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KERNEL DILATION IN REPRODUCING KERNEL
HILBERT SPACE AND ITS APPLICATION

TO MOMENT PROBLEMS

GARY FAULKNER AND R. SHONKWILER

We give a reformulation of Nagy's Principal Theorem
in terms of a dilation of a family of operators in reproducing
kernel Hubert space. In this setting we are able to gener-
alize Nagy's result to obtain dilations K of reproducing
kernels K derived from certain families of operators. We
define the concept of positive type for kernels K whose values
are unbounded operators on a Hubert space. The construction
of K is such that it possesses a property, which we call
splitting, not enjoyed by K. We show that the splitting
property constitutes the utility of dilation theory and use
it to solve moment problems.

Our main result in this work generalizes Nagy's Principal
Theorem (cf. Nagy [14]) the central conclusion of which we give
here for reference.

THEOREM. Let Γ he a *-semi-group with identity ε and suppose
{Tr}rer is a family of bounded liner transformations in the complex
Hilbert space H satisfying: (a) Tε = I, (b) Tr considered as a func-
tion of 7 is of positive type, and (c) Tr is completely admissible,
i.e., the following inequality obtains for all finite sums

(0.1) Σ Σ < T7rarixiy xό) ^ Mi Σ Σ < Tηuxif xj)

with constant Ma > 0. Then there exists a representation {Dr}ΐeΓ of
Γ in an extension space H such that

Tr = PDr]H .

Furthermore H may be chosen minimal in the sense that it is
spanned by elements of the form Drx where xeH and Ί6Γ.

Recently P. Masani [15] and independently F. H. Szafraniec [16]
have been able to substantially weaken Nagy's condition (0.1). The
weakened versions of (0.1) are:

(0.2) (S) |Γ(α)| ^ C p(α) , where 0 ^ p{aβ) ^ p(a)p(β) ,

(0.2) (M) 0 <; Tr*a*ar < Mi- Tr*r .

These can be shown to be equivalent.
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As we will show, Nagy's theorem properly belongs to the theory
of reproducing Kernel Hilbert spaces and the dilation of such spaces.
Let H be a complex Hilbert space and Ho a dense linear manifold
of H. Let L(H0) denote the collection of linear operators T (possibly
unbounded) in H whose domains dom (T) 3 .ff0 contain iϊ0. By a
reproducing Kernel Hilbert space we mean a Hilbert space έ%f of
functions φ: Γ -> H defined on a set Γ to H along with a function
K:Γ2->L(H0) such that for 7 e Γ and xeH0, K(-,Ί)xe3ίf and for
φ e 3(f the reproducing property holds,

The function K is referred to as a reproducing kernel (cf. Aronszajn
[1], MacNearney [9, 10]). Throughout this paper, in addition to
other possible structure, Γ will possess an idempotent unary opera-
tion *, i.e., 7** = 7 for all ΎeΓ, and a distinguished element ε
satisfying ε* = ε, Γ need not have a neutral element.

A reproducing kernel is always of positive type, i.e., for all
n = 1,2, and all alf , aneΓ and xlf , xneiϊ0 the inequality

Σ Σ <#(«* α*)**, *i> ^ 0

holds. In fact, since the norm of the vector
nonnegative, we can write

0 ^ (Σ £ί , oφ

Furthermore, as is well-known, a densely defined kernel of positive
type acting in a complex Hilbert space necessarily conjugates in the
following sense: the adjoint K* exists and

with equality when K is a family of bounded operators.
However our principal objective is to obtain kernels which split,

meaning for all a, βeΓ and x6Ho, the equation

K{a, β) = K{a, ε)K(e, β)

holds for a fixed distinguished element ε as described above.
Generally a given kernel K does not possess this property and we
are led to replace it by a kernel K called a dilation of K, which
does split and has the same "weak values" as K. Specifically let
K(a, β) eL(H0) for a, βeΓ. Then the kernel K(a, β) eL(HQ) for
a, β 6 Γ is a dilation of K, denoted K — prK, if Ho is a dense linear
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manifold of a Hubert superspace HZDH9 άomK(e, β)z)domK(ε, β) and
for x e dom K(e, β),

K(ε, β)x = PK{ε, β)x

where P is the orthogonal projection of H onto H. Thus for x e
dom K(e, β) and y e H

(K(e, β)xf y) = (K(e, β)x, y) .

The kernel K need not be a reproducing kernel. Here H is referred
to as a dilation space of H and for emphasis the projection equation
above is referred to as projectivity.

As the following proposition shows, a kernel which conjugates
and splits is necessarily of positive type.

PROPOSITION. Let Ho = dom K(a, β), a, βeΓ be dense in H. If
K conjugates and splits, then K is of positive type on Ho.

Proof. For all n = 1, 2, •••,«!, , an 6 Γ, and φlf , φn Ho we
have

Σ {K{ajy at)φif φj) = Σ (K(aJf ε)K(ε, a^if φό)

= Σ (K(e, a%)φi9 K(e, ajfa) = | | Σ ^ fe ^)0JI2 ^ 0 .

The following simple lemma will be useful in the sequel.

LEMMA. If the kernel K splits and conjugates when one of its
arguments is ε, then it conjugates.

l Kernel dilation theorem* The setting for our main result
consists of a complex Hubert space H and an operator family
T: Γ —> &(H). In addition the various cases for which our result
is valid can collectively be described by a real-valued measure space
(W, W", λ) and functions c and g where

c:Γ2xW >C and g:Γ2xW >Γ.

Finally define K: Γ2 -» L(H0) in terms of c, g, T and λ by

(1.1) K(a, β) = \ c{a*, β, w)T(g(a*, β, w))d\{w)
JW

where Ho is a dense linear manifold of H defined below. It is im-
plicit in this definition that T be such that the integral converges
absolutely.



106 GARY FAULKNER AND R. SHONKWILER

There are four cases corresponding to specific choices of the
parameter functions and other special restrictions.

Case I. (Semi-group kernel) Let Γ be a *-semi-group with
associative binary operation , (α /3)* = /3*α*. Let W = {1}, X(w) = 1,
c = 1 and g(a, β, 1) = a β. Then K becomes

K(a,β)= T(a* β).

Here K(a, β) is bounded and linear so K(a, β) e B(H) c L(H0) where

ifo — H"

Case II. (Cosine kernel) Let Γ — R the real numbers with
ε = 0 and 7* - - 7 . Take W = {-1, 1}, λ({-l}) - λ({l}) = 1/2, and
c = 1. Finally put

g(a, β, -1) = β + a and g(a, β, 1) = β - a .

Then

K(a, β) = i-Γ(/3 + α) + i-Γ(/S - α) .
Δ Δ

In this case we also require T to satisfy T( — 7) = Γ(7). Again
jK(α, /S) e B{H) here.

Case 11/. (Resolvent kernel) Let Γ = (C - JB) U {0} the complex
numbers with e = 0 and 7* = 7. Take W = {-1,1}, λ({-l}) = 1/2,
λ({l}) = 1/2 and g to be the projections,

g(a, β, -1) = a and flr(α, /S, 1) = β .

Finally, in this case, c is only defined for dom c = {(a, β, w): a Φ β} c
Γ x W by

c(α, /5, — 1) = — — — and c(a, β, 1) = — — — .
a-β β- a

Then K becomes

(1.2) K(a, β) = ^ L

for those «; and β for which α — β Φ 0. In this case we also require
that Γ(7) be strongly differentiable on a dense linear manifold lfo

ι

(of course Γ'(7) may be unbounded). Therefore Q(Ύ) = 7JΓ(7) is also
diίFerentiable there and we may define K on Ho for the exceptional
values by

1 This means for x£H0 there is a vector T'(ΐ)x€H for which the limit limα-
ϊ\\((T(a)x - T(ϊ)x)l(a - Γ)) - T'(T)x\\ = 0 is valid.
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(1.3) K(β,β) = Q'(β) = lim. _
a-*β Oί — p

Hence for all a,βeΓ, K(a, β) e L(H0).

