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EMBEDDINGS AND BRANCHED COVERING SPACES
FOR THREE AND FOUR DIMENSIONAL

MANIFOLDS

HUGH M. HILDEN

1* Introduction* The main purpose in writing this paper is
to point out a connection between embeddings of manifolds and
branched covering spaces of manifolds. The following theorem is a
corollary to Theorems 3, 4, and 5, and can be regarded as the main
result of this paper.

THEOREM. Let p: Mn —> Sn, n = 3 or 4c, be a 3-fold dihedral
branched covering space branched over a polyhedral knot or link if
n = 3, or a closed orientable polyhedral surface, if n = 4.

Then there is a locally flat embedding e: Mn —> Sn xS2 such that
the following diagram commutes.

On w Q2

It is a result of the author and Jose M. Montesinos ([2], [5])
that every closed orientable 3-manifold is a three fold dihedral
covering of S3 branched over a knot or link. Indeed, this can be
done in a wide variety of ways satisfying various side conditions
([3]).

This result, together with the above theorem can be viewed as
saying that every closed orientable 3-manifold and certain closed
orientable 4-manifolds are topologically like Riemann surfaces.

Indeed, given such an M3oτ4 there is an S2 multivalued function
/ (see §4) defined on S 3 o r 4 such that MZOT* is the graph of /. More-
over, locally the singularities of / look like (x, z)-+λ/ z or (xlf x2, z) —>
V T .

It is unknown which closed orientable 4-manifolds can be 3-fold
dihedral covering spaces of S4 branched over orientable surfaces.
But Montesinos ([7]) has recently shown that a large and important
class of four manifolds with boundary are three fold dihedral cover-
ings of D\ branched over locally flat, but not necessarily orientable,
properly embedded surfaces. On the other hand, it is a result of
Edmonds and Berstein that Sι x S1 x S1 x S1 and many other closed
orientable four manifolds cannot be threefold branched covering
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spaces of S4 at all. Also, not every closed orientable four manifold
W4 is a 3-fold dihedral branched covering space of S4 branched
over a locally flat orientable surface because not every closed
oriented W4 embeds in S4xS2. (For example, if C P2 embeds in
S4 x S2 then τ{CP2) 0 v(CP2) is trivial because S4 x S2 is almost
parallelizable. This implies p(τ(CP2))p(v(CP2)) = 1 where p stands
for the total Pontrjagin class. But p(τ(C P2)) = 1 + 3<%2, and
p(v(C P2)) — χ(v(C P2))2 where χ means Euler class, and a generates
H\CP2). (See [4].) This is impossible.

2* Definitions, notations, and standing assumptions* We shall
work in the piecewise linear category throughout the paper. All
manifolds and maps will be assumed PL without it being explicitly
stated. Sometimes, such as when we refer to fe-skeleta, we shall
assume fixed triangulations and simplicial maps.

Given a nondegenerate simplicial msipp:X-^Y between ^-mani-
folds, p: X —> Y is said to be a branched covering space if the re-
striction to the complements of the n — 2 skeletons is a covering
space in the usual sense. The set of points C in X at which p
fails to be a local homeomorphism is called the singular set. The
set B = p(C) is called the branch set. The branch covering space
is &-fold if the associated covering space map is k to one. Since
our results are well known or trivial if dim X = dim Y = 2 we shall
assume throughout this paper that n Ξ> 3.

A k-ίolά branched covering space p:X—>Y determines an equi-
valence class of representations p: πλ( Y — B) —> Σk, where Σk is the
permutation group on k letters. The representation p corresponds
to the permutation induced on the left cosets of p^π^X — p~\B)) by
left multiplication.

Conversely, a representation p: πt( Y — B) —> Σk determines a
branched covering space p: X —> Y. The subgroup of the associated
covering space is the inverse image of the group of permutations
fixing some particular letter. If k ^ 3 and p is surjective, the
covering is not regular because the subgroup is not normal. (Details
on branched covering spaces and the representations that induce
them are given in [1] and [8].)

Let D be a 2-disc in Y that intersects B exactly once, trans-
versally, in its interior. Then D is called a meridian disc and any
element of πγ{ Y — B) conjugate to the path that travels once around
the boundary of D is called a meridian.

A threefold dihedral branched covering space is one in which
meridians are mapped into transpositions by the representation p.

We shall be concerned in the sequel with a particular three
dimensional manifold. Let R{R) be the set of unordered (ordered)
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triples of points in S2 that lie on a great circle and at the vertices
of an equilateral triangle. Then q: R -» R is a regular 6-fold cover-
ing space. Note that R is homeomorphic to SO(3). (The group
SO(3) acts transitively on R and the isotropy subgroup of a point
is trivial.)

