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AN IMPLICIT FUNCTION THEOREM IN BANACH SPACES

JAIN RAEBURN

We prove the following theorem:

THEOREM: Suppose X, Y, and Z are complex Banach
spaces, U and V are open sets in X and Y respectively, and
zeU,yeV. Suppose f: U— V and k: V — Z are holomorphic
maps with f(x) =y, kof constant and range f’(x) = ker k/(y)
+{0}. Let D be a domain in C" 2€D and g:D— Y be a
holomorphic map with g(z) = ¥ and k- g constant. Then there
is an open neighborhood W of 2z and a holomorphic map
h: W— X such that A(z) =« and g |y = foh.

We use this result to prove an Oka principle for sections
of a class of holomorphic fibre bundles on Stein manifolds
whose fibres are orbits of actions of a Banach Lie group on
a Banach space.

Introduction. Suppose U is an open set in C", xe U, and f:
U — C™ is a holomorphic map such that f'(x) is surjective. Then a
form of the implicit function theorem tells us that there is a neigh-
borhood V of f(x) and a holomorphic map p: V—U such that
o(f(x)) = x and fop is the identity on V. This theorem remains true
if f is a holomorphic map of an open set U in a Banach space X into
a Banach space Y, provided that ker f’(z) is a complemented subspace
of X. That this is also a necessary condition follows from the fact
that f/(x)o0'(f(x)) is the identity operator on Y, so that o'(f(x))ef'(x)
is a projection of X onto ker f’(x).

In general, implicit function theorems work well in a Banach
space setting, provided that we impose suitable complementation
conditions (see, for example [4]). In practice it can be very hard to
find out whether a given subspace of a Banach space is complemented;
our main theorem is an implicit function theorem which has no com-
plementation hypothesis. Before we state our theorem, we shall
reword the result mentioned above. Let X and Y be complex Banach
spaces, U be open in X, xc U, and f: U— Y be a holomorphic map
such that f'(x) is surjective and ker f’(z) is a complemented subspace
of X. Then if V is an open set in a Banach space W, we V, and ¢
is a holomorphic map of V into Y such that g(w) = f(x), there is a
neighborhood N of w and a holomorphic map h(= pog) of N into
X such that foh = g on N. Our main theorem asserts that provided
W is finite-dimensional, this theorem is still true without the hy-
pothesis that ker f’(x) be complemented. More generally, suppose
there is a third Banach space Z and a holomorphic map k: Y —Z
such that kof is constant and range f’(x) = ker k'(f(z)). Let D be
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an open set in C", and let ze D. Then our main theorem says that
if g is a holomorphic map of D into A '(k(f(x))) with g(z) = f(«), then
there is a holomorphic map h of a neighborhood N of z into X such
that foh = gly. We shall prove this theorem in §2.

Grauert [2] has proved an Oka principle for sections of a holo-
morphic fibre bundle over a Stein manifold with fibre a complex Lie
group. Ramspott [10] has generalized this result to allow homogene-
ous spaces as fibres, and Bungart [1] has extended it to the case
where the fibres are infinite-dimensional Lie groups. In §3, as an
application of our implicit function theorem, we shall extend the
theorems of Ramspott and Bungart to allow for infinite-dimensional
fibres which are the orbits of suitable actions (g,2) — ¢ -2 of an
infinite-dimensional Lie group G on a Banach space X; more spe-
cifically, we demand that such an orbit M also be the level set of a
holomorphic map % in such a way that the derivatives of the orbit
map g — g-2, and k form an exact sequence at x,€ M.

1. Preliminaries. Let X and Y be complex Banach spaces, let
U be an open set in X and let f be a continuous map of U into Y.
We say f is holomorphic in U if at each point of U f has a Fréchet
derivative which is a complex linear map of X into Y. Equivalently,
f is holomorphic in U if for each x ¢ U and ke X the function z —
f(x + zh) is holomorphic in a neighborhood of 0 in C. If /1 U—Y
is holomorphic in U, then f has complex Fréchet derivatives of all
orders; that is, for xe U and all n the nth derivative f™(x) exists
as a complex multilinear map of X" to Y. We give X" the norm
| (@, =<+, 2,) || = sup{|| 2]} and put the corresponding operator norm on
L"(X", Y), the space of complex n-linear maps of X" into Y. If f: UC
X — Y is holomorphic, it is well-known that lim sup (|| /™ () ||/n!)""
is finite for each x € U. For further details of this material, we refer
to [7].

We shall use many times two differentiation techniques which are
well-known in one variable; namely, the chain rule and Liebnitz’
formula. Let U be open in X, V be open in Y, and let /1 U—>V
and ¢g: V —Z be differentiable. Then the chain rule [5, p. 99] says
that gof is differentiable, and, for x,e U, the derivative (gof) (x,) €
L(X, Z) is given by

(gof) @a = o' (f@)f"(w)2] for weX.

Let U be an open set in C, and let f/: U — L(Y, Z) and ¢: U — L(X, Y)
be n times continuously differentiable maps. Then we can define
fo: U— L(X, Z) by fou) = f(u)og(u) for e U, and a special case
of the product formula [5, p. 97] gives that fg is differentiable and
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(fo)(u) = flu)og'(uw) + f'(w)°g(w) .

Proceeding exactly as in the scalar case, an induction argument gives
us our version of Liebnitz’ formula: the function fg is » times con-
tinuously differentiable and

(F(w) = 3 [ﬂfm(u)ogm-”(w for uel.

2. The implicit function theorem.

THEOREM 2.1. Suppose X, Y, and Z are complex Banach spaces,

U and V are open sets in X and Y respectively, and xc U, ye V.

Suppose [ U—-Vand k: V— Z are holomorphic maps with f(x) =y,

kof constant and range f'(x) = ker k'(y) = {0}. Let D be o domain

in C", zeD, and g: D— Y be a holomorphic map with g(z) = y and

kog constant. Then there ts an open meighborhood W of z and a
holomorphic map h: W — X such that h(z) =2 and g |, = foh.

Proof. We shall assume for simplicity that x, y, and z are all 0.
By shrinking D if necessary, we may assume that ¢ has a power
series representation

220

g(z)=2 2! for zeD,

[1]=0
where I denotes the multiindex (i), ««+,1,), 2/ =zt +-22, Il =
2,11,) ++- 4,1, and

'1 aiZ a n

g (0 . 0
R e = A

We shall suppose first that such an & exists; then fo % is a holomorphic
map of D into Y. Let I be a nonzero multiindex, and assume
without loss of generality that 4, > 0. If I'=(5, — 1,4, -+-, ©,),
then by the chain rule applied to the function z, — foh(2,0, -, 0)

we have
(I’)
2

Now f’oh is a holomorphic map of D into L(X, Y) and we can regard
0h/0z, as a holomorphic map of D into L(C, X) = X, so our Liebnitz
formula applies; we obtain

7 1 1= I (31,0,++-,00)
g(0) = z[ s }[ 2] (0).

97(0) = (foh)P(0) = ((f’°
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By successively applying the Liebnitz formula to the different varia-
bles, we obtain

II
g0 = 3, [ﬂ<f’°h><“<0> ° h="(0)
J=I’' B

Wi HiS Mt

Hence if such an h exists, for all multiindices I its derivatives satisfy

where

II
(1) (fomORT0) = g(0) — > [J](f'oh)”’(O)[h”“”(O)] .
0<J=I’
We observe that by repeating this process on the term (f’oh)”(0),
we find that each (f" k)’ (0)R"7(0) can be written as a linear com-
bination of points of Y of the form

(S e R)(O)[A(0), - -+, BE(0)]

for some j = 2 and multiindices L,, ---, L; with L, > 0 for all 7 and
Zg=1 L, =1

We first define 2(0) = 0. Then (/"o h)(0) = f’(0): X — Y, and range
f'(0) = ker k'(0), a closed linear subspace of Y. Then by the open
mapping theorem there is a constant C such that for each ye
range f'(0) there exists x ¢ X with f/(0)x =y and ||z|| < C||y|. We
shall assume that C||f'(0)|| = 1. We shall define 2”(0) inductively
so that (1) holds and
(2) WO =C[ 070 ~ 3 [I ](f’oh)“”(O)[h”““(O)] |

oIz J

where by (f" o k) (0)h”~"'(0) we mean the linear combination described
above. We observe that for |I| = 1, (k- g)?(0) = k'(0)9'”(0), and since
kog is constant we have g¢'“(0) ¢ ker £'(0) = range f'(0), so that we
can choose A'"(0) as required. Suppose now that for all J with
|J| < |I| the right hand side of (1) is in the range of f’(0) and we
have chosen A’(0) satisfying (1) and (2). For notational convenience
we shall regard % as the polynomial

he) =3 22O o tor zeD,
i< J!

so that for J < I the terms (f'oh)"“(0), (k' ofoh)”(0) and so on all

make sense, and all such terms agree with those given by expanding

and using (1). To show that we can define 2'”(0) as required it is

enough to show that
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II
(3) k'(o>[g<”<o> - 3 [ J](f’oh)“”(O)[h”"”(O)lJ =0.

=1’

Since kog = 0, (kog)"(0) = 0, and so as before

’

I
HO0RO = - 2[ ]<k'og>”f><0>[g”~m<0)1 :

K

By the inductive hypothesis

L<a -5 L

I'— K -
g %(0) ___0_ by [ J(f'o R E(O)[R-E-370)]

for all K < I'. Hence

"mrr — K
(4)  KOg0) = — 3 [ }[ 3 J

o<k=1’ os15u-0 | K

X (oo h)®(0) o (F o Y PORT5-D(0)]

since all derivatives of foh of less than Ith order are those of g.
Now (kof) =0, and so

0= (kof)oh = (kofoh)(f'oh).
Thus for every J < I
0 = ((K of o B)(f" 2 h))"(0)
J ’ (M) ’ ° (J—M)
= > [M:l(k o foh)™(0)(f" o h)"="(0) ,

o<M=J

and so as elements of L(X, Z),

J
KO o) 2(0) = — 3, J[ MJ(’G’ o f e h)™(0)/(f" o h)"(0) .

Thus

II
- [ Jk'(O) o (f e B)(0)[A =" (0)]

0<J=I’

I’'TJ
= > [ JI:MJ(M o foh)™(0) o (foh) P (0)[AF"(0)]

0<T=1 0s=T| oJ

> [I’ }[I, - M}(k'°f°h)‘m(0) o (f o )T (0)[AT"(0)]
o<z uiisr| M || J — M

= —K(0)9?"0) by 4).

Thus we have proved (3) and we can define A'"(0) to satisfy (1) and
(2).
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Now define

(5) h(z)=§,%!(0)-zf for zeC".

{I1=0

If we can show that this series converges absolutely in some neigh-
borhood of 0, then we shall be done. Now, by (2), if I is a multi-

index
I'
TROYERPECTENS- Y 7

where X% is a linear combination of terms of the form
L=[f20) [ [[ =) ] -+« [[A*='(0) ] ,

for some j =2, L,---,L; >0 with >/, L, = 1. Define F(0) =
[1/0)]] =0, F*(0) = || f"(0) ||, and F*™(0) = — || f™(0) || for n > 1. Since
fi U—Y is holomorphic, we have that lim sup (||f™(0)||/n!)"* is
finite, and so there is an open neighborhood V of 0 such that
Fit)y =704 for e v,
n=0 'n!

defines a holomorphic function of V into C. Similarly we define a
holomorphic map G of D into C by G‘(0) = || ¢'”(0)|| for all multi-
indices I and

G(z) = i‘, G7(0) 2! for zeD.

=0 I

Since F’(0) = || f'(0) || # 0, by the inverse function theorem for one
variable there is a neighborhood W of 0 in D, and a holomorphic
map H of W into C with FoH =G|, and H(0) = 0. By differen-
tiating F'o H using the chain rule and Liebnitz’ formula, we obtain

’

F'(0)H"(0) = G(0) — 0<%1,[I

J i'(FI ° H)(J)(O)H(I—J}(O) .

Again, we expand each (F'o H)“(0) in the same way and obtain

F'(0)H?"(0) = GP0) + 3 [I,} .,

olr=r| J

where £ is identical to X} with each || h‘%'(0)|| replaced by H(0).
We shall now prove that there is a constant M such that for all
multiindices I

( 6 ) H h(I)(O) ” é M2III—1H(I)(0) .
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In fact, take M = C||f’(0)|| which was chosen to be = 1. The in-
equality is trivially true for I = 0. Suppose (6) holds for all J with
|J| <|I|. Then for each term X of X¥

(7) 1S IO MESTTHEQ) - - HE(0)
< M| F90) || HE(0) -+ - HE(0)

since 7 =2 and >, L, = I. The right hand side of (7) is M2~ times
the term of &7 corresponding to X, and so we have

I/
CROTEDIPECTRS N T

< kM2|I|—2Fr(O)H(I)(O)
= kM1 | £0) || H(0)

as required. Since H is holomorphic in a polydise, from (6) it follows
that the power series (5) converges in a polydisc about 0, and the
proof is complete.

3. Sections of holomorphic fibre bundles. We shall start this
section with a couple of technical results which we shall need later.
The first is an application of the mean value theorem [5, p. 103].

LEMMA 3.1. Let X and Y be Banach spaces, let U be open in
X, and let f: U—Y be continuously differentiable. Let K be a
compact Hausdorff space and define f: C(K, U) — C(K, Y) by (f8)(k)
= f(¢(k)) for $cC(K, U) and ke K. Then f is continuously differ-
entiable and for ¢eC(K, U)

(' @P)k) = [ F'(6(6)) (k) for all yeC(K, X), ke K .

Let X and Y be Banach spaces, Te I(X, Y) and suppose T has
closed range. Then by the open mapping theorem 7T: X — range T
has a bounded inverse 7'. Call || T7*|| the inversion constant of 7.
Let K be a compact Hausdorff space, and let T: K— L(X, Y) be a
continuous map. Then 7T induces a bounded linear map T: C(K, X)
— C(K, Y), where

(Tf)(k) = T(k)f(k) for feC(K, X), keK.

LeEMMA 3.2. Suppose that T(k) has closed range for each ke K
and suppose that the inversion constant of T(k) is less than M for
each ke K. Then

(1) If geC(K,Y) satisfies g(k)crange T(k) for all ke K, then
for each € > 0 there is fe C(K, X) with || f|| < M| g| and || Tf — g]|
< &.
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(2) T has closed range and the inversion constant of T is less
than 2M.

Proof. Part (1) follows by a standard partition of unity argu-
ment. To prove part (2) it is enough to show that for each g e C(KX, Y)
with g(k) e range T(k) for all k€ K, there is some feC(K, X) with
Tf =g and ||f|| < 2M||g||. Let such a g be given. Then by (1)
we can choose f, such that ||f,|| = M||¢g| and || Tf, — g|| = 1/2]|g]|.
Then (g — Tf.)(k) e range T(k) for each ke K, and so by (1) we can
find f,eC(K, X) such that [[f,|| < M| g — Tf.|| = M(1/2)|/g|| and
| Tf, + Tf, — gl £ 1/4]lg|l. In this way we can find a sequence
{f,} CC(K, X) such that [|f,]| < M||g|/2*™ and || T(Sr. f) — gl
[lgll/2*. Then f = >\, f; is the required function.

Let G be a Banach Lie group, and suppose that G is acting
holomorphically on a Banach space X. