢) = {Fcab)
so (ab) =<1> and <(a)=<b). If w=2 or u=9y then {c>e
{<a), (—ap, b, (—b)}. If {e)=(—a) or (—b) then a, b) = (—a, —b)
whenece 2{a, b> = 0 and <{a) = <b) as before. Thus, either [a] = [b]
and D;({a, a)) = {[a], [—a]} or [a]=[b] and D.(<a, b)) = {[a], [b]},
proving (3).

The equivalence of (3) and (4) is a consequence of the exact
sequence 1.4.

(8) = (5). By Remark 2 above, F is not formally real and the
proof that |D.(¢)] < dim ¢ is contained in the proof of Theorem 3.3
(iii) in [5]. ’

(5) = (6). If F' is not formally real, a well known theorem of
Kneser implies that |D;(¢)] = dim ¢ for any anisotropic form g¢.

(6) = (7). Let S = {[a,], -, [a,]} with [a,], ---, [a,] distinct ele-
ments of Q(F'). Inductively, we can find an anisotropic form « with
Di(y) = {[a], *+; [@ns]}. By (6), dimy =n — 1. Let p =+ L {a,).
If o is anisotropic then (6) implies that D.(0) = S so we can take
¢ = p. If pis isotropic then [a,] = [—a,] for some 7+ <n — 1. Then
s(F)>1 and ¢ =+ L {(—a,) is anisotropic. Now [a], ---, [@,,]€
D;(¢) so by (6) we need only show [a,] € Dz(¢). But [—a,] = [a,] is
in Dy(y) so ¢ contains the subform {—a,, —a,> and Remark 2 above
implies that Dy({—a,, —a,)) = {[—a,], [a.]}, proving (7).

The implication (7) = (8) is obvious, and the proof of (8)= (9)
can be found in the proof of Proposition 5.10 of [5].

(9)=(10). As is well known, the Kernel of ¥ is the ideal
generated by 1+ [—1] and all elements of the form g(a, z, ¥) =
A + [aD@ — [2* + a¥?]) with x, y€ F and a, 2* + ay* € F. If a =1,
[—1] then [«*+ay®]€{l, [a]} which implies g(a, %, y) = 0. If [a]=1
then [#* + ay®] € Dy((1, 1)) so that {1, —(&* + a¥®)) = {—1, &* + ay®.
Now if [2*+ay®] = 1, [—1] then Dy(<1, —(@"+a¥"))) = {1, [— (@ + ap?)]}
which forces [—1] = 1. Thus either 1 =[—1] and 1 + [—1] is the
only generator of Ker ¥ or 1s#[—1] and D,(1, 1))c{1, [—1]}. Since F'
is not formally real we cannot have D, ({1, 1>)={1}. Hence if 1#[—1]
then there exist x, ¥ in F such that g(1,2,9) =1 + LA - [-1]) =
2(1 — [—1].

To prove the last statement of (10), suppose 1 + [—1] is the only
generator of Ker¥. Then there exists x in Z[Q(F')] such that
20— [—-1) =@ +[—-1Dx. If 1==[—1] then there exists a group
homomorphism ¢: Q(F') — {1, —1} © Z such that ¢(|—1]) = —1. Then
o extends to a ring homomorphism 7: Z[Q(F')] — Z and 6 2(1—[—1]))=4,
(L + [—-1Dx) = 0. Thus 1 =[-1], i.e., s(F) = 1.

(10)=(2). If 1+ [—1] is the only generator, this is proved in
[16, Proposition]. Thus assume 1=[—1}and 1 +[—1] and 2(1 —[—1])
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generate the ideal Ker 7. Let ¥(Z) = Z/nZ, n =0, and let H be
any subgroup of Q(F') with [—1]¢ H. Now 4=2(1+[—1])+2(1—[-1])
s0 4 =0 in W(F'). Since 1+ [—1] it follows that » = 4. Moreover,
in Z/AZ[Q(F)], 2(1 — [—1]) = 2(1 + [—1]) so the Kernel of the induced
map ¥: Z/AZ[Q(F)] — W(F) is generated by 1 + [—1]. The remainder
of the proof is the same (with Z replaced by Z/nZ) as the proof of
the implication (v) = (vi) in Theorem 1 of [15].
To complete the proof of Theorem 1.5 we need the following

LEMMA 1.6. Let G be a group of exponent 2 and F, a field.
Then there exists a field F containing F, and a W(F)-algebra iso-
morphism W(F)[G]— W(F) sending G onto a subgroup of Q(F).

Proof. Let I be a basis for G. Well order I with ordering <
and for each finite subset J = {3, ---,4,} of I with 7, < --- < 1,, let
F; be the iterated formal power series field Fy((¢,)) --- ((¢;,). If
J,CJ, are finite subsets of I then we have an inclusion F; = F,,
sending the indeterminate ¢, to the corresponding indeterminate ¢;
for 1eJ,CJ,. These inclusion give rise to a directed system of
fields. Let F' be the direct limit of this system. We will regard
F as the union of subfields Fi((t,)) ««- (), % < % < +++ < 4,

For each finite subset J of I, let G, be the subgroup of G
spanned by J. By a theorem of T. A. Springer, the correspondence
1 — {t,>, 1 € J, induces an isomorphism W(F)[G,] = W(F,). If J CJ,
are finite then any anisotropic form over F) remains anisotropic
over F;, and, since F' is the union of the F,’s it follows that the
map W(F;) — W(F)is injective for all finite subsets JCI. Hence the
composite maps W(F)[G,] 5 W(F,) = W(F) induce an isomorphism
W(F)[G] S W(F), sending geG to <{t,) € Q(F).

LEmMMA 1.7. If W(F) = Z/nZ[H] with HCQ(F) then either
n=2 and H=QUF) or ne{0, 4} and (QF): H) = 2. Moreover, in
the second case [—1]¢ H.

Proof. By Proposition 1.1, n = 0, 2, or 4. By taking determi-
nants we see that n = 2 if and only if H = Q(F') while = ¢ {0, 4} if
and only if (Q(F): H)=2. If n =0 or 4 then the relation (1) +
{—1) = 0 implies that (—1) ¢ H.

Now suppose statement (1) of Theorem 1.5 holds. By Proposi-
tions 1.1 and 1.3 we can write W(F') = Z/nZ[G] where n = 2s with
s=sF)=1or 2 and G is a group of exponent 2. Let F,=C if
n=2and F,=F, if n =4. Then W(F, = Z/nZ so by Lemma 1.6,
there is a field K and an isomorphism W(F)— W(K) which maps G
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onto a subgroup H of Q(K). Then W(K) = Z/nZ[H] and by Lemma
1.7, K satisfies statement (2) and hence statement (38) of Theorem
1.5. Since the implication (2)= (1) is obvious, the proof will be
complete if we can show that F also satisfies statement (3). By
[10, Theorem, p. 21] or [11, Ex. 13, p. 294], there is an isomorphism
t: Q(F)— Q(K) such that ¢([—1]) =[—1] and ¢(Dz({a, b))) = D({ta, tb)).
Thus if 8 = {a, by is anisotropic over F' then {(ta, tb) is anisotropic
over K so |Dx(B)| = [I7(Dx({ta, tb)))| = |Dx({ta, tb)| = 2.

