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WHEN ARE WITT RINGS GROUP RINGS? II

ROGER WARE

It is known that if F is a superpythagorean field or a
nonformally real field with (finite) ^-invariant equal to the
number of square classes then the Witt ring of quadratic
forms over F is isomorphic to a group ring Z/nZ[G] with
n = 0,2, or 4 and G a subgroup of the group of square
classes of F. In this paper, we investigate those fields with
Witt ring isomorphic to a group ring Z/nZ[G] for some n ^ 0
and some group G. It is shown that G is necessarily of
exponent 2 and such a field is either superpythagorean or
is not formally real with level (Stufe) s(F) = 1 or 2 (so
n — 0,2, or 4). Characterizations of these fields will be
given both in terms of the behavior of their quadratic
forms and the structure of their Galois 2-extensions.

1* Fields whose Witt rings are group rings* In notations and

terminology we primarily follow [11]. All fields F will have charact-
eristic different from two, F denotes the multiplicative group of F,
F2 the subgroup of nonzero squares, and for a in F, [a] will denote
the image of a in the group of square classes Q(F) — F/F2. If φ
is a quadratic form over F then the value set of φ is DF(φ) — {[a] e
Q(F)\a is represented by φ}. Isometries of quadratic forms will be
written = and φ _L ψ, ψ (x) ψ will denote, respectively, the orthogonal
sum and tensor product of two forms φ and ψ. We will write φ =
<αly α2, , an) to mean that φ has an orthogonal basis e19 e2, , en

with φiβi) = diβF. In this case the determinant of φ is det φ =
[αxα2 an] e Q(F). The Witt ring of quadratic forms over F is
denoted by W(F).

The mapping [a] —> <α> identifies Q(F) with a subgroup of units
of W(F) and induces a surjective ring homomorphism Ψ from the
integral group ring Z[Q(F)] onto W(F). Then Ψ(Z) = Z/nZ for
some integer n and by a theorem of Pfister, F is not formally real
if and only if n > 0. When this happens, n = 2s where s = s(F) is
the least positive integer such that — 1 is a sum of s squares in F.
The integer s{F) is called the level (Stufe) of F and is a power
of 2. We will adopt the convention that s{F) = 0 for a formally
real field F. Thus for any field F with level s, "^(ί7) is a Z/2sZ-
algebra.

PROPOSITION 1.1 {Compare [11, Exercise 8, p. 335]). Le£ F be a
field and n a natural number. If W(F) is a free Z/nZ-module then
n = 2s(F) and s(F) = 0, 1, or 2.
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Proof. Let s = s(F). The equality n = 2s follows immediately
from the freeness assumption together with the fact that if s > 0
then the additive order of 1 in W(F) is 2s. Now assume s > 0.
Then every odd dimensional form is a unit in W{F). But any ZjnZ-
basis for W{F) necessarily contains an odd dimensional form so by
multiplying the basis elements by its inverse we can find a basis
{φτ)ieI containing the form <1>. If DF((1, 1» c {[1], [-1]} then s ^ 2
so we may suppose there exists [a] in DF((1, 1» with [a] Φ 1,
[ — 1]. There exist basis elements φ19 " ,φk and integers nίf "*,nk

such that < —α> = Σ<=i wiΛ *n W(F). By comparing determinants,
we see that there exists an index j such that % is odd and
d e t ^ ^ l , [-1] Since [a]eDF((l, 1», 2<1> + 2<-α> = 0 in W(F)
and hence 2<1> + Σf=1 2^0, = 0. Then the linear independence of
the φ/s forces 2n3- = 0 (mod 2s) which implies that the level s of F
divides the odd integer nά. Thus s = 1.

As a consequence of the foregoing proof we have

COROLLARY 1.2. Let F be a field such that W(F) is a free ZjnZ-
module with n Φ 2. Then DF((1, l » c { l , [ — 1]} with equality if and
only if n — 4.

PROPOSITION 1.3. Let F be a field, G a group, and n ^ 0. If
W(F) = Z/nZ[G] then G is a group of exponent 2.

Proof. We may assume G is a subgroup of units of W(F)
which is also a Z/nZ-b&sis for T7(F). If n = 0 then for any ^ e G
and any homomorphism σ: W(F) —> 2Γ, 0 (#2) = 1 so since W{F) = Z[G]
is torsion free, #2 = 1. If n > 0 then w = 2s with s = s(F) = 1 or
2 and any element # in G can be written # = 1 + Φ with dim φ even.
Then ^2 = l + 2^ + ̂ 2 and φ2 = 2 '̂ for some form ^'. Now 1 and g2 are
in the basis G, s^O in Z/nZ, and s l + s r̂2 - s l + s(l + 2φ + 2 '̂) =
2s + 2s(^ + φ') = 0 forcing #2 = 1.

We now record a result which will be used several times
throughout the paper.

Exact Sequence 1.4 [11, Th. 3.4, p. 202]. For a quadratic ex-
tension K = F(yrΈ)9 the following sequence is exact

1 > {1, [d]} > Q(F) — Q{K) i

Here, ε is the map induced by inclusion, and JV is the homomorphism
induced by the norm Nκ/F.
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THEOREM 1.5. For a field F the following statements are equi-
valent.

(1) W(F) = Z/nZ[G] for some integer n > 0 and some group G.
(2) W{F) = ZJnZ[H] where either n = 2 and H = Q(F) or

n— A and H is a subgroup of index 2 in Q(F) with [ — 1]&H.
(3) For every binary anisotropic form β, \DF(β)\ = 2.
(4) i^or βver̂ / quadratic extension K of F, the image of

e: ^ ( ί 7 ) -> QCBΓ) fcαs wufeg 2 m Q(JΓ).
( 5 ) ί7 is wo£ formally real and \DF{φ)\ <; dim φ for all an-

isotropic forms φ.
(6) \DF(φ)\ = dim^ /or αiί anisotropic forms φ.
( 7 ) .For every finite subset S of Q(F) there exists an anisotropic

form φ such that DF(φ) = S.
(8) For every finite subgroup H of Q(F) there exists an an-

isotropic form φ such that DF(φ) = H.
(9) F is not formally real and DF{(1, a}) = {1, [a]} for all

[a]Φl, [-1].
(10) The Kernel of the mapping Ψ: Z[Q(F)] -> W(F) is the ideal

generated by 1 + [•— 1] and 2(1 — [ — 1]). Moreover, 1 + [ —1] generates
Kerf i/ αwd owî / i/ s(F) = 1.

REMARKS. 1. If Q(JP) is finite then we recover the C fields
introduced in [5] and also studied in [16].

2. If F is a field satisfying statement (6), and hence statement
(3), of Theorem 1.5 then s(F) = 1 or 2. In particular, F is not
formally real. Moreover, if s(F) Φ 1 then DF((a, α» ='{[α], [—a]}
for all a in î 7. Indeed, if <α, α> is isotropic then s(F) = 1 and if
<α, α> is anisotropic and [6] 6 DF((a, α» with [6] ^ [α] then <α, — 6> =
<6, —α> is anisotropic. If [6] ^ [ — a] then ^^((δ, —α»| = 2 implies
that {[α], [ — 6]} = {[&], [ — α]} which is impossible. Thus DF((a, a)) =
{[α], [-α]} and s(F) = 2.1

Proof. We will prove the equivalence of the statements (2)
through (10) and then, with the help of two lemmata, show that these
are equivalent to (1).

(2) ==> (3). If n = 2 and H = Q(F), this is obvious. Thus suppose
n = 4, (Q(F): i ϊ) = 2, [-1] g ϋ , and let β = <α, 6> be anisotropic over
JP. If [c] 6 DJP«α, &» then <α> + <6> = <c> + (cab) in W(F). If
<α> = <6> then 2<-α> = 2<α> = 2<c> = 2<-c> so [c]e{[α], [-α]} and
jAΛO, 6>)| = 2. Next suppose 2<α, 6> = 0 in W(F). Then 2<±α> +
2<±&) = 0 so, since (a, 6) is anisotropic, <α> = <&>. Finally, using
the relation <cc) = — <—a;), we can rewrite <α> + <δ> = <c) + (cab}

1 I would like to express my thanks to the referee for pointing out an error in the
original version of this remark.
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as ntx + n2y = n3u + n4v with x = <±α>, y = (±b), u = <±c>, v =
<^cαδ>, w* = ± 1 , and x, y, u, v eH. If u — ±v then <c> = <±cα6>
so <α&> = <1> and (a) = <&>. If u — x or u — y then <c> 6
{<α>, <-α>, <&>, <-δ>}. If <c> = <-α> or <-δ> then <α, δ> s <-α, -δ>
whence 2<α, δ> = 0 and (a) = <δ> as before. Thus, either [a] = [6]
and D , « α , α » = {[α],[-α]} or [α] =* [6] and Ap«α, δ» = {[α], [&]},
proving (3).

The equivalence of (3) and (4) is a consequence of the exact
sequence 1.4.

(3) => (5). By Remark 2 above, F is not formally real and the
proof that \DF(φ)\ ^ dim φ is contained in the proof of Theorem 3.3
(iii) in [5].

(5) => (6). If F is not formally real, a well known theorem of
Kneser implies that \DF(φ)\ ^ dim φ for any anisotropic form φ.

(6) ==> (7). Let S = {[αj, , [αj} with [αj, , [α%] distinct ele-
ments of Q(F). Inductively, we can find an anisotropic form ψ with
DFW = {[αj, , K_J} . By (6), dim ^ = Λ - 1. Let p = ψ ± (an).
If |0 is anisotropic then (6) implies that DF(p) = S so we can take
φ — p. If p is isotropic then [an] = [ — α j for some ΐ ^ n — 1. Then
S(JP) > 1 and φ = ψ JL < —α»> is anisotropic. Now [αj, •••, [aw_J e
DF(φ) so by (6) we need only show [an]eDF(φ). But [ — an] = [αj is
in DF(ψ) so ^ contains the subform < — anf — an) and Remark 2 above
implies that DF«-an, - α Λ » = { [ - α j , [αj}, proving (7).

The implication (7) => (8) is obvious, and the proof of (8) =* (9)
can be found in the proof of Proposition 5.10 of [5].

(9) => (10). As is well known, the Kernel of Ψ is the ideal
generated by 1 + [ — 1] and all elements of the form g(a, x, y) =
(1 + [α])(l - [x2 + ay2]) with x,yeF and α, x2 + ay2 eF. If a Φ 1,
[ — 1] then [x2 + ay2]e{l, [a]} which implies g(a, x, y) = 0. If [α] == 1
then [x2 + ay2] eDF((l, 1» so that <1, -(x2 + ay2)) = < - l , x2 + ay2).
Now if [x2 + ay2] Φ 1, [-1] then DF((1, -(x2 + ay2))) = {1, [-(x2 + ay2)]}
which forces [-1] = 1. Thus either 1 = [-1] and 1 + [-1] is the
only generator of KerΨ or 1^[-1] and DF((1, l »c{ l , [-1]}. Since F
is not formally real we cannot have DF((1, 1» = {1}. Hence if 1^[ —1]
then there exist x, y in F such that g(l, x, y) = (1 + 1)(1 — [ — 1]) =
2 ( 1 - [ - 1 ] ) .

To prove the last statement of (10), suppose 1 + [ —1] is the only
generator of Ker Ψ. Then there exists x in Z[Q(F)] such that
2(1 - [-1]) = (1 + [-1])#. If 1 Φ [-1] then there exists a group
homomorphism σ: Q(F) - > { 1 , - 1 } C Z such that σ([-l]) = - 1 . Then
σ extends to a ring homomorphism σ: Z[Q(F)] —> Z and 5(2(1 — [ — 1])) = 4,
σ((l + [~l])x) = 0. Thus 1 = [-1], i.e., s(F) - 1.

(10)=>(2). If 1 + [—1] is the only generator, this is proved in
[16, Proposition]. Thus assume 1 Φ [-1] and 1 + [-1] and 2(1 - [-1])
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generate the ideal Ker Ψ. Let Ψ(Z) = ZjnZ, n ^ 0, and let H be
any subgroup of Q(F) with [ -1] £ H. Now 4=2(1 + [ -1])+2(1 - [ -1])
so 4 = 0 in W(F). Since 1 Φ [ — 1] it follows that tt = 4. Moreover,
in Z/iZ[Q(F)l 2(1 - [-1]) - 2(1 + [-1]) so the Kernel of the induced
map Ψ: Z/4Z[Q(F)] -> W(F) is generated by 1 + [-1]. The remainder
of the proof is the same (with Z replaced by Z/nZ) as the proof of
the implication (v) => (vi) in Theorem 1 of [15]•

To complete the proof of Theorem 1.5 we need the following

LEMMA 1.6. Let G be a group of exponent 2 and Fo a field.
Then there exists a field F containing Fo and a W(FQ)-algebra iso-
morphism W(F0)[G] —> W(F) sending G onto a subgroup of Q(F).

Proof. Let I be a basis for G. Well order I with ordering <
and for each finite subset J = {iu ••-,%} of / with iγ < < irf let
Fj be the iterated formal power series field F0((th)) ((ί,r)). If
Jx c J2 are finite subsets of I then we have an inclusion FJ±

 c >̂ FJ2

sending the indeterminate tt to the corresponding indeterminate t\
for i 6 Jγ c J2. These inclusion give rise to a directed system of
fields. Let F be the direct limit of this system. We will regard
F as the union of subfields F0((th)) ((£< J), it < % < < in.

For each finite subset J of /, let Gj be the subgroup of G
spanned by J. By a theorem of T. A. Springer, the correspondence
i «— <*i>> i e J> induces an isomorphism W(F0)[Gj] = W(Fj). If Jx c J2

are finite then any anisotropic form over FJχ remains anisotropic
over Fj2 and, since F is the union of the F/s it follows that the
map W{Fj) -> W{F)m injective for all finite subsets Jczl. Hence the
composite maps W(F0)[Gj] = W(Fj) ^ W(F) induce an isomorphism
W(FQ)[G] = W(F), sending g e G to <«,> 6 Q(F).

LEMMA 1.7. // W(F) = Z/nZ[H] with HczQ(F) then either
n = 2 cmd Jϊ = Q(JP) or n e {0, 4} α^ώ (Q(F): H) = 2. ilίorβover, m

second case [ — 1]£H.

Proof. By Proposition 1.1, ^ = 0, 2, or 4. By taking determi-
nants we see that n = 2 if and only if H = Q(F) while -̂ e {0, 4} if
and only if (Q(F): H) = 2. If % = 0 or 4 then the relation <1> +
<-l> = 0 implies that < —1> 0 JET.

Now suppose statement (1) of Theorem 1.5 holds. By Proposi-
tions 1.1 and 1.3 we can write W(F) = Z/nZ[G] where n = 2s with
s = g(2P) = 1 or 2 and G is a group of exponent 2. Let Fo~ C if
w = 2 and Fo = F3 if w = 4. Then T7(F0) = Z/nZ so by Lemma 1.6,
there is a field K and an isomorphism TΓ(F) -» TF(JK") which maps G
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onto a subgroup H of Q(K). Then W(K) = Z/nZ[H] and by Lemma
1.7, K satisfies statement (2) and hence statement (3) of Theorem
1.5. Since the implication (2)=>(1) is obvious, the proof will be
complete if we can show that F also satisfies statement (3). By
[10, Theorem, p. 21] or [11, Ex. 13, p. 294], there is an isomorphism
t:Q(F)->Q(K) such that t([-l]) = [-1] and t(DF((a9 6») = Dκ((ta, tb)).
Thus if β — <α, b) is anisotropic over F then (ta, tb) is anisotropic
over K so \DF{β)\ - \Γι(Dκ((ta, tb)))\ = \Dκ«taf tb))\ = 2.

REMARKS. 1. If F satisfies the conditions of Theorem 1.5 with
n = 4 then W(F) = Z/nZ[H] for any subgroup H of Q(F) with
(Q(F): H) = 2 and [-1] t H.

2. It can happen that WF = Z/nZ[H] with Hςt Q(F). For ex-
ample, letF = Fβ((ί)). Then T7(F) - Z/2Z[H] with

- {1, <1, 2, ί>, α t, 2ί>, <1, 2, 20} .

PROPOSITION 1.8. jPor a formally real field the following state-
ments are equivalent.

(1) W(F) ^ Z[G] for some group G.
(2) W(F) = Z[iϊ] wfeerβ H is a subgroup of index 2 m Q(F)

noί containing [ — 1].
( 3 ) If φ = (alf , αTO> is anisotropic with [αj, , [αj distinct

in Q(F) then DF{φ) - {[αj, •••, [α j } .

(4) If H is a finite subgroup of Q(F) not containing [ — 1]
then there exists an anisotropic form φ with DF(φ) = H.

( 5) // [α[ Φ 1, [-1] ίfee^ ίΛβ image of e: Q(JP) -> Q ^ V T ) ) feαs
mcίeα; 2.

(6) For every formally real quadratic extension K of F,
(Q(K): Ime) - 2 .

(7) For every quadratic extension K of F, (Q(K): Imε) <; 2.
(8) For every anisotropic form β, \DF(β)\ ̂  2.
(9) For every anisotropic form φ, \D(φ)\ <; dim φ.
(10) The Kernel of the mapping Ψ: Z[Q(F)] -> W(F) is the ideal

generated by 1 + [ — 1].

REMARKS. 1. Fields satisfying the equivalent conditions of
Proposition 1.8 were introduced in [6] and have been studied in [1],
[2], [3], [4], [7], [15], and [16]. Following Elman and Lam we will
call them super Pythagorean.

2. If K/F is a quadratic extension of fields then ε: Q(F) -* Q(K)
is surjective if and only if F is formally real, Pythagorean, and
K = J F ( I / = 1 ) [11, Ex. 5, p. 216].

Proof. By Proposition 1.3, the group G in (1) is necessarily of
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exponent 2, so the equivalence of (1), (2), and (10) can be found in
[15]. The equivalence of (2) and (3) was observed in [16].

(3)=>(4). Let H b e a finite subgroup of Q(F) with [-Ϊ\£H.
Write H = {[αj, •••, [an]} with [αj, •••, [an] distinct in Q(F) and let
φ — (alf , αn> Since (3) holds, so does (2) and hence by [15,
Theorem 1] there is a signature σ: W(F) —• Z such that σ^a^) = 1,
1 — 1, , n. Then σ(φ) = n so φ is anisotropic. By (3), DF(φ) = H.

(4)=>(5). If [a] Φ 1, [-1] then [-1] is not in the subgroup
{1, [—a]} of Q(F) so there exists an anisotropic form φ such that
DF(φ) — {1, [ — a]}. Write φ = <1>±^'. If ^ does not represent — a
then φ = <1, 1, , 1> and since Zλp«l, 1» = {1} implies that
DF((1, •••,!» = {1} it follows that DF((1, 1» = {1, [-α]}. Hence
<1, α> = < —1, —α>, i.e., [ — 1] e ΰ ^ l , α». Now choose an anisotropic
form ψ such that DF(ψ) = {1, [a]} and write α/r = <1> ± f . If ψr'
does not represent a then, as above, we get DF((lt 1» = {1, [a]}
which implies that [a] = 1 or [ —1] = 1. Thus [a\eDF(ψ') so
DF((1, α ) ) c ΰ ( f ) = {1, [α]}. But then [ - l ] 6 ΰ ^ ( ( l , α» implies that
[a] = 1 or [ — 1] = 1. This contradiction forces [ — α] eDF(φf) whence
DF((1, — α» = {1, [ — α]}. Then the Exact Sequence 1.4 implies that
the image of ε: Q(F) -> Q{F(V~a)) has index 2.

(5) => (6) is clear.
(6) =* (7). We first show F is Pythagorean. Let [a] e DF((1, 1».

Then |jP(v/"α~) fis formally real so if [a] Φ 1, the image of ε: Q(F) ->
Q(F(V~a)) has index 2. Thus DF((1, - α » = {1, [-α]}. But [α] 6
-Dί.«l, 1» so <1, -α> = <-l , α> whence [-l]e{l, [-α]}. Since F is
formally real, this forces [a] — 1 and F is pythagorean. Then
Fiy — 1) is the only nonreal quadratic extension of F and by Remark
2 following the proposition, the map Q(F) -> QζFCi/^ϊ)) is surjective.
The implication (7) => (8) follows from Exact Sequence 1.4, (8) ==> (9)
follows from the proof of [5, Th. 3.3] (or induction), and (9) => (3)
is obvious.

REMARK. If u is a unit in the Witt ring of a pythagorean field
F then u = <α> for some a e F. Hence if W(F) = Z[iϊ] with Jϊ
a subgroup of units of W(F) then HaQ(F), (Q(F): H) = 2, and
[-1] e H. Moreover, by [15, Th. 1], W(F) = Z[£Γ'] for any H'aQ(F)
with [- l ]g JSΓ' and (Q(F): H') = 2.

Combining Theorem 1.5 and Proposition 1.8 we obtain

THEOREM 1.9. For a field F the following statements are
equivalent.

(1) W{F) = Z/nZ[G] for some integer n]^ 0 and some group G.
(2) TΓ(F) = Z/nZ[H] where either n = 2 and H = Q(F) or
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n 6 {0, 4} and H is a subgroup of index 2 in Q(F) with [ — 1] $ H.
(3) For every binary anisotropic form β, \DF(β)\ ̂  2.
(4) For every anisotropic form φ, \DF(φ)\ tί dim φ.
(5) For every finite subgroup H of Q(F), with [ — 1}£H if

s(F) Φ 1, there exists an anisotropic form φ such that DF(φ) = H.
( 6 ) For every quadratic extension K of F, the image of

ε:Q(F)->Q{K) has index ^ 2 in Q{K).

(7 ) // [a] Φ 1, [-1] then DF((1, α>) = {1, [a]}.
( 8 ) If φ — <αlf , an) is anisotropic with [αj, , [an] distinct

in Q(F) then DF(φ) = {[αj, •••, [an]}.
( 9 ) The Kernel of the homomorphism Ψ: Z[Q(F)] -» W(F) is

either the ideal generated by 1 + [ —1] or the ideal generated by
1 + [-1] and 2(1 - [-1]).

DEFINITION 1.10. By a field of class C we will mean one which
satisfies the equivalent conditions of Theorem 1.9.

EXAMPLES 1.11. ( i ) Any field with at most 2 square classes,
e.g., a quadratically closed field, a Euclidean field, or a finite field,
is a field of class C.

(ii) A formally real field is of class C if and only if it is
superpythagorean.

(iii) If F is a nonformally real field with \Q(F)\ < oo then F
is a field of class C if and only if \Q(F)\ = u(F) where u(F) is the
w-invariant of F (see [5], [16]). In particular, nondyadic local fields
are of class C.

(iv) If F is of class C and / is a totally ordered set then the
field F((tt))ieI of iterated formal power series over F is a field of
class C.

COROLLARY 1.12. If {Fi}ieI is a direct system of fields of class
C then their direct limit lim^ Ft is a field of class C.

Proof. Let F = liπ^ Ft and let ft: i^ —> F be the natural inclu-
sion, is I. Then F = Uie/ΛO^) and each / f(i^) = Ft is of class C
so we may assume that F = U i e / ^ Let aeF with [a] Φ 1, [ — 1]
in Q(F) and let [b]eDF((l, a)). Then there exist x,yeF such that
6 = χ2 + α#2. Choose i e / such that α, b, x, y e Ft. Then [α] =£ 1,
- 1 in Q(^) and [b]eDF.((l, a)). Since F, is of class C, [6] = 1 or
[a].

2* Going up and going down*

THEOREM 2.1 (Going down). Let K/F be a finite extension of
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fields. If K is a field of class C then so is F.

The following result of Elman and Lam will be crucial in the
proof of Theorem 2.1.

Norm Principle [9, 2.11]. Let K/F be a quadratic extension
and let N: K—> F denote the norm. Let xeK and let φ be a form
over F. If (N(x))φ = ψ over F then (x)φκ = τκ over K for some
form τ over F.