Let {A, B, C}((A, B, C)) be a fixed base point in R(R). Let
RA = {{D, E, F}eR\One of D, E, or F equals A.) and let RB and Rc

be defined similarly. Then RA, RB, and JBC are all homeomorphic to
Sι and RAnRBnRc = {A, B, C}.

We shall denote the natural maps Z/AZ -» Z/2Z, and Σ3 -> Z/2Z
by α and β respectively and we shall denote the pullback {(x, y) e
ZIAZ 0 Σs|α(α?) = β(y)} by G. Given a commutative diagram of
groups indicated by the solid lines below, the homomorphism indi-
cated by the dotted lines exists, is unique, and the diagram is still
commutative. The natural maps 7 and δ are indicated in the
diagram

(1)

> Z/2Z

All homology and cohomology groups are assumed to have Z
coefficients unless otherwise stated.

3* The homotopy groups of R+

LEMMA 1. We have the following computations for the homotopy
groups of R:

πx(R) = G , πt(B) = 0 , π3(R) - Z .

Proof. The last two statements follow from the fact, men-
tioned in § 2, that R is covered by R — SO(3) which is covered by
S3.

There is a natural homomorphism θ: π^R; {A, B, C}) -> Σ3 = per-
mutations of the letters A, B, and C. The homomorphism βθ maps
πx(R; {A, B, C}) onto Z/2Z. It is clear from the covering spaces
that order πλ(R) is twelve. If we let x equal continuous rotation
through 120° about an axis perpendicular to the plane through
{A, B, C} then x belongs to kernel βθ and has order six. (Note that
xs is the nontrivial element of 7^(80(3)).) Thus we have the exact
sequence:

(2) 0 >Z/6Z >π,(R) > Z/2Z >0.
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There is, up to isomorphism, only one noncommutative group
satisfying such an exact sequence. To see this, let x generate Z/6Z
and let b be an element mapped into the nontrivial element of Z/2Z.
Then bxb~x = xr and the group structure is completely determined
by the value of r. Since bxb~ι also generates Z/6Z, r = ± 1 . Since
the group is noncommutative r = — 1. Thus πx(R) — G since G also
satisfies this exact sequence. (The element (2, (A, B, C)) generates
the kernel.)

4* The j?-value function /• In this section we shall begin the
construction of a function / defined on the complement of a tubular
neighborhood of the branch set and taking values in R. It is
useful to think of / as a multivalued function such as, for example,
an algebraic function on the Riemann sphere.

We note that if B is a codimension two, locally flat, properly
embedded submanifold of the manifold Y, then a regular neigh-
borhood of B is a closed tube neighborhood of B. This is because
a regular neighborhood of B is the total space of a 2-dimensional
block bundle over B and a 2-dimensional block bundle over B is a
linear disk bundle (see [9] for details and definitions).

We shall need the following.

LEMMA 2. Let p: X —> Y be a threefold dihedral branched cover-
ing space of compact orientable n-manifolds. Suppose the branch
set B is a properly embedded, locally flat, n — 2 dimensional orient-
able manifold. Assume Hλ(Y) — H2(Y) = 0. Let T be a closed
tubular neighborhood of B and let p: πx{ Y — int T; y0) —> Σ3 be the
representation induced by the covering space.

Then there is a map σ: π,(Y - int T; yQ) ~> G = π,{R, {A, B, C})
such that ΊO = p and there is a map /: (2-skeleton (Y — int T)) U
dT~^R such that /*: π,(Y - int T; y0) -> π^R; {A, B, C}) equals σ and
such that / restricted to a component of dT takes values in one of
the submanifolds RA, RB, Rc. Also, / takes any meridian circle of
dT into a generator of the homology of RΛ, RB, or Rc.

Proof. It follows from Alexander duality that Hn~2(B, dB) -
JBΓa( Y — dB, Y — B) and it follows from the exact homology sequence
of the pair (Y - dB, Y - B) and the assumption H^Y) = H2(Y) = 0
that H2(Y -dB,Y-B) = H,(Y - B). (Note Y - dB ^ Y.) Thus
HjίY — B) is a free abelian group generated by meridians. It has
as many generators as there are components of B.

Now let T be a tubular neighborhood of B in Y. We have the
representation βp: πλ(Y — int T) ~> Z/2Z which factors through
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- int T). Let φ\ H^Y - int T) -+ Z be defined by sending each
meridinal generator into ± 1 . Making a choice of + 1 or —1 for
each generator is equivalent to choosing an orientation for Y and
each component of B. Let ε: Z-» ZjkZ and ιt:π1-^H1 be the na-
tural maps. We then have the commutative diagram given by the
solid lines below. It is the assumption that meridians are sent to
transpositions that makes this diagram commutative. The homo-
morphism σ exists because, as explained in §2, G is the pullback
of Z/AZ and Σ3.