REMARKS. 1. If F satisfies the conditions of Theorem 1.5 with
n =4 then W(F) = Z/nZ[H] for any subgroup H of Q(F) with
(Q(F): H) =2 and [—1]¢ H.

2. It can happen that WF = Z/nZ[H] with HZ Q(F). For ex-
ample, letF = Fy((t)). Then W(F) = Z/2Z[H] with

H=1{1,41,21),,%2t), 1,2 2)}.

ProproOSITION 1.8. For a formally real field the following state-
ments are equivalent.

(1) W(F) = Z[G] for some group G.

(2) W(F)= Z[H] where H is a subgroup of index 2 in Q(F)
not containing [—1].

(38) If ¢ =<ay, ++-, a,y 18 anisotroptc with [a,], - - -, [a,] distinct
n Q(F) then Dy(¢) = {[a], - -+, [a.]}.

(4) If H is a finite subgroup of Q(F) mot containing [—1]
then there exists am anisotropic form ¢ with Dy(¢) = H.

(5) If[a[ # 1, [—1] then the image of &: Q(F) — QF(V a)) has
index 2.

(6) For every formally real quadratic extemsion K of F,
(Q(K):Ime) = 2.

(7) For every quadratic extension K of F, (Q(K):Ime) < 2.

(8) For every amisotropic form B, |D(B)| < 2.

(9) For every anisotropic form ¢, |D(¢)| < dim 4.

(10) The Kernel of the mapping ¥: Z[Q(F)] — W(F') s the ideal
generated by 1 + [—1].

REMARKS. 1. Fields satisfying the equivalent conditions of
Proposition 1.8 were introduced in [6] and have been studied in [1],
[2], [3], [4], [7], [15], and [16]. Following Elman and Lam we will
call them superpythagorean.

2. If K/F is a quadratic extension of fields then &: Q(F) — Q(K)
is surjective if and -only if F is formally real, pythagorean, and
K = F(v'—1) [11, Ex. 5, p. 216].

Proof. By Proposition 1.3, the group G in (1) is necessarily of
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exponent 2, so the equivalence of (1), (2), and (10) can be found in
[15]. The equivalence of (2) and (8) was observed in [16].

(8) = (4). Let H be a finite subgroup of Q(F) with [—1]¢ H.
Write H = {[a,], - -, [@.]} With [a,], ---, [a,] distinet in Q(F") and let
6 =<a, **+,a,y. Since (3) holds, so does (2) and hence by [15,
Theorem 1] there is a signature o: W(F') — Z such that o({a,)) =1,
©=1,---,n. Then o(¢) = n so ¢ is anisotropic. By (3), Ds(¢) = H.

(4)=(5). If [a]=# 1, [—1] then [—1] is not in the subgroup
{1,[—a]} of Q(F) so there exists an anisotropic form ¢ such that
Dy(¢) = {1, [—a]}. Write ¢ = (1> 1L¢'. If ¢’ does not represent —a
then ¢=<<,1,---,1> and since D1, 1)) = {1} implies that
DKL, «-+,1%) = {1} it follows that D (1,1>) ={1,[—a]}. Hence
1, a>={-1, —a), i.e., [-1]eD;(1, a)). Now choose an anisotropic
form +r such that D,(v) = {1, [a]} and write = (1) L 4'. If '
does not represent a then, as above, we get D, ({1, 1)) = {1, [a]}
which implies that [a]=1 or [—1]=1. Thus [a]le€Ds(v') so
D1, a)) c D(¥) = {1, [a]}. But then [—1]e D,(1, ¢)) implies that
[¢] =1 or [—1] = 1. This contradiction forces [—a]e D;(¢") whence
D;({1, —a)) = {1,[—a]}. Then the Exact Sequence 1.4 implies that
the image of ¢: Q(F) — Q(F(V a)) has index 2.

(5) = (6) is clear.

(6) = (7). We first show F is pythagorean. Let [a]e D,(1, 1)).
Then |F(1 a) fis formally real so if [a] # 1, the image of &: Q(F) —
Q(F(Va)) has index 2. Thus D,(1, —a)) = {1,[—a]}. But [a]e
D,({1,1>) so {1, —a) = {(—1,a) whence [—1]e{1,[—a]}. Since F is
formally real, this forces [a] =1 and F is pythagorean. Then
F(1V'—1) is the only nonreal quadratic extension of F' and by Remark
2 following the proposition, the map Q(F) — Q(F(1/—1)) is surjective.
The implication (7) = (8) follows from Exact Sequence 1.4, (8) = (9)
follows from the proof of [5, Th. 3.3] (or induction), and (9) = (3)
is obvious.

REMARK. If wis a unit in the Witt ring of a pythagorean field
F then u = {(a) for some ack. Hence if W(F)= Z[H] with H
a subgroup of units of W(F') then HCQ(F), (QF). H) =2, and
[—1]¢ H. Moreover, by [15, Th. 1], W(F') = Z[H'] for any H'CQ(F)
with [—1]¢ H' and (Q(F'): H') = 2.

Combining Theorem 1.5 and Proposition 1.8 we obtain

THEOREM 1.9. For a field F the following statements are
equivalent.

(1) W(F)=Z/nZ[G] for some integer n'=0 and some group G.

(2) W(F)= Z/nZ[H] where either n =2 and H = Q(F) or
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n €{0, 4} and H is a subgroup of index 2 in Q(F) with [—1]¢ H.

(3) For every binary anisotrovic form B, |Ds(B)| < 2.

(4) For every anisotropic form ¢, |Dy(¢)| < dim 4.

(5) For every finite subgroup H of Q(F), with [—1]¢e H if
s(F") # 1, there extists an anisotropic form ¢ such that Dp(¢) = H.

(6) For every quadratic extension K of F, the image of
e: QUF) — Q(K) has tndex £2 in Q(K).

(7) If [a]l # 1, [—1] then Dy(<1, a)) = {1, [a]}.

(8) Ifg=<Kay,---,a,) s anisotropic with [a,], -+, [a,] distinct
i Q(F) then Dp(¢) = {[a], - --, [a.]}.

(9) The Kernel of the homomorphism ¥:Z[Q(F)] — W(F) s
either the ideal genmerated by 1 + [—1] or the ideal generated by
1+ [—1] and 201 — [—1]).

