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ON THE METRIC THEORY OF DIOPHANTINE
APPROXIMATION

JEFFREY D. VAALER

A conjecture of Duffin and Schaeffer states that
izan¢(n)n'1 = o0

is a necessary and sufficient condition that for almost all
real x there are infinitely many positive integers n which
satisfy |x —a/n| < a,n™! with (a,n) =1. The necessity of
the condition is well known. We prove that the condition
is also sufficient if a,=0(n™?).

1. Introduction. Let {a,},n = 2,38, 4, ---, be a sequence of real
numbers satisfying 0 < @, < 1/2. We consider the problem of deter-
mining a sufficient condition on the sequence {«,} so that for almost
all real x the inequality

1.1) !x_ﬂ|<_%
n n

holds for infinitely many pairs of relatively prime integers a and n.
We note that there is no loss of generality if we restrict = to the
interval I = [0,1]. Let A be Lebesgue measure on I and define

E,= U (L%, 21%),
a=1 n n

(a,n)=1

where (a, ») denotes the greatest common divisor of ¢ and n. Then
our problem is to determine a sufficient condition on {a,} so that

(1.2) lim {0 E} =1.
N—-oo n=N
It is clear that \(E,) = 2a,p(n)/n where ¢ is Euler’s function.
Thus by the Borel-Cantelli lemma,

(1.3) i;zMEn) = 222%%@ = too

is a mecessary condition for (1.2) It has been conjectured by Duffin
and Schaeffer [4] that (1.3) is also a sufficient condition for (1.2),
but this has never been proved. Khintchine [7] showed that if na,
is a decreasing function of » then (1.3) implies (1.2). (Actually,
Khintchine’s result is usually stated in a different but equivalent
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form.) Duffin and Schaeffer [4] improved Khintchine’s theorem by
showing that if

a.pm) -
2 n n
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M=

v

&,
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for some constant ¢ > 0 and for arbitrarily large values of N then
(1.8) implies (1.2). More recently Erdos [5] proved the following
special case of the Duffin-Schaeffer conjecture:

ERDOS’ THEOREM. If a, = 0 or ¢/n for all n and some ¢ > 0,
then (1.3) implies (1.2).

In the present paper we generalize Erdos’ theorem by proving
THEOREM 1. If e, = O(n™') then (1.3) implies (1.2).

If the sets E, were pairwise independent, that is if M(E,NE,) =
MEINE,) for all n # m, then (1.3) would imply (1.2) by the “diver-
gence part” of the Borel-Cantelli lemma, (Chung [3], Theorem 4.3.2).
In general the sets E, are not pairwise independent. However, by
using some weaker bound on \(E,N E,) we can still deduce the
desired result. This is also the approach used in [4] and [5]. We
give a simpler treatment of this part of the problem by employing
a theorem of Gallagher. Let Z denote a finite subset of {2, 3, 4, ---}
and define A(Z) by

(1.5) A(Z) =n§2)»(En) .

Then we obtain Theorem 1 from

THEOREM 2. Suppose there exists an integer K = 2 and a real
number 7 > 0 such that the following condition holds: every finite
subset Z of {K, K+ 1, K + 2, ---} with 0 £ A(Z) £ 7 also satisfies

S, SIME. N E,) = AZ) .

neZ meZ
nFEM

Then (1.3) implies (1.2).

Proof. We assume that (1.3) holds. By a result of Gallagher
[6], the value of limy_., A {UzZ_y E,} is either zero or one. We suppose
that

(1.6) lim A { U E} ~0.

N—oo =N
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If limsup,..N(E,) =& > 0 then MUp-x E.} = & for all N, which
contradicts (1.6). Thus we may assume that

1.7 lim M(E,) = 0.

n—>00

Now choose M so large that
- 1
< =
)“{ngf E“} = 4 7

Let J = max {K, M}. From (1.3) and (1.7) it follows that there exists
a finite subset Z of {J,J+ 1, J + 2, ---} such that

%ng(Z)gv.