( 3 )

ZjAZ > ZβZ

Now we must construct the function /. We begin by choosing
disjoint arcs from yQ to each component of dT and letting Arcs be
union of these arcs. Let B1 be one of the components of B, let Tx

and dTx be the corresponding components of T and dT and let
yx = Arcs Π dT^ We obtain by restriction a representation (which
we also by σ) from πx(βTx; yx)—>G = πx(R; {A, JS, C}).

Since 2\ is a tubular neighborhood of Bu it follows that dTx is
an Sι bundle over Bx and the top row of the following diagram is
a segment of the exact homotopy sequence of this fibration. The
other maps are natural or are induced by inclusion

Ί' ϊ
n

( 4 )

The fiber Sι is a meridian, so c is injective and therefore a is
injective. Since d is an isomorphism, it follows that e is injective.

Let x generate π^S; yx) and let y be any element of 7̂ (3 2\; yx)
then y must commute with x because yxy"1 e π^S1) and d(x) = d{yxy~ι).
Thus σ(x) commutes with σ(y) and p(x) commutes with ρ{y). Since
p(x) is a transposition we see that piπ^dT^ yj) is a cyclic group of
order two and σiπ^dT^ yj) is a cyclic group of order four. This
cyclic group of order 4 is mapped isomorphically onto Z/AZ by <5.
The representation σ factors through H^dTJ -> H^Y - int T)-> Z.
Suppose pfaidTΰ yx)) = {1, (5, C7)}. Then since RA = S1 and π^S1) = 0
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for i ^ 2 we can find a map/: dϊ^-* i ^ c i ? such that /*: (dT,; yj-*
π^R; {A, B, C}) equals a. Note that / takes any meridian in dTx

into a generator of if^iϋj-
We define the map / in a similar way on the other components

of dT and we map the set Arcs into the point {A, B, C}.
We can now just use the definition of σ to extend the map /

to the rest of the 1-skeleton and to the 2-skeleton so the proof of
this lemma is complete.

To extend the function / from the 2-skeleton to all of Y— int T
will require some addition assumptions about dimension. We do
this in the next two theorems.

THEOREM 3. Given p:X-> Y as in Lemma 2, if n = 3, then
the mapf extends to all of Y — int T.

Proof. By Lemma 1, π2(R) = 0 so we can extend to the
3-skeleton.

THEOREM 4. Given p:X-+ Y as in Lemma 2, if n — 4, then
the map f extends to all of Y — int T.

Proof. Let H be the subgroup of πx{ Y — int T) equal to the
kernel of σ: πx(Y — int T) -> G = π^R) and let Ϋ be the covering
space. We have the following commutative diagram of twelve fold
covering spaces

( 5 ) J s Jπ
Γ

-ϊ n + T1 v 7?

l l l b JL ^ XL •

The map /(/, the lift of /) is only defined on dT(π~ιdT) and
the 2-skeleton of 7 - int T (of Ϋ).

As in Theorem 3, the map/(/) can be extended to the 3-skeleton
but there is an obstruction 0(0) belonging to H\Y — int T, dT;
πlR))(H\Ϋ),π-ιdT\πlS*)) to the extension of /(/). Since π: f->
(Y — int T) is just a covering space map, the induced map on the
fourth cohomology is groups multiplication by twelve and 0 vanishes
if and only if 0 does.

The obstruction 0 is a primary obstruction. To compute it we
only need to know / restricted to π"\dT). According to Theorem
17 of [4] p. 431, / can be extended if and only if δf*(ϊ) = 0 in
H\Ϋ, π~\dT)) where i is a generator of ττ3(S

3) = Z.
The map / restricted to π~\dT) factors through y:π~ι(RA\J

RBURc) -> S\ Since π'\RA\JRB\JRc) is a 1-complex we see that
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/*({) = 0 and / extends. Thus 6 vanishes, so does 0, and we are
done. We note that / may have to be redefined on the 3-sekeleton
before extending it.

5* The embedding theorem* In this section we prove the fol-
lowing

THEOREM 5. Let p:X—>Y be a threefold dihedral branched
covering space of compact three or four dimensional manifolds.
Let the branch set B be a properly embedded locally flat orientable
submanifold of Y. Assume also HX{Y) = H2(Y) = 0.