DEFINITION 1.10. By a field of class C we will mean one which
satisfies the equivalent conditions of Theorem 1.9.

ExampLES 1.11. (i) Any field with at most 2 square classes,
e.g., a quadratically closed field, a Euclidean field, or a finite field,
is a field of class C.

(ii) A formally real field is of class C if and only if it is
superpythagorean.

(iii) If F is a nonformally real field with |Q(F)| < co then F
is a field of class C if and only if |Q(F)| = w(F') where w(F') is the
u-invariant of F' (see [5], [16]). In particular, nondyadic local fields
are of class C.

(iv) If F is of class C and I is a totally ordered set then the
field F((t,));.; of iterated formal power series over F' is a field of
class C.

COROLLARY 1.12. If {F.};c; 18 a direct system of fields of class
C then their direct limit lim, F, is a field of class C.

Proof. Let F = lim, F; and let f;: F, — F be the natural inclu-
sion, iel. Then F = Ui.,fuF,) and each f(F,) = F, is of class C
so we may assume that F = U,.; F;. Let a€ F with [a] # 1, [—1]
in Q(F) and let [b]e Dy({1, a)). Then there exist z, y € F' such that
b =2+ ay’. Choose 1€l such that a,b,x, y€ F;. Then [a] # 1,
—1 in Q(F;) and [b] e D (<1, a)). Since F; is of class C, [b] =1 or
[al.

2. Going up and going down.

THEOREM 2.1 (Going down). Let K/F be a finite extension of
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fields. If K is a field of class C then so is F.

The following result of Elman and Lam will be crucial in the
proof of Theorem 2.1.

Norm Principle [9, 2.11]. Let K/F be a quadratic extension
and let N: K — F denote the norm. Let x€ K and let ¢ be a form
over F. If (N(x))¢p = ¢ over F' then (x)é, = tx over K for some
form 7 over F.

Proof of Theorem 2.1. We proceed by induction on [K: F']. By
the induction assumption we may assume that there is no field L
with & L & K. First suppose [K: F] > 2. Let {1, a), [a] # 1, be
an anisotropic form over F' and let [b]e D;(<{1, a)). Since K contains
no quadratic extension of F, (1, a) remains anisotropic over K and
[e]# 1 in K. Hence D, (K1, a)) = {1, [¢]}. Thus, in Q(K), [b] =1 or
[a], whence [b] =1 or [a] in Q(F).

Thus we are left with the case K = F(1”a) where [a] # 1. Let
e: Q(F) — Q(K) be the natural map. If e is surjective then F' is
formally real, pythagorean, and K = F(v'—1). If be F with [b] = 1,
[—1] then <1, b) is anisotropic over K so Dg({1, b)) = {1, [b]}. Hence
Dy(<1, b)) {1, [—1], [b], [-b]}. If [—1]eDx({1,b)) then <(1,b) =
{—1, —b) over F which forces 2¢(1,b) =0 in W(F). Since F is
pythagorean, this implies [b] = [—1]. Hence D;({1, b)) = {1, [b]} and
F' is superpythagorean.

Now suppose ¢ is not surjective and choose [x] € Q(K), [¢] ¢ Ime.
Let N: K— F be the norm. Since (N(x)){1, N(z)) = <1, N(x)) over
F, it follows from the Norm Principle of Elman-Lam, that there
are ¢, d in F such that {x)<{1, N(z)) = {¢, d) over K. If (¢, d) were
anisotropic over K then either D.({¢, d)) = {[c], [d]} if [¢] # [d] in Q(K)
or Dy(le, d))c{[e],[—c]} if [¢] =[d]. Since [x]¢Ime, {¢,d) and
hence {1, N(x)> must be isotropic over K. Hence [N(x)] =[—1] in
Q(K) and so [Nx)]e{[—1], [—a]} in Q(F).

Case 1. [N(@®)] =[—1]. Then [N@V a)] = [a] in Q(F'), and since
{aX{l, a) = {1, a), the Norm Principle applies to find ¢, d in F with
eV a Y1, a) = {¢,d) over K. If (1, a) is anisotropic over K then
[m/TL- ]leIm e, which implies, via Exact Sequence 1.4, that [¢] = 1 in
Q(F). Thus {1, a) is isotropic over K, i.e., s(K) = 1. Since [x]¢Ime
and [N@)]=[-1] in QF), s(F)*#1. Thus K= F1/ —1). Now
choose be F' with [b] = 1, [—1]. Then [b] # 1, [—1] in K so (1, b)
is anisotropic over K and D, (K1, b)) = {1, [b]}. Then D,(1,bd))C
{1, [—1], [b], [—0]} and if [—1]e D,(<1, b)) then the Norm Principle
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yields ¢, d in F with {(x){1, b) = {¢, d) over K. This is impossible,
because (1, b) is anisotropic over K and [z]¢Ime. Thus D,({1, b)) =
{1, [b]}.

Case 2. [N(x)]=[—a]. If there exists [y] in Q(K) with [y]¢Ime
and [N(y)] = [—1] then we have returned to Case 1. Thus we can
assume [N(y)] = [—a] for all y¢Ime. Thus D ({1, —a)) = {1, [—al}.
Now let [b]# 1, [—1]. If (1,b) is isotropic over K then [b]e
{[—1], [—al} c Q(F) and so [b] = [—a]. Thus D,({1, b)) = {1, [b]}. If
{1, b) is anisotropic over K then D.((1,b))c{l, [a], [b], [ab]}. If
[a]€ D1, b)) then [—b] € D,(1, —a))={1, [—a]}. Hence [b]=[a] and
D;({1, b)) {1, [a], [b], [ab]} = {1, [b]}.

COROLLARY 2.2. If G is a finite group of automorphisms of a
field K of class C then K¢ is also of class C.

Our next objective is to show that a quadratic extension of a
field of class C is also of class C. For any extension K/F of fields,
let e: Q(F) — Q(K) and 4: W(F') — W(K) be the natural maps and let
N: K — F denote the norm.

PROPOSITION 2.8. Let K/F be a quadratic extension of fields
and let R=Im1i. If F is a field of class C then W(K) is a free
R-module of rank < 2. If [b]is any element in Q(K) with [b]¢Ime
then {1, <b)} is an R-basis for W(K).

The proof of Proposition 2.3 requires two lemmata.

LEMMA 2.4. Let F be a field of class C and let ¢ be an aniso-
tropic form over F.

(1) Iflal=#1,[—1] and {1, adp = 0 in W(F') then there exists
a form + such that ¢ =<1, —a) @ .

(2) If s(F)=#1 and 2¢ = 0 then ¢ = 24 for some form .