But then by a simple sieve argument

nez

%ﬁ;N{UEn}

nezZ me
nFEm

= SME) - 13, SMENE,)

> A(Z) — %A(Z)

1
> —

3 7
which is impossible.

The remainder of our paper will consist of showing that if
@, = O(n™*) then the hypotheses in Theorem 2 are satisfied. In fact
we will prove the following result, which gives a stronger estimate
than we require.

THEOREM 3. If a, < Cn™* for all m and some C > 0 then there
exists a real number 1n,>0 such that the following condition holds:
of Z is a finite subset of {2, 3,4, ---} with 0 < A(Z) =7, then

>, 2 ME, N E,)

nezZ mez

(1.8) nFEM
< A(Z)(log log {A(Z)™'})* .

Here, and elsewhere in this paper, the comstant implied by <K s
absolute.

Our proof of Theorem 38 is modeled after Erdos’ proof in [5].
In §2 we give several lemmas for later use. We then split the sum
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on the left of (1.8) into three parts which are estimated in §§3 and
4. It is in §4 that the main difficulty occurs. Indeed it is only
there that we require the hypothesis a, < Cn™'.

We remark that Catlin [1, 2] has recently found a connection
between (1.1) and the problem of approximating almost all 2 by
fractions a/n which are not necessarily reduced. Thus our results
also have implications for this problem. We note, however, that the
proof of Theorem 3 in [i] contains a serious error.

2. Preliminary lemmas. Throughout the remainder of this
paper p will denote a prime. Thus >}, is a sum over prime divisors
of n and w(x) = >,<.1 is the number of primes not exceeding .
For each integer n = 2 we define g(n) to be the smallest positive
integer v such that

1
>
pln P

P>

<1.

If g(n) = v then

n-g)=rni-g)

! n
PEV
@.1) =2 exp (51 + 33,5777
n ;;I;bv P » j=2
< 2
n

It follows from the theorem of Mertens that
(2.2) 1< %@ log (1 + v) .

Next let £ > 0,2 > 0 and let v be a positive integer. We define
N(&, v, 2) to be the number of integers » < x which satisfy

(2.3) > ==¢.
pin P

We then have the following estimate of Erdos [5].

LEMMA 4. For any € > 0 and & > 0 there exists a positive integer
v, = vy(&, €) such that for all x >0 and all v = v,

(2.4) N, v, x) = v exp {—v*" "}
where log B = &.
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Proof. We may assume that 0 < e < (1 — ¢¥). Let

D <Py < vee < Py

be the set of all primes in [v, w], where w = v**~*®, If v is suffici-
ently large then M = w(w) — ww(v) = vFu2/3),

We split the integers n < 2 which satisfy (2.3) into two classes.
In the first class are integers n with M prime factors in the interval
[v, exp (w)]. The number of such integers is clearly less than

x< > .1_>M/M! < x(c, log w)¥ /M

< p<exp(w) p

for some constant ¢, > 0. Using Stirling’s formula this is easily seen
to be

(2.5) L xexp (—M) € x exp {—vPu—2/3}

for sufficiently large v.
Next we observe that

I log<10gw> + o(1)
i=1 D; vspsw P logv
(2.6) — ¢4 log (1 — ¢/3) + o(1)
=£-—¢/8

for sufficiently large v. The integers n < x which satisfy (2.3) and
which have fewer than M prime factors in [v, exp (w)] must therefore
satisfy

L
€p>pé;gpwp

The number of such integers n is

3 1 3 l[oc}
cis s =25 22
(2 7) [ 'rép;;l;bpwp € p>expw PL P
<z > 1 < Zexp(—w).
& p>expw p2 &€

The bound (2.4) now follows from (2.5) and (2.7).