Then there is a locally flat embedding e:X—> YxS2 such that
the following diagram is commutative

YxS2

(6 ) Xp [π

Proof. Let T be a tubular neighborhood of B. By Theorems 3
and 4 there is a map /: Y — int T-^ R such that 7/*: πx(Y — int T;
y0) —> πx(R; {A, B, C}) —» Σ3 is the representation associated to the
covering and / maps each component of 3T into RA, RB, or Rc. Let
%<>GP~\VQ) t>e the base point defining the covering space. That is
p+πάX - ϊΓ ι(int T); x0) = p~ι{l, (B, C)}.

We next define a function h: X — p~\int T) -> S2. Define h(xo)=A.
If x is any point in X — p~\mt T) let x(t) be a path from x0 to x.
Lift the path f(x(t)) which begins at {A, B, C} in R to a path begin-
ning at (A, B, C) in R and define h(x) to be the first coordinate of
the endpoint of this path. By checking definitions we see that h is
well defined and that if f(x) = {D, E, F), then h(p~ι{x}) = {D, E, F}.
It follows that the map (p, h): X - p~\int T) -> Y - int TxS2 is a
locally flat embedding.

Next we must extend h to p'^int T). Let 2\ be a connected
component of T. Since 3\ is a linear disc bundle over Bx we shall
consider Tx as the mapping cone on its boundary. That is 2\=
(δTjXJJUffi?! where the map g on 3ΓiX{0} is induced by the bundle
projection. In this way each 2-disk fiber has a natural structure as
the cone on its boundary. Assume Tx and R have fixed metrics.
Before we can extend h we must make the maps / and h nicer.
Suppose f{dTx) is contained in, say, RB. Let D be a fiber of Tx.
We know that the map / takes 3D onto RB in such a way that the
image of dD generates the homology of RB. We can homotopy /
so that / maps 3D homeomorphically onto RB. To do this suppose
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that τ: i25 —> 3D is a locally length preserving homeomorphism. The
map g = fτ: RB-> RB is naturally homo topic via gt to a rotation.
(Lift # to a map #: i?1 —> R\ Let &: i?1 -» Rι be a straight line func-
tion of slope 1 such that the average area between the graphs of
k and g is zero. Homotopy g to k through convex combinations
and project the homotopy down to RB.) It can be seen that the
homotopy gtτ~~x of / restricted to 3D does nnt depend on the homeo-
morphism τ and can be carried out continuously and simultaneously
on all the fibers of 32\. We homotopy / in similar fashion on the
other components of 3T, we extend the homotopy of / to
Y—p~\mt T) and we homotopy the map h so that h still satisfies
h{p-\x)}{f(x)} for all x in Y - p~\mt T).

Since p([3D]) is a transposition (consider [3D] an element of
H^dD)), p~\D) consists of two components D1 and D2. One of them,
say Dlf is mapped homeomorphically by p onto D. The circles 3D,
and 3D may be coordinatized so that p\D2 is the map (ei0, t) —>
(e2iΘ, ί), 0 ^ t £ 1, where 3D2 = {(eί(?, 1)}. Since / maps 3D homeo-
morphically onto RBi since 7f*[3D]el3 is a transposition, and since
h{p~\x)} = /(as) for x 6 dD, we see that h must be constant and equal
to B on 3D19 and that /& must map 3D2 homeomorphically onto a
circle C in S2, where the circle C contains the points A and C and
bounds a disc Z) centered at the antipodal point of B. We extend h
to D1 by setting it equal to B and we extend h to D2 by considering
D to be the cone on its boundary with cone point, the antipodal point
of B and defining h(p, t) — (h(p), t). That is, we just take the cone
on h. It follows from the definitions, now, that h is well defined,
continuous, and that (p, h): Y-^XxS2 is a locally flat embedding.

6* Remarks* The same methods used in proving Theorems 3,
4, and 5 can be applied to cyclic covering spaces in all dimensions.
The following theorem is probably well known but I do not know of
a reference.

THEOREM 6. Let p:X->Y be a k-fold cyclic branched covering
space of compact n-manifolds. Let the branch set B be a properly
embedded locally flat orientable submanifold of Y. Assume Ht( Y) =
H2{Y) = 0.

Then there is a locally flat embedding e: X~^YxDz such that
the following diagram is commutative

X

Y
e/

P

xD 2

i"
Y
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Proof. The proof is similar but much easier. R is replaced by
the set of fc-tuples of equally spaced points on S1. This space is
just Sι, so there is no obstruction theory to do as the coefficient
groups vanish and / is obtained immediately.

This result can be used to show, for example, that certain
closed orientable w-manif olds (those that do not embed in En+2) are not
branched cyclic covers of Sn, branched over a locally flat, oriented
n — 2 manifold.

Conversations with Bob Little and Allan Edmonds, and corre-
spondence with Jose Montesinos were very helpful to me in writing
this paper. In particular, Little pointed out to me the argument
that not every W4 can be embedded in S4xS2.
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