Case IV. (Hankel kernel) Let Γ = R+ U {0} with ε = 0 and
7* = 7. Here the Hubert space H is the unitary space C of com-
plex numbers. For v > 0, let W = Γ, ω be the Borel subsets of Γ
and

(1.4) dX(w) = (2v~1/2Γ(v + lfflyWdw

where Γ is the familiar gamma function. Letting Δ{a, β, 7) denote
the area of the triangle with sides of length a, β, and 7 when such
a triangle exists, put

(1.5) c(a, β,w) = —

for a, β, w 6 R+ when Δ(a, β, w) is defined, and set c(a, β, w) to
zero otherwise. In general c{a, β, •) is unbounded. Finally set
g(a, β, w) = w. In this case K becomes

K{a, β)=\° T(w)c(a, β, w)d\(w) .
Jo

We remark that the integral converges for TeL(0, oo), cf. Haimo
[7]. Here K{a, β) e B(H) since H is finite dimensional.

KERNEL DILATION THEOREM. In the four cases above, if K
satisfies:

(a) JΓ(e,e) = I
(b) K is of positive type,

then there exists a dilation space H z> H and a dilated kernel K in
H which conjugates and splits.

Proof. Let Ho be the linear space of all iϊ-valued functions
φ(τ), τ G Γ, of the form

rtO = Σ * ( , ?<)&*, ^ e Γ ^ e f l o ,

for some n = 1, 2, . If also ψ(-) = Σf=i %(•> ^5)Vύ £ Ho, then define
the form ( , )~ by

1=1 f = l
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The last member of the string above follows from the fact that K
conjugates. We immediately see that this form is independent of
the particular representations of φ and ψ and instead depends only
on their values. Also it is easy to see that the form is positive,
sesqui-linear, and symmetric. To see that the form is definite,
suppose (φ( ), 0( ))~ — 0. By the Cauchy-Schwarz inequality

\(φ{a), y)\> = |(0(.), # ( . , a)yU* £ (0(0, Φ( ))~ (K( , a)y, K{ , a)y)^ = 0.

Since this holds for all yeHQ and aeΓ, φ( ) must be the zero
function. Henceforth we omit the subscript ~ in this inner-
product.

Next let H be the completion of the inner-product space HQ. It
is possible to realize F a s a space of iϊ-valued functions on Γ. In
fact let {ψn}T be a fundamental sequence in ϊί0 converging to the
ideal element [{ψn}] e H. Fix a e Γ and for y e Ho put

GQ(y) = lim <y, ψn(a)} = l im (K(>, a)y, ψ . ( 0 )

It is easy to see that Go is a bounded linear functional on iί0 and
therefore has a unique continuous extension to a bounded linear
functional, G, on H. By the Riesz theorem there exists a vector
in H, call it ψ(ct), associated with G in the sense that

(y, f (a)} - G(y) -= lim (y, ψn(a))
n

holds for all y eH. If also {φn}? is a fundumental sequence in HQ

converging to [{ψ1*}], then

lim (JΓ(., a)y, φn( )) = (K(; a)y, [{fn})) - G(y)

so that ψ{a) is independent of the particular sequence conve rging to
[{ψn}]- If [{ψ*}] e Ho so that [{^Λ}](α) e H exists a priori, t hen for
all yeH0,

Hence the value derived above agrees with the a priori value of
this element. Thus we may identify the ideal element [{ψn}] in an
unambiguous and consistent way with function ψ: Γ —> H. Further-
more, the values of this function are reproduced by K since

([{t }], #(-, a)y) - (t( ), K(., a)y) = (ψ(a), y) .

Therefore H is a reproducing kernel Hubert space with kernel K.
The space H may be embedded in H by identifying

x < > K{ , ε)x .
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This is possible since

(K(τ, ε)x, K(τ, ε)y) = <JΓ(ε, ε)x, »> = <a>, y) .

The orthogonal projection P of H onto H is given on Ho by

PJί(r, 7)a? = K(τ9 ε)K(ε, Ύ)x .

In fact for all K(τf ε)y e H,

(K(τ, Ύ)x - K{τ, 6)K(6, Ύ)x, K(τ, ε)y)

ε, ε)K(ε, Ί)x9 y) = 0 .

Next define the dilated kernel ^ on £Γ0 as follows:

(1.6) K(e, β)K(τ, Ύ)x = ( c(/3, 7, w)K(τ, g(β, 7,

and

(1.7) K{a, β)K(τ, Ύ)x -

or altogether

^(α, /S)iiΓ(τ, Ύ)x = ί ( c(α*, ft w)e(ff(α*, ft w), 7, v)

x iί(τ, g(g{a*, β, w), 7, v))xdX(v)d\{w)

We show in each of the four separate cases that K is consistently
defined (K(ef β) from (1.6) agrees with that from (1.7)), conjugates,
splits, and projects. However we show for all the cases at once
that K is well-defined assuming the conjugation property. We avoid
circular reasoning by regarding K as only formally defined by (1.6)
and (1.7) until conjugacy has been proved. Thus suppose φ(τ) —
Σ*=i K(?f Ύi)%t is a representation of zero. Then for ψ(τ) = K(τ, S)y
we have

(K(a, β)φ{.\ f{-)) = Σ (K(a, β)K(τ, yt)xi9 K(τ, δ)y)
i=ί

= Σ (K(τ, yt)χt, K*{a, β)K(τ, δ)y)

= (φ(τ), K(β, a)K(τ, d)y) = 0 .

Since this equation holds for arbitrary ψeH0, it follows that
K(a, β)Φ(-) = 0 and therefore K(a, β) is well-defined.

2* Proof for the semi-group kernel* Here

(2.1) K(ε, β)K(τ, Ί)x = K(τ, β-J)x ,
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and

(2.2) K(a, β)K{τfΊ)x. = K(ε, a* β)K(τ,7)x .

Note that

(2.3) K(a, ε)K(τ,Ί)x = K(τ, α* 7)x .

The definition of K(ε, β) is obviously consistent between the first
two equations.

Splitting is established by direct computation. By the Lemma,
in the presence of splitting, conjugacy follows from the equations

K*(ε, β) -D K(β, ε) and K*(a, ε) 3 K(ε, a) .

Both of these follow from the direct calculation that

, β)K(τ, y)x, K(τ, δ)y) = (K(τ, j)x, K{β, ε)K(τ, δ)y)

in which the fact that K(ε, β) = T(β) is used. Finally projectivity
is also established by the following direct calculation.

PK{a, β)K(τ, ε)x = P[K(ε, a*-β)K(τ, ε)x] = PK(τ, a*.β.ε)x

- K(τ, e)K(e, a* β)x = K(τ, ε)T{a*.β)x = K(τ, ε)K(a, β)x .

3* Proof for the cosine kernel* In this case

(3.1) K(0, β)K{τ, Ί)x - ±-K{τ, -β + y)x + ±-K(τ, β
2 2

and

K(a, β)K(τ, Ί)x = \K(O, a + β)K(τ, Ί)X

(3.2)
+ ±K(0, -a + β)K(τ, 7)x .

Note that

(3.3) K(a, 0)K(τ, Ί)X = -^K(τ, a + y)x + ±-K(τ, a + Ί)X .
Δ Δ

By simple direct calculation and using the fact that K(Q, β) =
T(/3), conjugacy and the splitting property are seen to hold. Re-
calling that T( — β) = T(β) here, projectivity follows from the chain
of equations

, β)K(z, 0)x = P[\κ(τ9 -β)χ + i-Z(τ, β)x~\
2

= —K(τ, 0)K(0, -β)x + —K(τ, 0)K(0, β)x =
2 2
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4* Proof for the resolvent kernel. Here the dilated kernel is
given as

(4.1) i?(0, β)K(τ, y)x = -r-P—Kfr, β)x + —L—K(τ, y)x
β — 7 7-/9

and

K(a, β)K{τ, y)x = ^ Γ β ^ S)K(τ9 7)

rK{Q9 β)K{τ, y)x ,
β - a

when denominators do not vanish.
We note that in particular

(4.3) K(a, 0)K(τ, y)x - _ a K(τ, a) + 7 _K(τ, y)x
a — 7 7 — a

if a Φ 7. By the assumed differentiability of Γ, K may be defined
for the exceptional cases by operator limits of the above equations.
Thus, for example, when τ Φ 7,

£(0, y)K(τ, y)x = lim ^(0, β)K(τ, y)x

β^r l(τ - β)(τ - 7) V ; β-7 J

which exists.
That ίΓ(0, β) is consistently defined by (4.2) is immediate. Using

the fact that K(0, β) = T(β), lengthy but straightforward calcula-
tions based upon (4.1)-(4.3) confirm conjugacy, projectivity and the
splitting property for the nonexceptional values of the argument.
From their validity we obtain these properties for the exceptional
values as limiting cases.

5* Proof for the Hankel kernel* Here

(5.1) i?(0, β)K(τ, 7)3 = Γ c(β9 7, ε, w)K{τf w)xd\(w)
Jo

and

(5.2) K(a, β)K(τ, y)χ = Γ c(α, β, w)K(Q, w)K{τ, 7)xdX(w) ,
Jo

which exist, cf. Haimo [7].
Put
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where Jp(t) is BesseΓs function of order p. Then (cf. Cholewinski
and Haimo [3] and Cholewinski, Haimo, and Nussbaum [2])

(5.3) Γ/(wM0, β, w)dX(w) = f{w) ,
Jo

(5.4) Γ I(tw)c(a, β, w)dX(w) = I(at)I(βt)
Jo

and

(5.5) \°° I{at)I(βt)I(at)dX(t) = c(a, βt T) .
Jo

Prom (5.3) we obtain

K(0, β) = T(β) .

By use of the following lemma and Fubini's theorem, con-
sistency, conjugacy, and the splitting property are seen to be valid
through direct calculation. Also we obtain the equation

K(a, 0)K(τ, y)x = 1 c(α, 7, w)K(τ, w)xdX{w)
Jo

from the lemma and Fubini's theorem.

LEMMA. With notation as above

S oo Γoo 4

c(alf a2, t)c(a3, a4, t)dx(t) = \ Π I{ccίw)dX{w) ,
0 Jo i=l

and

S
oo roo

\ c(alf a2, s)c(az, ai9 t)c(aδ, s, t)dx(t)dx(s)
o Jo

S oo 5

Π I(cίiW)dX{w) .
0 < = 1

Proof. By (5.5), Fubini's theorem, and (5.4),

S oo

c(a19 az, t)c(aZ9 a,, t)dx(t)
0

S oo ί*oo

\ c(alf a2, t)I(azw)I(aiw)I(tw)dX(w)dX(t)
o Jo

S oo Γoo

I(a3w)I(a4w) \ c(alf a2, t)l(tw)dx(t)dx(w)
o Jo

= Γ Π I(aiw)dλ(w) .
Jθ i=l

The second equation can be proved in a similar fashion.
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6* Nagy's principal theorem* The setting of Nagy's theorem
without the complete admissibility assumption is included in Case I.
Let K be a dilation kernel acting in dilation space H guaranteed
by the Kernel Dilation Theorem. Put ΐ(a*β) = K{a, β). That this
assignment is well-defined follows immediately from the definition
of K in §2. By conjugacy T preserves *, and the splitting property
implies T preserves the binary operation of Γ. In fact

ΐ(a-β) = R(a*, β) = K(a*, e)K(e, β) = T{ά)T{β) .