Proof of Theorem 2.1. We proceed by induction on [K: F]. By
the induction assumption we may assume that there is no field L
with F^L^K. First suppose [K: F] > 2. Let <1, α>, [a] Φ 1, be
an anisotropic form over F and let [δ] eDF((l, α». Since If contains
no quadratic extension of F, <1, α> remains anisotropic over K and
[α] ^ 1 in K. Hence A,«l, α» = {1, [a]}. Thus, in Q(K), [b] - 1 or
[α], whence [6] - 1 or [a] in Q(JP).

Thus we are left with the case K — F(i/ a) where [a] Φ 1. Let
ε: ζKF) —» Q(JSL) be the natural map. If ε is surjective then F is
formally real, Pythagorean, and K = ^("i/ —1). If b e F with [b] Φ 1,
[ — 1] then <1, 6> is anisotropic over K so Dκ((l, δ» = {1, [6]}. Hence
l^(α&>)c{U-l] , [&],[-δ]} . If [ - l ] e ^ « l , & » then <1, δ> ~
<-l, -δ> over F which forces 2<1, δ> = 0 in W(F). Since F is
Pythagorean, this implies [b] = [ — 1]. Hence DF((1, δ» = {1, [δ]} and
ί7 is superpythagorean.

Now suppose ε is not surjective and choose [x] e Q(K), [x] ί Im ε.
Let N:K->F be the norm. Since (N(x))(l, N(x)} = <1, N(x)) over
F, it follows from the Norm Principle of Elman-Lam, that there
are c, d in F such that <#><1, N(x)) = <c, cί> over Ê . If <c, d> were
anisotropic over K then either Dκ((c, d}) — {[c], [cί]} if [c] Φ [d] in Q(iΓ)
or Dκ((c,d))c:{[c],[-c]} if [c] = [d]. Since [x]ί lmε, (c, d) and
hence <1, iV(x)> must be isotropic over K. Hence [N(x)] = [ — 1] in
Q(K) and so [N(x)] e {[-1], [-a]} in

1. [N(x)] = [-1]. Then [iSΓ î/'α")] = [a] in Q(F), and since
<α><l, α> = <1, α>, the Norm Principle applies to find c, d in F with
<flci/α><l, α> = <c, cί> over iί. If <1, α> is anisotropic over K then
[ccl/̂ α~] 6 Im ε, which implies, via Exact Sequence 1.4, that [a] = 1 in
Q(F). Thus <1, a) is isotropic over K, i.e., $(JBL) = 1. Since [x] $ Im ε
and [N(x)] = [-Ϊ\ in Q(F), β(F) ^ 1. Thus K = F(V=1). Now
choose δ e F with [δ] Φ 1, [-1]. Then [δ] Φ 1, [-1] in if so <1, δ>
is anisotropic over K and JD*«1, δ» = {1, [δ]}. Then DF((l, δ» c
{!,[-!], [δ], [-δ]} and if [-1] eΰ, ( ( l , δ» then the Norm Principle
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yields c, d in F with <#><1, δ> s (e, d) over K. This is impossible,
because <1, δ> is anisotropic over K and [x] £ Im ε. Thus DF((1, δ» =
{1, [&]

Case 2. [N(x)] = [ —α]. If there exists [#] in Q(K) with [y] e Im β
and [N(y)] — [ — 1] then we have returned to Case 1. Thus we can
assume [N(y)] = [-α] for all 2/ίImε. Thus DF((1, -a}) = {1, [-α]}.
Now let [δ] ^ 1, [ —1]. If <1, δ> is isotropic over K then [6] 6
{[-1], [-α]} c Q(jp) and so [6] - [-a]. Thus JD,«1, δ» - {1, [b]}. If
<1, δ> is anisotropic over K then DF((l, δ» c {1, [α], [δ], [αδ]}. If
[α] € D,«l , δ» then [~δ] e JD^«1, - α » = {l, [-α]}. Hence [6] = [α] and
i),«l, δ» c {1, [α], [δ], [αδ]} - {1, [δ]}.

COROLLARY 2.2. // G is a finite group of automorphisms of a
field K of class C then KG is also of class C.

Our next objective is to show that a quadratic extension of a
field of class C is also of class C. For any extension K/F of fields,
let ε: Q(F) -> Q(K) and i: W(F) -+ W(K) be the natural maps and let
N: K-* F denote the norm.

PROPOSITION 2.3. Let K/F be a quadratic extension of fields
and let R — Im i. If F is a field of class C then W(K) is a free
Έt-module of rank <; 2. If [δ] is any element in Q{K) with [δ] g Im ε
then {1, <δ>} is an R-basis for W(K).

The proof of Proposition 2.3 requires two lemmata.

LEMMA 2.4. Let F be a field of class C and let φ be an aniso-
tropic form over F.

(1) If [a] Φ 1, [ — 1] and <1, a)φ = 0 in W(F) then there exists
a form ψ such that ^ = <1, — α) ® ψ.

(2) If s(F) Φ 1 and 2φ = 0 then φ = 2ψ for some form ψ.

Proof. (1) By [8, Cor. 2.3], we can write φ = β, ± JL βr

where each βi is binary and <1, a}βt = 0 in W(F). If there exists
an i such that ft = <δ, δ> then jD^ft) = {[δ], [~δ]} so <~α>ft ^ ft
implies [-a] e{l, [-1]}. Thus βt = (ei9 dt} with fo] =£ [<ZJ. Then

= {[βj, [d*]} and [~αcέ] 6 {[cj, [dj}. Since [α] ^ [-1], [-αcj =
Thus <c, di) = (CiXl, —α> and ^ = <1, —α> ® (clf , cr>.

(2) Write ^ = ft 1 ± ft with ft = <c<, d,) and 2ft = 0 in
W(F). Then (cίf di) = (—ci, —d^. Since ft is anisotropic and s(F)Φl
it follows that [cj = [dj. Hence ^ = 2(clf , c r).
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LEMMA 2.5. Let K/F be a quadratic extension of fields with F
a field of class C and let R = Im i. If [b] e Q(K) — Im ε and φeR
then (b)φ — φ in W(K) implies φ = 0.

Proof. Write K = F(yra) with a e F. Since [b] & Im ε and
[N(b)]eDF((l, - α » it follows that [N(b)] = [-a] if [α] Φ [-1] and
[JV(6)] = [ — 1] if [a] = [—•1]. Let /0 be an anisotropic form over F
such that ρκ = φ in W(K). Then (b)pκ = ^ over If so by Scharlau's
Norm Principle [11, Th. 4.3], (N(b))ρ ^ p over F. Thus either
<1, a)ρ = 0 if [α] =£ [-1] or 2/9 = 0 if [α] = [-1]. In the first case,
Lemma 2.4(i) implies that /? ~ <1, — α> (x) ̂  for some form ψ so
^ = PK = 0 in TF(iΓ) and in the second case, s(F) Φ 1 so ^ = 2ψ for
some ^ which implies that φ = pκ = 0 in TΓ(JSL), UL = 2 (̂1/ — 1).

To prove Proposition 2.3, we may suppose Im ε Φ Q(K). Choose
[b] 6 Q(K) — Im ε and suppose φ, ψ are elements of R such that
ψ + ψ(b} = 0mW(K). Let τ = φ-ψeR. Then <6>τ = (b)φ - (b)ψ =
<6>̂  + ^ = — 'f + ^ = r so by Lemma 2.5, φ — ijr. But then ( — b)φ — φ
and [-5]?Ims so ^ = 0, proving that 1, <δ> are β-linearly in-
dependent. By Theorem 1.9, (Q(K): Imε) = 2 so the set {1, <δ>}
generates W{K) as an 5-module.

PROPOSITION 2.6. Let F be a field of class C, let n = 2s(F), let
K = ^ ( T / a) be a quadratic extension of F, and let R = Im i.

( 1 ) 7/ s(X) - 1 ί&ίm 72 - Z/2Z[Im ε]. Moreover, if K =
F(λ/—1) then R = Z/2Z[JΪ] where H is any subgroup of index 2 m

(2) 1/ 8(JBL ) ^ 1 then R = Z/nZ[ε(H)] where H is a subgroup
of index 2 in Qί-F7) wiίfe [α]eJϊ and [~-l]&H.