We now suppose that g(n) = < v. For each £ > 0 we split the
divisors d of n into two classes, A4,(& v) and B,(§, v). We say that
d is in A,(E, v) if

(2.8)

v

Lse.
D

Ve

|

]
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The class B,(&, v) consists of divisors which do not satisfy (2.8).
LEMMA 5. For any € > 0 and any & > 0 there exists a positive

integer v, = vy(&, €) such that if gn) = u < v and v = v, then

(2.9) 32 = (log (L + w) exp{—v~)
€Ay, (&,v)

where log 8 = &.

Proof. Let v, w and M be as in the proof of Lemma 4. For
any collection .&° of M primes in [v, =) we have

for sufficiently large », as in (2.6). Thus if d e A4,(&, v) then d must
have at least M prime factors in [v, ). Let ¢, ¢, ---, ¢; be the
prime factors of » which are greater than or equal to v. If J< M
then A,(¢, v) is empty. Otherwise

L (u gLy

de dy(5,v) d = din =1 @;

Since g(n) = u < v we have
1
q;

<zi: >JII/M! é (M!)_l << exp {—7).5(1—25/3)} .

Also,

S = me-g)

an p p>u

—1
(1— l) < log (1 + u)
VY
by the theorem of Mertens.
Let >, denote a sum over integers m which satisfy g(m) = .

LEMMA 6. Let € > 0. Then there exists a constant v, = v,(€)
such that the following imequalities hold: tf x>0 and y =2, if
gm) =u = v and v = v, then
(2.10) >, m = (log 1 + w)(log y) exp {—v*0=9}

m(v)
(mym)z<m<(m,m)xy

and

(2.11) > m™ < (log 1 + u)(log y) exp {—v?~9} ,
(n,m)_lxgb?:tvé(n,m)‘lxy



ON THE METRIC THEORY OF DIOPHANTINE APPROXIMATION 533

where B = e2,

Proof. The proofs of the two inequalities are virtually identical,
so we prove only (2.10). We have

by m™t =3, 3, m.
m(v) dln  m®)
(n,m)z<m<(n,m)zy (n,m)=d

If (n, m) =d we write m = dm’. Then by Lemma 5 with & = 1/2,

>, mT!
de d,(1/2,9) m(v)
(n,m)=d
dz<m<dzy
= > d7r > (m)T
de Ay, (1/2,v) m’
z<m!’ <zy

=< (log1l + w)(log y) exp {— v/} |

for sufficiently large v.
If de B,(1/2, v) then

1§Zp“‘§%p”+2p‘l
b4

p|lm p|m’

P2V p2v P2V

1 -1

< — + Z y ’
2 plm’
v
and so
(2.12) Spt> L
e, 2

By Lemma 4
(2.13) 3 (m) = 0mN(F, 0, 20) < 2exp {0

n<m’ <2z

for sufficiently large v, where the sum on the left of (2.13) is over
m’ satisfying (2.12). Hence

by >, m™
de B(1/2,v) m(v)
(n,m)=d
dz<m<dzy
= > 4t 3 (m)T
de B, (1/2,v) m’
z<m’ <zy

= 3 d'(logy)exp {—vfen}
deB,(1/2,v)

< log (1 + u)(log y) exp {—vP=+/2}

for sufficiently large v.

3. First estimates. In this section we begin our proof of Theorem
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3. For n #+ m we define

b‘=5(n,m)=2min{an,ﬂ} ,

nom

A:A(n,m)=2max{a",—%’i} ,
noom

and
t = t(n, m) = max {g(n), g(m)} .

We write 3%, and 37, for sums over integers prime to # and m
respectively. Thus

ME, N E,)
Y a—a, a+a, b—a, b+ a,
=3 Sa|(Est, ALt n (e, 2 )
(3.1) <omm 33 1
ra/na—?/lm{b:z}(n,m)
=5 33 1
]a'r(rzbfénizimd

For each integer w we define H(u) to be the number of pairs {a, b}
which satisfy

am —bn=u, 1Zazn, (a,n) =1,
1<bm, (bym=1.