We remark that the kernel Dilation Theorem continues in force
for Case I under the replacement of the binary operation by a
function b: Γ2 —• Γ and satisfying:

&*(α, β) = &(£*, a*)

and

b(b(a, ε), b(β, 7)) - b(b(a, β), δ(ε, 7)) .

But these conditions trivially imply that b is an associative ^semi-
group binary operation. Therefore we see that Nagy's theorem is
the most general one possible with (W, ω, λ), c and g as in Case I.

7* Application to moment problems* In this section we give
only a brief description of the technique. Further details may be
found in Nagy [14], Devinatz [4], Shonkwiler [11-13], Faulkner and
Shonkwiler [5, 6], and Koranyi [8].

By a moment problem we mean, given a function h: S x Ed
C x R-+C, find necessary and sufficient conditions on a function
/: S —• C in order that there exists a nondecreasing bounded function
μ: E —> JR so that

f(s) = [ h(s, t)dμ{t) .
E

For our first example let h(s, t) = t% — oo < £ < oo, seΓ where Γ
is the *-semi-group of nonnegative integers under addition with
ε = 0 and 7* = 7. Let T be a function T: Γ -+R and interpret T(Ύ)
as a bounded operator on the unitary space C under the ordinary
product of a complex number by a real number. Setting K(a, β) =
Γ(α* + β), conditions (a)-(c) of Nagy's theorem are then necessary
and sufficient in order that

T(s) = \ t dμ(t)

for some nondecreasing bounded function μ.
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For under these conditions there exists a dilated *-representa-
tion T of Γ consisting of bounded operators acting on a Hubert
space H~DC. Thus, for all s,

T*(s) = T(s) and T(s) = T8(l) .

Therefore by the spectral theorem there exists a resolution of the
identity Et such that

T(s) = \ tsdEt .

Finally by projectivity,

T(s) = <5Γ(β)l, 1>C - (Γ(s)l, 1)5 - ί ίVZ(£tl, 1)5 ,

and the required representation holds with μ(t) = (£?tl, 1)5.
For our last example let h(s, t) — s/(l — st), t > 0, s e T7. Here

Γ = (C ~ JB) U {0} with ε = 0 and 7* = 7. Again let Γ be a function
T: Γ —>C and interpret Γ(7) as an operator on the unitary space C.
Setting

K(a, β) - ^ ^
aa — β β — a

then conditions (a) and (b) of the Kernel Dilation Theorem are neces-
sary and sufficient in order that

T(s) = ( —*—dμQ) , 8 6 (C - R) U {0} ,
JΛ 1 — $£

for some nondecreasing bounded function μ. In fact under these
condition s by Case III there exists a dilation kernel K acting in
some dilation space H. It may be seen directly from the definition
of K in §4 that

K(a, 0) = K(0, a) .

Hence if Q(β) = βK(0, β) then

Q*(β) = (βK(0, β))* ZD βK(β, 0) - βK(0, β) = Q(β),

Also by the differentiability of ϊ7 it follows that ^(0, β) is continu-
ous in /S, and so Q satisfies the limiting condition

-ίζfGe) = lim ^(0, β) = R(0, 0) - Ί\^ ,
iS-0 /5 J9-0

where the last member follows directly from (4.1).
Furthermore by the definition of K, (4.2), and splitting property
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L = R(a, β) = it(a, 0)K(0, β) = Q
a a

+ R(a, β) it(a, 0)K(0, β) .
a — β β — a a β

Or rewritten
aβ(Q(a) - Q(β)) = (S - β)Q(a)Q(β) ,

which is the resolvent equation.
Hence Q(β) is the resolvent of a self-adjoint operator and by

the spectral theorem

= \ 1

 β

 odEt .
J* 1 — βtβt

Finally, as above, projectivity gives the calculation

T(s) - <Γ(s)l, 1> = (¥(8)1, 1)5 =
R 1 — St
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