(3) i is surjective if and only if W{K) = Z/2Z[Im ε] if and
only ifK= F(i/—1) with F superpythagorean.

Proof. First assume K — F{y/"a) with [a] Φ [ —1]. Then we can
find a subgroup if of Q(F) with [α] e H and TΓ(JF) = Z/nZ[H]. Then

the exact sequence 1 —> {1, [α]} ~> iί—> ε(iϊ) —> 1 induces an exact
sequence

0 > (1 - <α»Z/nZ[if ] > Z/nZ[H] > Z/nZ[e(H)] > 0

which, together with the exact sequence

0 >(1 - (a))W(F) > W{F) > R > 0

shows that R = Z/nZ[ε(H)].
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Now [a] Φ [-1] implies that s(F) = s(K) by 1.9(2). Thus if
s(K) = 1 then n = 2, H = Q(F), and ε(iί) = Im e and if s(JBΓ) =*= 1
then s{F) Φ 1 so [ - l ] ί i ϊ and (Q(F): H) = 2. This proves (2) and
part of (1).

If K= F(τ/-1), let if be any subgroup of Q(F) with [-l]g iϊ .
Then W{F) — Z\nZ\H\ and the restriction of e to H induces an
isomorphism H = ε(JEΓ). Then from the exact sequences

0 • 2Z/nZ[H] > Z/nZ[H] > Z/2Z[H] > 0

0 > 2W(F) > W(F) > R > 0

we see that the natural sur jection Z/2Z[H] —> R induced by the
isomorphism H = e(jff), is an isomorphism R = Z/2Z[ε(H)]. Since
[-1] = 1 in Q(JBΓ), ε([α]) - e([-α]) for any [α] e Q(F). Now either
[α] or [ —α] is in ί ί so ε(H) = Im ε.

Statement (3) follows from (1) and Remark 2 following the state-
ment of Proposition 1.8.

Combining Propositions 2.3 and 2.6 we obtain

THEOREM 2.7. Let K/F be a quadratic extension of fields with
F a field of class C. Write W(F) - Z/nZ[H] with H(zQ(F).

( 1) If K Φ F(τ/-1) then W(K) = Z/nZ[G] where G is the sub-
group of Q(K) generated by ε(H)and any element [b] in Q(K) — Im ε.

( 2 ) If K = F(V=Ϊ) then W{K) - Z/2Z[Q(K)].

COROLLARY 2.8. If K is a quadratic extension of a field of
class C then K is also a field of class C.

DEFINITION 2.9. By a 2-extension of F we mean a field K with
FaK(zF{2) where F(2) denotes the quadratic closure of F.

COROLLARY 2.10. A 2-extension of a field of class C is again a
field of class C.

Proof. If [K: F] is finite this follows from repeated applications
of Corollary 2.8 and the general case then follows from Corollary
1.12.

COROLLARY 2.11. Let K/F be a finite extension of fields with
the same quadratic closure. Then F is a field of class C if and
only if K is.

PROPOSITION 2.12. Let G be a finite group with no subgroup of
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index 2. Then there exists a Galois extension N/F with group G
such that F is a field of class C and for all fields K with F £Ξ KaN,
K is not a field of class C.

Proof. As in [17, Example] or [18, Theorem 1.2] we can find
a Galois extension N/F with N formally real, F Euclidean (uniquely
ordered with 2 square classes), and Gal (N/F) = G. Let K be any
field with F^KaN. Since G has no subgroup of index 2, [K: F]>2
and since the unique ordering on F has [N: F] extensions to N, it
must have [K: F] extensions to K. Because F is uniquely ordered,
a result of Prestel [12, 9.2, p. 146] states that K satisfies the Strong
Approximation Property (SAP-see [7], [12]). By [7, Cors. 4.5 and
5.7] a field with more than 2 orderings which satisfies SAP cannot
be superpythagorean and so K is not a field of class C.

COROLLARY 2.13. For each integer n ^ 3 there exists an ex-
tension K/F with F a field of class C, K not of class C, and
[K: F] = n.

We conclude this section with a result analogous to [6, Satz 4].

PROPOSITION 2.14. For a field F with s = s(F) Φ 1 the following
statements are equivalent.

(1) F is a field of class C.
( 2 ) W(K) is a free Z/2sZ-module for all quadratic extensions

/^ϊ) of F.
Dκ((l, 1» c {1, [ — 1]} for all quadratic extensions Kφ

Proof. (1)=>(2) follows from Theorem 2.7 and (2) =>(3) from
Corollary 1.2.

(3) => (1). If [a] Φ 1, [-1] and K = F(V~a) then D*«l, α» =
Dx((l, l » c { l , [ - l ] } so Z ^ « l , α » c { l , [-1], [α], [-α]}. If [-α]e
DF((1, a}) then by Elman and Lam's Norm Principle, there exists
beF such that <τ/αΓ><l, 1> ̂  <δ, δ> over K. Then [bV~a] e Dκ«l, 1»
so [i/αΓ] 6 {[6], [-6]} c Ker (Nκ/F: Q(K) -* Q(J^)). Since [a] Φ [-1] it
follows that [-α] gΰ f ( ( l , α» and DF({1, α» - {1, [a]}.

3. 2-extensions* There is a close connection between the
behavior of quadratic forms over a field F and the structure of
the Galois group of its quadratic closure. In this section, we shall
prove several results illustrating this principle in the case of fields
of class C. As before, if K/F is an extension of fields then ε = eκ/F
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will denote the natural map Q(F)-+Q(K) and F(2) will denote the
quadratic closure of F.

PROPOSITION 3.1. F is a field of class C if and only if for
every 2-extension K of F, (Q(K): Im ε) ̂  [K: F].

Proof. (=>) We may assume [K: F] = 2n is finite. We proceed
by induction on n. If n = l this is Theorem 1.9. Thus suppose
n > 1 and choose L with FaLaK and [L: F] = 2. By Corollary
2.8, L is a field of class C so the induction assumption forces
(Q(K): lmeκ/L) <̂  2*"1. Now ε = eκ/LoeL/F and the natural surjection
Q(L)/Im eL/F -» Im eκ/Lβm ε implies that (Im eκ/L: Im ε) <; (Q(L):
Im eL/-p) ^ 2. Hence (Q(K): Im ε) = (Q(K): Im ε^XIm ε^/L: Im ε) ̂  2%.

(<=) follows from Theorem 1.9.

REMARK. For nonreal fields of class C we need not have equality.
For example, if F is a finite field and K is any 2-extension of F,
Kφ F(2), then (Q(JSΓ): Ime) = 2. However, we do have the follow-
ing

THEOREM 3.2. For a field F with —1$F2 the following state-
ments are equivalent.

(1) F is a field of class C.
(2) [K: F] — [Q(JSΓ): Imε] for all finite Galois 2-extensions K

with -UK2.
(3) Gal (K/F) is a group of exponent 2 for all finite Galois

2-extensions K with — 1 g K2.

Before proving Theorem 3.2, it will be convenient to record

LEMMA 3.3. Let K/F be a finite Galois extension with group
G. Then [b] e Q(K)G if and only if K(VΎ) is Galois over F.

Proof. Let [6] e Q{K)G. If σ is an 2^-homomorphism of K(VT)
into the algebraic closure of F then σ(K) = K so σ(b) = bx2 for some
x in K. Hence σ sends VΎ to ±Vσ(b) = ±xVΎ eK(i/Ύ)m Hence
K(y~~b) is a normal extension of JP. Since K(Ύ/Ύ)/K and if/F are
separable, it is a Galois extension.

Conversely, suppose JKΓCi/lΓ) is Galois over i*7. Then for σ 6 G,
JΓ(T/T) = KO/σHS)) so [δ] = [σ(&)] in Q(K).