From (3.1) it follows that

(3.2) ME,NE,) =0 > Hu).

u
lu|<nmi

Let d = (n, m). It is clear that H(0)=0and if d / « then H(u)=0.
Thus in estimating the right hand side of (3.2) we may assume that

(3.3) d < nmd

and restrict ourselves to integers w which are divisible by d. We
write |u| = dd,u,, where the prime divisors of d, also divide d and
(d, u,) = 1. Obviously this decomposition is unique. It is shown in
[5] that if either (u,, nmd™)>1 or (d,, nmd™2) > 1 then H(u) = 0.
Hence we may further restrict ourselves to integers u which satisfy

(3.4) (uy, nmd™") = (d,, nmd™®) = 1.

For such w we have the estimate
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Hw)<d I (1—E> I (1___1_)
(3.5) phigpma=2 pl pld a2 1 ﬁ
< q)(d)m%_z<l - _5) %(1 _ 5)
from [5].

Next let &7 be the set of primes » which divide d but do not
divide nmd™. We split &, into disjoint subsets & and &% con-
sisting of primes satisfying » < ¢ and p > t respectively. Let .5
be the set of positive integers whose prime divisors are in &7, for
§=0,1,2. From (3.4) we may assume that d, €.%% and hence that d,
is uniquely represented as d, = s,8, with s, € .97 and s,€.94. Thus

H(u) < eD(d)pHD<1 - l) 1 (1 a l)_l

(3.6) ey P/ plsisg 0 .
se@IL(t- )N (-5)

Now |u| = dd,u, = ds,s,u, where the set of primes which divide s,, s,,
and u, are all distinct. Therefore if we set k = s,u, then & is rela-
tively prime to

Q:

plnmd—1
=<t

by (3.4) and the definition of &%. From (3.2) and (3.6) we obtain

ME,NE,) =0 > Hw)

lul<nmd

(3.7) =5 *  (H(—dsk) + H(dsk)}

s1€5°) 1sk=(nmd|dsy)

swp@Il (1--) s M(-2) =0 1,

peEFy p 81697 Plsy p 1Sk=(nmd/dsy)

where (k, @) = 1 in the sum >}*.
By the prime number theorem there exists an absolute constant
b such that

(3.8) 7(y) log 2y + loglogy =< y log 3

for all ¥ = b. Throughout the remainder of this section we shall
assume that

(3.9) t=1tn,m)=>b and nmd=3d.

Then by the sieve of Erathosthenes
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% lsnmd]:[<1___]_-_>+2r(t).

1sk<(nmd/dsy) dSl ?lQ D
If s, < t*® then using (3.8) and (3.9) we have
270 < 37 logTE

<-4

It follows that if we sum over s, < t*® on the right hand side of
(3.7) we obtain the upper bound

0@ 11 (1 - 1) 3 sp)™ 3 1

pe P p sléz”(” 1k=(nmd/ds;)

L B?EZﬂ%md I (1 — l) 11 (1 — L) >, @ls)™

21Q p/res Dlnes
(3.10) o(d) 1 L
= 1+ —
<< a’lba‘/m d p|7;,l;b[d_l<1 p>pg1< —l— p(p - 1)>
< &) anp(m) MEINE,) .
n m

Now if s, > ¢** we easily see that for some prime pe &% and
some integer ¥ = 2 we must have p’|s, »” >t p < t. By considering
the cases where 7 is even or odd it follows that s, is divisible by
a square greater than ¢¥°, Thus summing over s, > t** in (3.7) we
obtain

2p@ I (1-2) 5 spl)” | 5" 1

pEF; P /emt)<s, 1=Sk=(nmd/dsy)

= 20p(d)

tfr(t)<s1 1<k<(nmd/dsy)

=Wpd) 3 = 1
r=[t1/3] 1§J§;;LIZLA/«1)

(3.11) i
< 25<p<d>"7m4’ S,

r=[t1/3]

<< a’namt‘“ << <an @(/ﬂ) ><am <P(m)>t_1/3 logz t
n m
< MEINME,) .