Proof. (1) By [8, Cor. 2.3], we can write ¢ =B, L ++-- L 5,
where each B, is binary and <1, a)B; = 0 in W(F'). If there exists
an ¢ such that G, = <b, b> then D (B;,) = {[b], [—b]} so {(—a)B; = B,
implies [—a]le{l,[—1]}. Thus B; = {¢;, d;> with [¢;] # [d;]. Then
Dy(B) = {le], [d.]} and [—ac]e{[e.], [d.]}. Since [a] # [—~1], [—ac] =
[d]. Thus {c; diy = (<1, —a) and ¢ =1L, —a) ® (e, - -+, ¢,).

(2) Write ¢ =B, L --- 1L B, with 8, ={¢;, d;> and 28, =0 in
W(F). Then (¢, d,y={—e¢;, —d,». Since B; is anisotropic and s(F)=1
it follows that [¢;] = [d;]. Hence ¢ = 2{¢c,, * -, ¢,).
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LEMMA 2.5. Let K/F be a quadratic extension of fields with F
a field of class C and let R =Im+i. If [b]e@K)—Ime and ¢ R
then <b)¢ = ¢ in W(K) implies ¢ = 0.

Proof. Write K= F(1/a) with acF. Since [b]¢Ime and
[N(®)] € D(<1, —a)) it follows that [N(b)] = [—ea] if [a] = [—1] and
[N(®)] =[—1] if [a] =[—1]. Let p be an anisotropic form over F
such that ox = ¢ in W(K). Then (b)px = px over K so by Scharlau’s
Norm Principle [11, Th. 4.3], {(N())po = p over F. Thus either
d,a>0 =0 if [a] #[—1] or 20 = 0 if [a] = [—1]. In the first case,
Lemma 2.4(i) implies that 0 =<1, —a) @+ for some form + so
¢ = 0r =0 in W(K) and in the second case, s(F') # 1 so o = 24 for
some + which implies that ¢ = o = 0 in W(X), K = F(I/ —1).

To prove Proposition 2.3, we may suppose Im e = Q(K). Choose
[6]€e QK) — Ime and suppose ¢, 4 are elements of R such that
6+ 4by =0in W(K). Let tc =¢ —+reR. Then <b)r = (b)p — {b)ap =
{bY¢ + ¢ = —p + ¢ = T s0 by Lemma 2.5, ¢ = 4. But then (—b)¢ = ¢
and [—bd]¢Ime so ¢ =0, proving that 1, <(b) are R-linearly in-
dependent. By Theorem 1.9, (Q(K):Ime) =2 so the set {1, <b)}
generates W(K) as an R-module.

PROPOSITION 2.6. Let F be a field of class C, let n = 2s(F"), let
K =F(1/a) be a quadratic extension of F, and let R = Im 1.

(1) If s(K)=1 then R = Z/2Z[Ime]. Moreover, if K =
F(/=1) then R = Z/2Z[H]| where H is any subgroup of index 2 in
Q(F) with [—1]¢ H.

(2) If s(K)# 1 then R = Z|nZ|e(H)] where H 1s a subgroup
of index 2 in Q(F) with [a]le H and [—1]¢ H.

(8) 1 18 surjective +f and only if W(K) = Z[2Z[Im €] +f and
only if K= F/ —1) with F superpythagorean.

Proof. First assume K = F(1/a ) with [a] #[—1]. Then we can
find a subgroup H of Q(F') with [a]e H and W(F') = Z/nZ[H]. Then

the exact sequence 1—{1,[a]}— H -ie(H)—>1 induces an exact
sequence

0— 1 —<a))Z/nZ|Hl — Z|nZ[H] — Z|nZ[e(H)] — 0
which, together with the exact sequence
0—A = La))W(F)— WEF)—> R—>0
shows that R = Z/nZ[e(H)].
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Now [a] # [—1] implies that s(F) = s(K) by 1.9(2). Thus if
$(K)=1 then n =2, H=Q(F), and ¢(H) =Ime and if s(K)=%1
then s(F') + 1 so [—1]¢ H and (Q(F): H) = 2. This proves (2) and
part of (1).

If K= F(/—1), let H be any subgroup of Q(F) with [—1]¢ H.
Then W(F') = Z/nZ[H] and the restriction of ¢ to H induces an
isomorphism H = ¢(H). Then from the exact sequences

00— 2Z/nZ[H|— Z/nZ[H]| — Z/2Z[H]— 0
00— 2W(F)— WEF)— R—>0

we see that the natural surjection Z/2Z[H]— R induced by the
isomorphism H = ¢(H), is an isomorphism R = Z/2Z[e(H)]. Since
[-1] =1 in QK), e(a]) = ¢e([—a]) for any [a]cQ(F). Now either
[a] or [—a] is in H so e(H) = Ime.

Statement (3) follows from (1) and Remark 2 following the state-
ment of Proposition 1.8.

Combining Propositions 2.8 and 2.6 we obtain

THEOREM 2.7. Let K/F be a quadratic extension of fields with
F a field of class C. Write W(F) = Z/nZ[H] with HC Q(F).

(1) If K+ FQ/=1) then W(K) = Z/nZ|G]| where G is the sub-
group of Q(K) generated by e(H)and any element [b] in Q(K) — Ime.

(2) If K= F0/ —1) then W(K) = Z2Z[Q(K)].

COROLLARY 2.8. If K 1is a quadratic extemsion of a field of
class C then K is also a field of class C.

DEFINITION 2.9. By a 2-extension of F we mean a field K with
Fc KcC F(2) where F(2) denotes the quadratic closure of F.

COROLLARY 2.10. A 2-extenston of a field of class C is again a
Jield of class C.

Proof. If [K: F']is finite this follows from repeated applications
of Corollary 2.8 and the general case then follows from Corollary
1.12.

COROLLARY 2.11. Let K/F be a finite extension of fields with
the same quadratic closure. Then F is a field of class C if and
only +f K 1s.

PROPOSITION 2.12. Let G be a finite group with nmo subgroup of
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index 2. Then there exists a Galois extemsion N/F with group G
such that F is a field of class C and for all fields K with FF< KC N,
K s not a field of class C.

Proof. As in [17, Example] or [18, Theorem 1.2] we can find
a Galois extension N/F with N formally real, F' Euclidean (uniquely
ordered with 2 square classes), and Gal (N/F) = G. Let K be any
field with F& KCN. Since G has no subgroup of index 2, [K: F'| > 2
and since the unique ordering on F' has [N: F'] extensions to N, it
must have [K: F'] extensions to K. Because F' is uniquely ordered,
a result of Prestel [12, 9.2, p. 146] states that K satisfies the Strong
Approximation Property (SAP-see [7], [12]). By [7, Cors. 4.5 and
5.7] a field with more than 2 orderings which satisfies SAP cannot
be superpythagorean and so K is not a field of class C.