Proof of Theorem 3.2. (1) => (3). Let i ί be a finite Galois 2-ex-
tension of F with — l g i ί 2 . If GB1(K/F) is not of exponent 2, it
contains a cyclic subgroup H of order 4. Let L = JK"H. The unique



WHEN ARE WITT RINGS GROUP RINGS? II 555

quadratic extension of L in K has the form L(vV + y2 ) where
x, y 6 L and [x2 + y2] Φ 1 in Q(L) [11, Ex. 8(a), p. 217]. Since F is
a field of class C, so is L, so [x2 + #2] - [ - ! ] . Thus - 1 6 K2, contrary
to assumption.

(3)=>(1). Let K=_F(vra) with [a] Φ 1, [-1]. We show that
if [δ] £ Im ε then [δl/α ] e Im ε, whence (Q(K): Im ε) = 2. Consider
the extension K(VΎ). If TV is the closure of K(λ/ b) over F then
|Gal CN/.F)| = 4 or 8 and since [δ]£lmε, G&l (N/F) is jnot a group
of exponents. By (3), we must have - 1 e N\ so JV= JBL(T/ 6 , τ/σ(6)) =
JL(T/¥, I / 1 1 ! ) . Hence [σ(δ)] = [-1] in Q(K(VT)) which implies that
[α(6)] = [-1] or [-δ] in Q(JSΓ). If [tf(δ)] = [-1] then [6] = [-1] 6 Im ε.
Hence [σ(b)] •= [-δ] and so [δi/ α ] e Q(JBΓ)*, (? = Gal (K/F). By
Lemma 3.3, L = KQ/bVΊϊ) is a Galois extension of F. If V^eL
then L = ^ ( l / ^ ) and [bV~a] = [-1] e lmε. I ^ l / ^ Ί ^ L then
Gal (L/ί7) is a group of exponent 2, so again [δl/ α ] e Im ε.

(1) => (2). We proceed by induction on [K: F]. Since (1) holds,
so does (3), so Gal (K/F) is of exponent 2. Hence we can find a
Galois extension L/F with K = L(τ/T), δ 6 F, [b]Φl in Q(F). Con-
sider the surjective map Q(L)/Im εL/2, — »̂ Im ε^/jL/Im ε. If x e Ker εκ/L

then εκ/L(x) e Im ε so there exists y in Q(JP) such that εκ/L(x) — ε(y) =
sK/L^L/F(y))' Hence ί»eL/ί.(y) 6 Ker ε π / i = {1, [δ]} c Im εL/F. Hence aj e
Im εL/F and ε^^ is an isomorphism. Thus (Q(K): Im ε) = (Q(K): Im ε^/L)
(Im εκ/L: Im ε) - (Q(JSΓ): Im εκ/L)(Q(L): Im s i / F). Now (Q{K): Im ε^/L) ==
[E::L] = 2 since L is a field of class C and - l g i ί 2 and (Q(L):
Im eL/jP) = [L: F] by the induction assumption.

(2) => (1). This follows from Theorem 1.9(7) together with Ex-
act Sequence 1.4.

REMARK. It can be shown that if F is any field of class C and
if is a finite Galois extension with [Q(K): Im ε] == [K: F] then
Gal (K/F) is of exponent 2.

As a variation of Theorem 3.2 we have

THEOREM 3.2'. For a formally real field F the following state-
ments are equivalent.

(1) F is superpythagorean.
(2) [K: F] = [Q(K): Im ε] for all finite formally real Galois

^-extensions K.
(3) Gal (K/F) is a group of exponent 2 for all finite formally

real Galois ^-extensions K.

Proof. The implications (1) =* (2) and (1)=>(3) follow from
Theorem 3.2, while
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(2) ==> (1) is contained in Proposition 1.8.
(3) => (1). As in the proof of (3) ==> (1) in Theorem 3.2, we show

that if K = F(i/ΊΓ) is a formally real quadratic extension and
[6] ί Im ε then [δl/̂ cΓ] 6 Im ε.

Let < be an ordering on F which extends to the formally real
field K. Let < x , < 2 be its extensions to K and suppose 0 < x V a,
V a < 2 0. We assert that if c e K is positive with respect to both
< ! and < 2 then [c] e Im ε. Indeed, if 0 <<t c, i = 1, 2, then the
ordering < will have four extensions to the field K(l/ c ) and hence
if R< is a real closure of F with respect to the ordering < then
the minimal polynomial f(x) of a primitive element for K(l/ c ) over
F will have 4 roots in i2<. Since [K(Λ/~C~)\ F] = 4 the splitting field
JV of /($) will be contained in R< and therefore will be formally
real. The extension K(λ/~c~)/F consists of successive quadratic ex-
tensions so the Galois group Gal (N/F) is a 2-group (in fact,
Gal (N/F) = 4 or 8). By (3), Gal (N/F) is a group of exponent 2, so
KO/ΊΓ) is Galois over F and Gal (K(Λ/ΊΓ)/F) is the Klein 4-group.
Hence [c] e Im ε.

Now choose [6]£lmε. Then [— &]<£lmε so & must be positive
with respect to one of the orderings on K and negative with respect
to other. Replacing [6] by [ — &], if necessary, we may suppose
0 < ! 6 and b < 2 0. Then bV a is positive with respect to both
orderings, so [δτ/α ] e Im ε.

The following rather technical lemma will be crucial in our
investigation of fields of class C with s(F) = 1.

LEMMA 3.4. Let F be a field of class C with s(F) = 1.

(1) If La.F^Val Ii = 1, , r) wiift α< 6 F and n^O and if
K is a quadratic extension of L then there exists c in F such that

KdF( ^a19 •••, ^Q>r, V c ).
( 2 ) If K is a finite 2-extension of F then there exist aίf , as

in F and nonnegative integers mlf , ms such that

Proof. (2) follows from (1) by induction. To prove (1), let K —

L0/x), N=F(2nVa^, •• ,2?Vα7), and write N as the union of a
tower of fields F = Fo c Fx c c Ft = JSΓ where [F<+1: .FJ = 2 and
2^ = Fi-til/yi) with yf = 2Vά7 for some 1 <; fc <̂  r and 0 ^ j < %.
Let ε̂ : Q(i^_i) —> Q(i^) be the natural map and let i0 be then smallest
index such that there exists x0 in Fio with [xo[ = [%] in Q(N). If
i0 = 0 then K = L(l/ & ) c iV(i/ίCo) and we are done. If i0 > 0 then
[#o] £IHIείo so, since F is a field of class C and - l e i 7 2 ,
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Im εiQ. Now choose ix < i0 smallest such that there exists x1e Fh with
[a J = [Xo\/yio ] in Q(N). If \ = 0 we stop and if i t > 0 we continue
in this way, obtaining a decreasing sequence i0 > ix > > it = 0
and a?y 6 JF7 ,̂ i = 0, , ί, such that [xj+1] = [XjVyΰT] in Q(JV). Then

and, in Q(Λ0, [»*]== fo-iV'ϊ^]j= = [ s v ^ Vyι~].
Hence i/~x" eF(bly , 6S, τ/sc7), 6* = aw<+Vα,, proving (1).

THEOREM 3.5. For a field F with \Q(F)\ > 2 the following state-
ments are equivalent.

(1) F is a field of class C with s(F) = 1.
(2 ) If K is a quadratic extension of F and G = Gal (K/F) then

W(K)G = TF(ίO.
(3) Every 2-extension of degree A is a Galois extension.
(4) If K is a Galois extension with Gal (K/F) a 2-group then

every subgroup of index 4 in Gal (K/F) is normal.
(5) 27&β Dihedral group of order 8 does not occur as a Galois

group over F.
(6) Every Galois extension of degree 8 is abelian.

Proof. We first note that if K — F(V a) is a quadratic exten-
sion of F and if G = Gal (JK/J?7) then [u + i i /T] 6 Q(iίT if and only
if [u2- v2a] 6 {1, [a]} in Q(.F). Thus if [a] Φ 1, [-1] then ^(JS:)^ - Q(K)
if and only if s(F) = 1 and 2?j.«l, α» = {1, [α]}, proving the equiva-
lence of (1) and (2). The equivalence of (2) and (3) follows from
Lemma 3.3, the equivalence of (3) and (4) is elementary Galois
theory, and the implications (4) => (5) and (6) => (5) are obvious.

(5) => (3). If K is a nonGalois 2-extension of degree 4 over F
then the Galois group of its Galois closure will be a subgroup of
order 8 in the symmetric group of degree 4, i.e., the dihedral group
of order 8. It remains to prove

(5) => (6). We show that the quaternion group Q cannot occur
as a group over F. If Q did occur there would exist fields L, K,
and α, b in F such that Fa L c K, [K: L] = 2, L = F(V"~a9 VT)9 and
Q z=z Gal (K/F). Since (5) holds, so do statements (1) and (3), so by
Lemma 3.4 we could find c in F such that KaF(VΊΓ, ^~b,V~c).
By (3), the extensions F(fya), F(VT) are Galois and hence abelian
over F. But then K would be contained in an abelian extension.

REMARKS. 1. Since there exist quadratically closed fields which
admit the alternating group A4 as Galois group, the hypothesis that
K/F be a 2-extension is essential in statement (3).

2. If F is a field with |Q(JSΓ)| = 2 then F is a field of class C,
F satisfies the conditions (2)-(6) (see Prop. 3.10), but we may have
s(F) Φ 1.
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3. The statement that W(K)G = W(K) for all Galois 2-exten-
sions K of F, G = Gal (K/F), is not equivalent to the statements in
Theorem 3.5. We will see that the field Q^ of 5-adic numbers
provides an example of a field satisfying the statements of Theorem
3.5, but not the stronger condition. Indeed, we have

THEOREM 3.6. For a field F with \Q(F)\ > 2 the following state-
ments are equivalent.

(1) F is a field of class C and for all n ^ 1, all 2%th roots of
unity lie in F.

(2) Every 2-extension of F is abelian, i.e., GB1(F(2)/F) is an
abelian group.

(3 ) Every finite 2-extension of F is Galois.
(4) If K/F is a finite Galois 2-extension with G = Gal (K/F)

then W(K)G = W(K).

Proof. (1) => (2). It suffices to show that every finite 2-extension
K of F is abelian. By Lemma 3.4, K is contained in a composite

of extensions of the form F(2Va), aeF, n ^ 1. Since all 2wth roots
of unity are in F, any such extension is cyclic, which proves that
K/F is abelian. The implication (2) ==> (3) is immediate, while (3) => (4)
follows from Lemma 3.3.

(4) => (3). We proceed by induction on [K: F] > 1 to show that
the 2-extension K/F is Galois. Since K is a 2-extension there is a
field L with FaLcK and [K: L] = 2. By the induction assump-
tion, L/F is Galois and so by (4), together with Lemma 3.3, K/F
is Galois.

(3) => (2). By Theorem 3.5, the quaternion group Q does not
occur as a Galois group over F. But by [13, 5.36, p. 92], any non
abelian group all of whose subgroups are normal has Q as a homo-
morphic image. Hence all 2-extensions are abelian.

The proof that (2) implies (1) will use the following easy

LEMMA 3.7. Let F be any field and let [a] Φ 1 in Q(F). If

there exists n ^ 1 such that ί\2V a) = F(2n Vα) then [a] = [ —1].

Proof. Let b, - V~af i = 0, , n + 1, let Fo = F and Fi+1 =

/ i = 0, , n, let e,: QiF^) -> Q(Ft), i = 1, , n + 1 be the
natural maps, and let Nt\ Q(Ft) -> Qίi^-i) be the norms. Now bn =

6*-! is a square in Fn so [&J 6 Im sΛ = Ker Nn whence [δ%_J = [ —1]
in Q( ίU) . But then [ U e l m s ^ so [&,_J = [-1] in Q(Fn_2). Con-
tinuing in this way, we get [a] = [ —1].
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Now assume (2). By Theorem 3.5, F is a field of class C so we

need only show that all 2%th roots of 1 are in F for all n ^ 1. If

not, choose n smallest such that some 2nth root ζ is not in F. Then

ζ2eF so [F(ζ): F] = 2. Since \Q(F)\ > 2, there exists a in F with

V 7 ί F ( ζ ) . Since i / ^ Ί e T O it follows that [α] ^ [-1] in Q(F(ζ)).

By Lemma 3.7, [F(ζ, 2VT): F(ζ)] - 2\ Hence ζ£ F(2VT) so we can

find τ in Gal (F(ζ, *Va)IFCVa)) such that τ(ζ) =*= ζ. Let </ be the

jF(ζ)-automorphism of JF^Vα", ζ) sending 2V~a to ζ2V α. Then

στ(2V"cΓ) = ζ2V"α" while rσ(2V"ά") = τ(ζ)2\/~cΓ. Hence στ Φ τσ and F

has a nonabelian Galois 2-extension, completing the proof.

EXAMPLES 3.8. ( i ) The field Q5 satisfies the conditions of
Theorem 3.5 but not Theorem 3.6. Given any field F of class C
with s(F) — 1 there is a field K satisfying the conditions of Theorem
3.6 with W{K) s W(F).

(ii) Becker [1] has shown that if F is superpythagorean then
Fiy^) satisfies condition (2) of Theorem 3.6. In particular JF(τ/^ϊ)
contains all 2%th roots of unity.

(iii) If FQ is quadratically closed and F = jP0((*i))<e/ is a field of
iterated formal power series over F then F is field of class C and
F contains all 2%th roots of unity. Hence all Galois 2-groups are
abelian.

(iv) If K is a quadratically closed field and G is an abelian pro
2-group of automorphisms of K then K is the quadratic closure of
KG and G = Gal (K/KG). Hence Kσ is a field of class C.

COROLLARY 3.9. Let F be a field of class C with \Q(F)\ > 2.
Let {[ai]}ieI be an F2-basis for Q(F), let F(2) be the quadratic closure
of F, let GF(2) = Gal (F(2)/F), and let GF{2)' denote the closure of
the commutator subgroup of GF{2). Then

(1) If s{F) = 1 then F{2) = F(2n^\ iel9nt^ 0).
(2) If all 2wth roots of unity are in F then GF{2) = Z{, where

Z{ denotes the direct product of \I\ copies of the additive group of
2-adic integers.

(3) GF{2) is isomorphic to one of the following: Z\ for some
set I or a nonabelian group which is either an extension of Z{ by
Z/2Z, by Z/2Z x Z{, or by Z( for some nonempty sets I, J.

(4) Every finite Galois 2-group of F is an extension of an
abelian group by an abelian group.

( 5) GF{2)f is an abelian group.

Proof. (1) follows from Lemma 3.4.
(2) Consider the map π: GF{2) -> Z\ induced by the natural
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maps πt: GF(2) -> Gal (FCVC^^JF) ^ Z2, ie I. Since {[αj | i e 1} is a

basis and the finite extensions F(2 \/α~) are cyclic, it follows that for
fixed i in 7, Ff^'cΓi\ni ^ 0) Γ) Ff^ΊΓ^j Φ i, n5 ^ 0) = JF. Hence TΓ
is surjective and, therefore, an isomorphism.

(3) If GF(2) is abelian all 22th roots of unity are in F so by
(2), G>(2) ̂  Z{. If G*.(2) is not abelian, let L be the extension of F
obtained by adjoining all 2wth roots of unity, n 2̂  1. Then L is a
field of class C, Gal (L/F) is abelian, and by (2) Gal (F(2)/L) = Z{ for
some set I. If Gal (L/JP7) contains an automorphism g Φ 1 finite order
with fixed field K then by applying Lemma 3.7 we see that L =

ifCi/^). Hence Gal (L/F) = Gal (^(i/"11!)/^) x Gal (L/FO/^Λ)) and
Gal (L/F(l/^1)) has no elements of finite order. Now if G is any
abelian pro p-group with no elements of finite order, then by
Pontryagin duality there exists a divisible abelian p-group M with
G = Horn (Λf, Zp°°), where Zp°° is the p-primary component of Q/Z.
Since M is divisible, Λf ^ Zp°°(J) for some set J, whence G =
(Horn (Zp°°, Zp~))J ^ Zί. This proves (3).

(4) Let K be finite Galois 2-extension and again let L be the
extension obtained from F by adjoining the 2%th roots of 1 for all
w ^ 1. Then KΠ L/FaL/F so KΓ\L/F is an abelian extension.
By Theorem 3.6, KL/L is also an abelian extension and since
Gal (KL/L) = Gal (K/K n L), (4) is proved.

(5) Let L be as in (3) and (4). Since L/F is abelian, G>(2)' c
Gal (JF(2)/L) and the latter is abelian.

For completeness, we include the following result concerning
fields with exactly 2 square classes.

PROPOSITION 3.10. For a field F the following statements are
equivalent.

(1) W(F) e {Z, Z/4Z, Z/2Z[G]} with \G\ = 2.
(2) |Q(F)I = 2.
(3 ) Every finite 2-extension of F is cyclic.
(4) Either Gal (F(2)/F) = Z2 or Gal (F(2)/F) = Z/2Z. The second

possibility occurs if and only if F is Euclidean.

Proof. The equivalence of (1) and (2) is well known.
(2) => (3). Let K/F be a finite Galois 2-extension with group G.

Since \Q(F)\ = 2, G has a unique subgroup of index 2. But, for any
prime p, a p-group having a unique subgroup of index p is cyclic.

(3) => (2). If \Q(F)\ > 2 then F admits the Klein 4-group as a
Galois group.

(3) => (4). Assume (3). Then \Q(F)\ = 2. If s(F) = 0 then F is
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Euclidean so we may suppose s(F) > 0. We assert that for each
integer n ^ 1, F has a unique (cyclic) 2-extension of degree 2\
Indeed, since F is not formally real it follows from Theorem 1.5
that the unique quadratic extension of F has exactly 2 squares
classes and so also has a unique quadratic extension. Since a 2-
extension consists of a tower of quadratic extensions, F has exactly
one cyclic 2-extension of degree 2\ Hence Gal (F(2)/F) ^ Z2.

The implication (4) => (3) is clear.

We next prove a result about fields of class C with q(F) =
\Q(F)\ < oo. Recall that the rank of a pro p-group G, denoted rank
G, is defined to be the cardinality of a minimal set of generators
of the topological group G. We have rank G = dimFj) H\G, Z/pZ).
Moreover, if G* denotes the intersection of the Kernels of all homo-
morphisms G —> Z/pZ then rank G is finite if and only if dimFp G/G*
is finite and when this happens, they are equal. For details see [14,
4.2, 1-34-39].

THEOREM 3.11. For a field F the following statements are
equivalent.

(1) F is a field of class C with q{F) < oo.
( 2) There exists an integer m such that q(K) ^ m for all finite

2-extensions K of F.
(3) There exists an integer m such that q(K) ^ m for all 2-

extensions K of F.
(4) There exists an integer n such that for all Galois exten-

sions L/K with FdKczLc: F(2), rank Gal (L/K) ^ n.
(5) There exists an integer n such that for every Galois 2-

extension K/F, all closed subgroups of Gal (K/F) have rank g n.
(6) There exists an integer n such that rank H ^ n for all

closed subgroups H of Gal (F(2)/F).

Proof. (1) => (2). Taking m = q{F) this follows from Theorem
1.5 and Corollary 2.10.

(2) => (1). If F is not a field of class C then we can find a
quadratic extension of F1 such that q(Fj) > q{F). By Theorem 2.1,
Fx is not a field of class G so we can find a quadratic extension F2

of Fγ such that q(F2) > q(Fj). Continuing in this way we can con-
struct a tower JF\ c F2 c c Fm with Fm a 2-extension of F and
Q(Fi) > 0(*V-i) Thus q(Fm) ^ 2mq{F) > m for all m.

(2) ==> (3). Assume (2). Then there exists an integer m such
that q(K) ^ m for all finite 2-extensions K/F. If there exists an
infinite 2-extension L/F such that Q(L) contains m + 1 distinct ele-
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ments [αj, •••, [αw+1] then K — F(a19 •••, αm+1) is a finite 2-extension
with q(K) ^ m + 1.

(3) ==> (4). Choose m as in (3) and choose n with m 5S 2\ Let
L/K be a Galois extension with F<zK<zL<zF(2) and let G = Gal (L/iQ.
Then the elementary 2-group G/G* corresponds to a Galois extension
N/K and \G/G*\ ^ g(iΓ) ^ m. Hence dimF2G/G* ^ n, i.e., rankG g n.

(4) => (5). Let K/F be a Galois 2-extension and let H be a closed
subgroup of Gal (K/F). Then K/KH is Galois with group H so by
(4), rank H ^ n. The implication (5) —> (6) is immediate.

(6) => (2). Choose τ& as in (6) and let m be an integer with
2n ^ m. Let 1£ be a finite 2-extension of i*7. Then there is a closed
subgroup_ff of Gal (F(2)/F) such that K = F(2) f f. Let if, =
Gal (UL(T/T 16 6 K)jK). Then ίfx is a factor group of i ϊ so rank H, ^
r a n k H ^ n. Hence g(ίΓ) is finite and q(K) = 2 r a n k H l ^ 2W ̂  m.

COROLLARY 3.12 (cf. [1, Satz 19, p. 112]). For a field F and an
integer n ^ 0 the following statements are equivalent.

(1) F is a field of class C with q{F) = 2\
(2) For αii 2-e#£e?m(ms K of F, q(K) ^ 2n and there exists a

2-extension with q(K) = 2\
(3 ) For all finite 2-extensions K of F

{2n~ι if F is real and V~-ίeK

[2n otherwise.

( 4) Rank Gal (F(2)/F) = n and rank G ^ n for all closed sub-
groups G of Gal (F(2)/F).

( 5) For all closed subgroups G of finite index in Gal (F(2)/F),

τ „ , x (n-1 if F is real and Ί/:-leF(2)G

άimFzH\G,Z/2Z)= \ .
[n otherwise.

REMARK. If the conditions of Corollary 3.12 are satisfied for F
and n then for all m ^ n there exists a field K (of class C) with
FdKdF(2) and q(K) = 2W. Indeed, if Gal(F(2)/F) is of rank n
then for any m ^ n, Gal (F(2)/F) has a closed subgroup G of rank
m so we can take K =

For a field ί7, let W(JP) denote its ^-invariant and o(F) the
number of orderings.

COROLLARY 3.13. Let F be a field of class C. Then
(1) If F is not formally real then u(K) = u(F) for all finite

2-extensions K of F and u(K) ^ u(F) for all 2-extensions K of F.
Moreover, if K is a 2-extension with u(K) < oo then u(K) — 2m for
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some m Ξ> 0 and for each integer m ^ 0 with 2m ^ u(F), there exists
a 2-extension K with u(K) = 2m.

(2) (cf. [3, 3.9]) // F is formally real then o(K) = o(F) for
all finite formally real 2-extensions K of F and o(K) ^ o(F) for all
2-extensions K. Moreover, if K is any formally real 2-extension
with o{K) < oo then o(K) = 2m for some m ^ 0 and for each integer
m ^ 0 with 2m ^ o(F) there exists a formally real 2-extension K
with o{K) = 2m.

Proof. (1) follows from Corollary 3.12, the remark, and the fact
that u(K) = q(K) for any nonformally real field K class C (see [5],
[16]).

(2) If K is a formally real field of class C then K is su-
perpythagorean and by [7, Cor. 4.5], o{K) — l/2g(i£). Hence we
need only show that if m ^ 0 and 2m <̂  o(F) then there exists a 2-
extension if with o(K) = 2m. Let F x = F{V:-ί). Then ί7, is a field
of class C and q(F,) = l/2q(F) = o(F) ^ 2W. Let ^ be a 2-extension
of î 7! with q(Kt) = 2m and let K<z.Kγ be a maximal formally real
extension of F. Then K is of class C and if [α] =£ 1, [-1] in Q(K)
then JSΓCi/T) <£ K,. Hence Ker (Q(JBΓ) -> Q(^)) =J1, [-1]} so l/2g(iί) ^
^(iΓJ. On the other hand, l/2g(iQ - q(K{V-I)) ^ q{K,) so o(ίΓ) =
l/2q(K) - g(^) = 2".
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