Putting the estimates in (3.10) and (8.11) together, it follows
that

(3.12) ME, N Ey) < ME)NME,)

for all pairs {n, m}, n = m, which satisfy (8.9).
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4. Second estimates. Let Z be a finite subset of {2, 3,4, ---}
with A(Z) defined by (1.5). We choose ¢ in Lemma 6 so that
e¢’*(1 — ¢) = 3/2. This determines an absolute constant v, such that
(2.10) and (2.11) hold for all v = v,. We then define 7, by

(4.1) 7, = exp {—max (b, C, v,)}

and assume that 0 < A(Z) = 7,.
Next we write

ZZ)"(EnnEm):Sl+Sz

neZ meZ
n+Em

where S, is the sum over pairs {n, m} which satisfy (3.9) and S, is
the sum over the remaining pairs {n, m} which do not satisfy (3.9).
We apply (3.12) to obtain the estimate

(4.2) S, K E,Z M%X(E%)L(Em) = A(Z).

Thus it remains only to bound S,.
From (2.2) and (3.7) we have

ME. (1 E)
(4.3) = 20p@ 224 1 (1- 1) 5 ple)”
d P1E€F pl 81€

< e, < log*(l + OME)IME,) .

Hence if we set L = —log {4(Z)} and sum over pairs {n, m} which
satisfy ¢t < L we obtain
3 S ME.NE)
(4.4) 7
L A(Z)(log log {A(Z)7})* .

Now for any pair {n, m} in the sum S, we have either ¢ < b or nm4 <
3td, where d = (n, m). But from (4.1) we have b < L so that terms
for which ¢ < b are already included in (4.4). Therefore the only
sum which we need to bound is

S, =3 SIME,NE,)

nezZ meZzZ
nEM

where each pair {n, m} satisfies ¢ = L and (using (3.3))
(4.5) d < nwmd < 3td .
We have
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o v
S<E3{ % 3N aal
v=L u=1 (%) p(2)
(n,m)<nmd<3%(n,m)

<Slgl+ o3 {SME) % al,

m(?)
(n,m)<nmd<3%(n,m)

(4.6)

where we have used (2.2) and (4.3). Our objective it to establish

(4.7 >, a, £ Cv(log 1 + v) exp {—v*?}
(n,m)<n”:nfz)<3”(n,m)

for the sums on the right of (4.6), that is for fixed =n, g(n) = u < v
and v = v,. To accomplish this we consider two cases.
If @,/m < a,/n then the condition (n, m) < nmd < 3*(n, m) becomes
(n, m) < 2me, < 3'(n, m). Clearly we may assume that «, > 0 so
that by (2.10) we have
> a,=C > m™

m () m(v)
(n,m)<2ma, <3Y(n,m) (n,m)<2me, <3(n,m?)

<L Cv(logl + v)exp {—v¥?} .
If a,/n < a,/m then the condition becomes
(4.8) (n, m) < 2ne,, < 3°(n, m) .

Since a, < Ck™* we may partition Z into disjoint classes W;, j =
0,1, 2, ---, defined by

W;=1{keZ:C27 " < ka, < C27%} .,
If me W; and m satisfies (4.8) then we have

27Y(n, m) < nm*C277 < 8(n, m)
and so
4.9) C27in37"(n, m)™ < m < C2"n(n, m)™ .

Therefore we may apply (2.11) with x = C27n8™° and y = 2(8") to
obtain

o
> a, =C3 273 *m™
m ) j=0 m(v)

(n,m)<2na,, <3%(n,m) mewj

& Cv(log 1 + v) exp {—v*?},

where 3.* indicates a sum over m’s which satisfy (4.9). This proves
4.7).
By using (4.1), (4.6), and (4.7) we find that
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S, < €3 vllog 1 + v)* exp {—v*} 3 5} ME)
L exp{—L}A(Z) = AZ) .

The three upper bounds (4.2), (4.4), and (4.10) now establish (1.8) and
so complete the proofs of Theorem 3 and Theorem 1.

(4.10)
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