COROLLARY 2.13. For each integer n = 3 there exists an ex-
temsion K/F with F a field of class C, K not of class C, and
[K: F] = n.

We conclude this section with a result analogous to [6, Satz 4].

PROPOSITION 2.14. For a field F with s = s(F') == 1 the following
statements are equivalent.

(1) F is a field of class C.

(2) W(K) s a free Z|2sZ-module for all quadratic extensions
K + F(V/'=1) of F.

(3) D1, L)c{i,[—1]} for all quadratic extensions K +
FO/=1).

Proof. (1)=(2) follows from Theorem 2.7 and (2) = (3) from
Corollary 1.2.

@)= (). If [a]# 1, [—1] and K = F(V @) then D, ({1, a)) =
Dx(<1, 1)) {1, [-1]} so Dy(K1, ap)c{l, [—1] [a], [—a]}. If [—a]e
D;(K1, a)) then by Elman and Lam’s Norm Principle, there exists
be F such that (vV'a {1, 1) = (b, b> over K. Then [b1 a ] € D.({1, 1))
so [V a 1€ {[b], [-b]} c Ker (Ng,»: QK) — Q(F)). Since [a] = [—1] it
follows that [—a]¢ D,({1, a)) and D ({1, a)) = {1, [a]}.

3. 2-extensions. There is a close connection between the
behavior of quadratic forms over a field F' and the structure of
the Galois group of its quadratic closure. In this section, we shall
prove several results illustrating this principle in the case of fields
of class C. As before, if K/F is an extension of fields then ¢ = ¢,
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will denote the natural map Q(F')— Q(K) and F(2) will denote the
quadratic closure of F.

ProposITION 3.1. F s a field of class C if and only if for
every 2-extension K of F, (Q(K):Ime) < [K: F].

Proof. (=) We may assume [K: F'] = 2" is finite. We proceed
by induction on n. If » =1 this is Theorem 1.9. Thus suppose
n > 1 and choose L with FC LcC K and [L: F] = 2. By Corollary
2.8, L is a field of class C so the induction assumption forces
(QK): Im eg,z) = 2", Now € = €x,°€,,» and the natural surjection
QL) Ime,,r, > Imeg,,/Ime implies that (Imeg,:Ime) = (QL):
Ime;,;) < 2. Hence (QK):Ime) = (Q(K): Im eg,;)(Imeg,: Ime) < 27,

(=) follows from Theorem 1.9.

REMARK. For nonreal fields of class C we need not have equality.
For example, if F' is a finite field and K is any 2-extension of F,
K # F(2), then (Q(K):Ime¢) = 2. However, we do have the follow-
ing

THEOREM 3.2. For a field F with —1¢ F? the following state-
ments are equivalent.

(1) F is a field of class C.

(2) [K: F]=[QK):Ime] for all finite Galois 2-extensions K
with —1¢ K>

(8) Gal(K/F) is a group of exponent 2 for all finite Galois
2-extensions K with —1¢ K*.

Before proving Theorem 3.2, it will be convenient to record

LEMMA 8.3. Let K/F be a finite Galois extension with group
G. Then [b]e QK)® if and only +f K(V' b) is Galois over F.

Proof. Let [b]e QK)°. If ¢ is an F-homomorphism of K(V/b)
into the algebraic closure of F' then ¢(K) = K so o(b) = bx® for some
« in K. Hence g sends Vb to +10(0) = 2V b e K/ b). Hence
K(W/b) is a normal extension of F. Since K(V/b)/K and K/F are
separable, it is a Galois extension.

Conversely, suppose K(v/b) is Galois over F. Then for ceG,
K\/'b) = KVo()) so [b] = [a(b)] in QK).

Proof of Theorem 3.2: (1) =(3). Let K be a finite Galois 2-ex-
tension of F with —1¢ K®. If Gal (K/F') is not of exponent 2, it
contains a cyclic subgroup H of order 4. Let L = K¥?. The unique
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quadratic extension of L in K has the form L(V2* + 4* ) where
z,ye L and [#* + 9*] # 1 in Q(L) [11, Ex. 8(a), p. 217]. Since F is
a field of class C, so is L, so [¢* + 9*] = [—1]. Thus —1e€ K?, contrary
to assumption.

(8)=(1). Let K= F1 a) with [a] # 1, [—1]. We show that
if [b]¢Ime then [b1V a]cIme, whence (Q(K):Ime) = 2. Consider
the extension K(V/b). If N is the closure of K(V'b) over F then
|Gal (N/F')| = 4 or 8 and since [b]¢Ime, Gal (N/F) is not a group
of exponent 2. By (3), we must have —1¢ N?, so N=K(1/ b, Vo)) =
KW'b,1V=1). Hence [6(d)] = [—1] in QXK(1/b)) which implies that
[e(0)] = [—1] or [—b] in Q(K). If [0(b)] =[—1]then [b] =[—1]cIme.
Hence [o(b)] =[—b] and so [bV e ]cQK)? G = Gal(K/F). By
Lemma 3.3, L = K(VbV @) is a Galois extension of F. If V—1eL
then L =K1/ —1) and [V a]=[—-1]eIme. If v —1¢L then
Gal (L/F) is a group of exponent 2, so again [b1 e ]cIme.

(1) = (2). We proceed by induction on [K: F']. Since (1) holds,
so does (3), so Gal (K/F') is of exponent 2. Hence we can find a
Galois extension L/F with K = L(V'D), be F, [b] # 1 in Q(F). Con-

sider the surjective map Q(L)/Im ¢, S5 Im exi/Ime. If TeKerég,,

then &g, .(x) € Im ¢ so there exists ¥y in Q(F') such that ex,,(x) = &(y) =
ex/i(€r7(y)). Hence xze,,-(y)eKereg,, = {1, [b]}CIme;,,. Hence z¢
Im e,/ and é¢,; is an isomorphism. Thus (Q(K): Im ¢) = (Q(K): Im &)
(Im eg,z: Im ) = (Q(K): Im &g, )(Q(L): Im &z,7). Now (Q(K): Im eg,;) =
[K: L] =2 since L is a field of class C and —1¢ K* and (Q(L):
Ime,,;) = [L: F] by the induction assumption.

(2) = (1). This follows from Theorem 1.9(7) together with Ex-
act Sequence 1.4.

REMARK. It can be shown that if F' is any field of class C and
K is a finite Galois extension with [Q(K):Ime] = [K: F] then
Gal (K/F) is of exponent 2.

As a variation of Theorem 3.2 we have

THEOREM 3.2'. For a formally real field F the following state-
ments are equivalent.

(1) F s superpythagorean.

(2) [K:F]=[QK):Ime] for all finite formally real Galois
2-extensions K.

(8) Gal(K/F)isa group of exponent 2 for all finite formally
real Galois 2-extensions K.

Proof. The implications (1)=(2) and (1)=(3) follow from
Theorem 8.2, while
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(2) = (1) is contained in Proposition 1.8.

(8) = (1). As in the proof of (3) = (1) in Theorem 3.2, we show
that if K= F(/a) is a formally real quadratic extension and
[b]1¢Ime then [bV @ ]cIme.

Let < be an ordering on F which extends to the formally real
field K. Let <, <, be its extensions to K and suppose 0 <,V a,
V'a <, 0. We assert that if ¢e K is positive with respect to both
<, and <, then [c]eIme. Indeed, if 0<<;c, © =1, 2, then the
ordering < will have four extensions to the field K(1/ ¢ ) and hence
if R. is a real closure of F with respect to the ordering < then
the minimal polynomial f(x) of a primitive element for K(1/¢) over
F will have 4 roots in R.. Since [K(V ¢ ): F] = 4 the splitting field
N of f(x) will be contained in R. and therefore will be formally
real. The extension K(1 ¢ )/F consists of successive quadratic ex-
tensions so the Galois group Gal(N/F') is a 2-group (in fact,
Gal (N/F) = 4 or 8). By (3), Gal(N/F) is a group of exponent 2, so
K/ ¢) is Galois over F and Gal (K(V ¢ )/F) is the Klein 4-group.
Hence [c]eIme.

Now choose [b]¢Ime. Then [—b]¢Ime so b must be positive
with respect to one of the orderings on K and negative with respect
to other. Replacing [b] by [—b], if necessary, we may suppose
0<,b and b<<,0. Then bV @ is positive with respect to both
orderings, so [ a ]eIme.

The following rather technical lemma will be crucial in our
investigation of fields of class C with s(F') = 1.

LEMMA 3.4. Let F be a field of class C with s(F) = 1.

(1) If LcF(®¥a;|i=1,+--,7) with a;c F and n, =0 and if
K is a quadratic extension of L then there exists ¢ in F such that
Kc F(Znﬁ—i/a » 2”r+i/a:’ 'l/.C—).

(2) If K is a finite 2-extension of F then there exist a,, ---, a,
wn F and nonnegative integers m,, -++, m, such that

Kc F(zm'{/gl—a °t % zm{/a) .

Proof. (2) follows from (1) by induction. To prove (1), let K =
LWV'x), N=F(*Va,, --+,"Va,), and write N as the union of a
tower of fields F= F,Cc F,C+--CF,= N where [F,,,;: F;] =2 and
F,=F,_(Vy,) with y, =*a, for some 1<k=<7» and 0= j < m,.
Let ¢;: Q(F;_,) — Q(F,) be the natural map and let %, be then smallest
index such that there exists x, in F; with [«[ = [2] in Q(N). If
i, = 0 then K = L(V'z)c NVz,) and we are done. If 4, >0 then
[x,] ¢ Ime,, so, since F' is a field of class C and —1¢ F?, [xV'y, |e
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Ime,. Now choose i, < i, smallest such that there exists x, € F; with
[2.] = [@V ¥, | in QN). If i, =0 we stop and if 4, > 0 we continue
in this way, obtaining a decreasing sequence ¢, > %, > +++ >, =0
and z;e F,;, j =0, ---,t, such that [¢,;,,] = [¢;Vy,; | in Q). Then
z,¢F and, in QWN), [&]=[e. V¥, 1= =V, - VYl
Hence V' € F(b,, -+, b, Vx,), b, = ""Va,, proving (1).

THEOREM 3.5. For a field F with |Q(F)| > 2 the following state-
ments are equivalent.

(1) F is a field of class C with s(F) = 1.

(2) If K is a quadratic extension of F and G = Gal (K/F) then
W(K)¢ = W(K).

(8) Every 2-extension of degree 4 is a Galots extension.

(4) If K s a Galois extension with Gal (K/F) a 2-group then
every subgroup of index 4 in Gal (K/F') is normal.

(5) The Dihedral group of order 8 does mot occur as a Galois
group over F.

(6) Every Galois extension of degree 8 is abelian.

Proof. We first note that if K = F(v/a) is a quadratic exten-
sion of F' and if G = Gal (K/F) then [u + vV a | € QK)? if and only
if [u*—v%a]e{l, [a]} in Q(F). Thus if [a] # 1, [~1] then Q(K)¢ = Q(K)
if and only if s(F) =1 and D;({1, a)) = {1, [a]}, proving the equiva-
lence of (1) and (2). The equivalence of (2) and (3) follows from
Lemma 3.3, the equivalence of (8) and (4) is elementary Galois
theory, and the implications (4) = (5) and (6) = (5) are obvious.

(5)=(3). If K is a nonGalois 2-extension of degree 4 over F
then the Galois group of its Galois closure will be a subgroup of
order 8 in the symmetric group of degree 4, i.e., the dihedral group
of order 8. It remains to prove

(5) = (6). We show that the quaternion group @ cannot occur
as a group over F. If @ did occur there would exist fields L, K,
and ¢, bin Fsuchthat FcLcK,[K:L]=2, L=F1V a,vV'd), and
@R = Gal (K/F). Since (5) holds, so do statements (1) and (3), so by
Lemma 3.4 we could find ¢ in F such that Kc F(¥a, Vb,V ¢).
By (3), the extensions F(#a), F(¥b) are Galois and hence abelian
over F. But then K would be contained in an abelian extension.

REMARKS. 1. Since there exist quadratically closed fields which
admit the alternating group A, as Galois group, the hypothesis that
K/F be a 2-extension is essential in statement (3).

2. If F is a field with |Q(K)| = 2 then F is a field of class C,
F' satisfies the conditions (2)-(6) (see Prop. 3.10), but we may have
s(F) # 1.
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3. The statement that W(K)¢ = W(K) for all Galois 2-exten-
sions K of F, G = Gal (K/F), is not equivalent to the statements in
Theorem 3.5. We will see that the field @, of 5-adic numbers
provides an example of a field satisfying the statements of Theorem
3.5, but not the stronger condition. Indeed, we have

THEOREM 3.6. For a field F with |Q(F)| > 2 the following state-
ments are equivalent.

(1) Ftsa field of class C and for all n =1, all 2*th roots of
unity lie in F.

(2) Every 2-extemstion of F ts abelian, i.e., Gal (F(2)/F) is an
abelian group.

(38) Ewery finite 2-extension of F is Galois.

(4) If K/F is a finite Galois 2-extension with G = Gal (K/F)
then W(K)¢ = W(K). '

Proof. (1)=(2). It suffices to show that every finite 2-extension
K of F is abelian. By Lemma 3.4, K is contained in a composite

of extensions of the form F(*Va), ac F, n = 1. Since all 2"th roots
of unity are in F, any such extension is cyclic, which proves that
K/F is abelian. The implication (2) = (3) is immediate, while (3) = (4)
follows from Lemma 3.3.

(4) = (3). We proceed by induction on [K: F'] > 1 to show that
the 2-extension K/F is Galois. Since K is a 2-extension there is a
field L with Fc Lc K and [K: L] = 2. By the induction assump-
tion, L/F is Galois and so by (4), together with Lemma 3.3, K/F
is Galois.

(8)=(2). By Theorem 3.5, the quaternion group @ does not
occur as a Galois group over F. But by [13, 5.36, p. 92], any non
abelian group all of whose subgroups are normal has @ as a homo-
morphic image. Hence all 2-extensions are abelian.

The proof that (2) implies (1) will use the following easy

LEMMA 8.7. Let F be any field and let [a] # 1 in QF). If
there exists n =1 such that F(Va) = F"'Va) then [a] = [—1].

Proof. Let b,=%a, i=0,---,n+1, let F,=F and F,,, =
Fz(Vb_i-)’ 1= 0, ---,m, let & Q(Fz—l)”_)Q(Fz)’ 1= 17 RPN (2 1 be the
natural maps, and let N;: Q(F,) — Q(F,_,) be the norms. Now b, =
v'’b,_, is a square in F, so[b,]€Ime, = Ker N, whence [b,_,] = [—1]
in Q(F,_,). But then [b,_,]eIme,_, so [b,,] =[—1] in Q(F,_,). Con-
tinuing in this way, we get [a¢] = [—1].
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Now assume (2). By Theorem 3.5, F' is a field of class C so we
need only show that all 2”th roots of 1 are in F' for all » = 1. If
not, choose » smallest such that some 2"th root { is not in F. Then
e F so [F(): F]1=2. Since |Q(F)| > 2, there exists a¢ in F with
V'@ ¢ F({). Since vV —1¢€ F(Q) it follows that [a] = [—1] in QF(Y)).
By Lemma 3.7, [F& *Va): F)] = 2" Hence {¢ F*Va) so we can
find = in Gal (F(, V@ )/F(¥ a)) such that 7({) #{. Let ¢ be the
F(0)-automorphism of F("'a,{) sending *Va to {Va. Then
or(*Va) = {Va while 76(Va) = t)*¥a. Hence or 76 and F
has a nonabelian Galois 2-extension, completing the proof.

ExamMpPLES 3.8. (i) The field Q, satisfies the conditions of
Theorem 3.5 but not Theorem 3.6. Given any field F' of class C
with s(F) = 1 there is a field K satisfying the conditions of Theorem
3.6 with W(K) = W(F).

(ii) Becker [1] has shown that if F' is superpythagorean then
F(1/=1) satisfies condition (2) of Theorem 3.6. In particular F(1/—1)
contains all 2"th roots of unity.

(iii) If F,is quadratically closed and F = F((t));.; is a field of
iterated formal power series over F' then F' is field of class C and
F contains all 2"th roots of unity. Hence all Galois 2-groups are
abelian.

(iv) If K is a quadratically closed field and G is an abelian pro
2-group of automorphisms of K then K is the quadratic closure of
K¢ and G = Gal (K/K®%. Hence K¢ is a field of class C.

COROLLARY 8.9. Let F be a field of class C with |Q(F)| > 2.
Let {[a;]}ic; be an F,-basis for Q(F), let F(2) be the quadratic closure
of F, let Gz(2) = Gal (F(2)/F), and let Gz(2) denote the closure of
the commutator subgroup of Gu(2). Then

(1) If s(F) =1 then F?2)= F(¥a,|icI, n, =0).

(2) If all 2"th roots of unity are in F then Gz(2) = ZI, where
Z! denotes the direct product of |I| copies of the additive group of
2-adic tntegers.

(8) G(2) is tsomorphic to one of the following: Z% for some
set I or a monabelian group which is either an extension of Z: by
Z|2Z, by Z|2Z X Z, or by Z] for some nmonempty sets I, J.

(4) Every finite Galois 2-group of F is an extension of an
abelian group by an abelian group.

(5) Gx(2) ts an abelian group.

Proof. (1) follows from Lemma 3.4.
(2) Consider the map =:Gz(2)— Z. induced by the natural



560 ROGER WARE

maps 7;: G4(2) — Gal (F(Va,),s./F) = Z,, ic1. Since {[a;]|ic I} is a
basis and the finite extensions F(Zni/a) are cyclie, it follows that for
fixed i in I, F(C'Va, |n, =0 N FCVa;|j #14,n;=0)=F. Hence x

is surjective and, therefore, an isomorphism.

(38) If G(2) is abelian all 2*th roots of unity are in F so by
2), G(2) = Z%. If G,(2) is not abelian, let L be the extension of F
obtained by adjoining all 2"th roots of unity, » = 1. Then L is a
field of class C, Gal (L/F') is abelian, and by (2) Gal (FI(2)/L) = Z? for
some set I. If Gal (L/F') contains an automorphism g # 1 finite order
with fixed field K then by applying Lemma 3.7 we see that L =
K/ —1). Hence Gal (L/F) = Gal (F(\/—1)/F) x Gal (L/F(v/—1)) and
Gal (L/F(v'—1)) has no elements of finite order. Now if G is any
abelian pro p-group with no elements of finite order, then by
Pontryagin duality there exists a divisible abelian p-group M with
G = Hom (M, Zp~), where Zp> is the p-primary component of Q/Z.
Since M is divisible, M = Zp=Y’ for some set J, whence G =
(Hom (Zp=, Zp~))’ = Z]. This proves (3).

(4) Let K be finite Galois 2-extension and again let L be the
extension obtained from F by adjoining the 2"th roots of 1 for all
n=1 Then KNL/FCL/F so KN L/F is an abelian extension.
By Theorem 3.6, KL/L is also an abelian extension and since
Gal (KL/L) = Gal (K/K N L), (4) is proved.

(5) Let L be as in (3) and (4). Sinee L/F is abelian, G,(2) C
Gal (F(2)/L) and the latter is abelian.

For completeness, we include the following result concerning
fields with exactly 2 square classes.

PROPOSITION 3.10. For a field F the following statements are

equivalent.
(1) W(F)e{Z, Z/AZ, Z]2Z|G]} with |G| = 2.
(2) Q) = 2.

(8) Ewvery finite 2-extension of F s cyclic.
(4) Either Gal (F(2)/F) = Z, or Gal (F(2)/F) = Z[2Z. The second
possibility occurs if and only if F is Euclidean.

Proof. The equivalence of (1) and (2) is well known.

(2) = (8). Let K/F be a finite Galois 2-extension with group G.
Since |Q(F)] = 2, G has a unique subgroup of index 2. But, for any
prime p, a p-group having a unique subgroup of index p is cyclic.

(8)=(2). If |Q(F)| > 2 then F admits the Klein 4-group as a
Galois group.

(8) = (4). Assume (8). Then |Q(F)| = 2. If s(F) =0 then F is
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Euclidean so we may suppose s(F') > 0. We assert that for each
integer n =1, F has a unique (cyclic) 2-extension of degree 2".
Indeed, since F' is not formally real it follows from Theorem 1.5
that the unique quadratic extension of F' has exactly 2 squares
classes and so also has a unique quadratic extension. Since a 2-
extension consists of a tower of quadratic extensions, F' has exactly
one cyclic 2-extension of degree 2". Hence Gal (F(2)/F) = Z,.

The implication (4) = (8) is clear.

We next prove a result about fields of class C with ¢(F) =
|Q(F)| < o. Recall that the rank of a pro p-group G, denoted rank
@G, is defined to be the cardinality of a minimal set of generators
of the topological group G. We have rank G = dim,, H(G, Z/pZ).
Moreover, if G* denotes the intersection of the Kernels of all homo-
morphisms G — Z/pZ then rank G is finite if and only if dim, G/G*
is finite and when this happens, they are equal. For details see [14,
4.2, 1-34-39].

THEOREM 3.11. For a field F the following statements are
equivalent.

(1) F is a field of class C with q(F) < oo.

(2) There exists an integer m such that q(K) < m for all finite
2-extensions K of F.

(8) There exists an integer m such that q(K) < m for all 2-
extensions K of F.

(4) There exists an integer n such that for all Galois exten-
stons L/K with Fc Kc Lc F(2), rank Gal (L/K) < n.

(5) There exists an integer m such that for every Galois 2-
extension K|F, all closed subgroups of Gal (K/F') have rank < n.

(6) There exists an integer m such that rank H < n for all
closed subgroups H of Gal (F(2)/F).

Proof. (1)=(2). Taking m = q(F') this follows from Theorem
1.5 and Corollary 2.10.

2)=@1). If F is not a field of class C then we can find a
quadratic extension of F', such that ¢(F,) > q(F). By Theorem 2.1,
F, is not a field of class C so we can find a quadratic extension F,
of F, such that q(F,) > q(F,). Continuing in this way we can con-
struct a tower F,cCc F,c-.- C F,, with F, a 2-extension of F and
q(F,) > q(F;_). Thus q(F,) = 2™(F) > m for all m.

(2) = (3). Assume (2). Then there exists an integer m such
that ¢(K) =< m for all finite 2-extensions K/F. If there exists an
infinite 2-extension L/F' such that Q(L) contains m + 1 distinet ele-
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ments [a], -*°, [@p.,] then K = F(ay, +++, a,,,) is a finite 2-extension
with ¢(K) =Zm + 1.

(8) = (4). Choose m as in (3) and choose n with m < 2". Let
L/K be a Galois extension with FC Kc LC F'(2) and let G = Gal (L/K).
Then the elementary 2-group G/G* corresponds to a Galois extension
N/K and |G/G*| £ q(K)=m. Hence dim;,G/G* < n, i.e., rank G < n.

(4) = (5). Let K/F be a Galois 2-extension and let H be a closed
subgroup of Gal (K/F). Then K/K¥ is Galois with group H so by
(4), rank H < n. The implication (5) — (6) is immediate.

(6) = (2). Choose n as in (6) and let m be an integer with
2" < m. Let K be a finite 2-extension of F. Then there is a closed
subgroup H of Gal(F(2)/F) such that K = F(2)!. Let H, =
Gal (K(V'b |be K)/K). Then H, is a factor group of H so rank H, <
rank H < n. Hence ¢(K) is finite and ¢(K) = 2™ < 2" < m.

COROLLARY 3.12 (ef. [1, Satz 19, p. 112]). For a field F and an
integer n = 0 the following statements are equivalent.

(1) F s a field of class C with q(F') = 2",

(2) For all 2-extensions K of F, q(K) < 2" and there exists a
2-extension with q(K) = 2",

(8) For all finite 2-extensions K of F

2"t 4f F is real and V —1e¢ K
2"  otherwise.

q(K) = {

(4) Rank Gal (F(2)/F) = n and rank G < n for all closed sub-
groups G of Gal (F(2)/F).
(5) For all closed subgroups G of finite index in Gal (FI(2)/F),

if F is real and V' —1¢ F(2)°

-1
dimy, HYG, Z/22) = {” .
" otherwsise.

REMARK. If the conditions of Corollary 3.12 are satisfied for F
and » then for all m < n there exists a field K (of class C) with
FcKcF(2) and ¢(K) = 2™ Indeed, if Gal(F(2)/F) is of rank =
then for any m < n, Gal (F(2)/F) has a closed subgroup G of rank
m so we can take K = F(2)S.

For a field F, let u(F') denote its wu-invariant and o(F') the
number of orderings.

COROLLARY 3.13. Let F be a field of class C. Then

(1) If F s not formally real then w(K) = u(F) for all finite
2-extensions K of F and w(K) < u(F) for all 2-extensions K of F.
Moreover, if K is a 2-extension with w(K) < o then u(K) = 2™ for
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some m = 0 and for each integer m = 0 with 2™ < w(F'), there exists
a 2-extension K with uw(K) = 2™,

(2) (cf. [3, 8.9) If F s formally real then o(K) = o(F') for
all finite formally real 2-extensions K of F and o(K) < o(F') for all
2-extensions K. Moreover, tf K is any formally real 2-extemsion
with o(K) < oo then o(K) = 2™ for some m = 0 and for each integer
m =0 with 2™ < o(F') there exists a formally real 2-extension K
with o(K) = 2™,

Proof. (1) follows from Corollary 3.12, the remark, and the fact
that u(K) = q(K) for any nonformally real field K class C (see [5],
[16]).

(2) If K is a formally real field of class C then K is su-
perpythagorean and by [7, Cor. 4.5], o(K) = 1/2¢(K). Hence we
need only show that if m = 0 and 2™ < o(F') then there exists a 2-
extension K with o(K) = 2". Let F, = F(/—1). Then F, is a field
of clagss C and q(F)) = 1/2¢(F') = o(F') = 2™. Let K, be a 2-extension
of F, with ¢(K,) = 2™ and let KC K, be a maximal formally real
extension of F'. Then K is of class C and if [a] # 1, [—1] in Q(K)
then K(V/a) ¢ K,. Hence Ker (Q(K) — Q(K,) = {1, [—1]} so 1/2¢(K) <
q(K)). On the other hand, 1/2¢(K) = ¢(K(v/—1)) = q(K,) so o(K) =
1/2¢(K) = q(K,) = 2™.
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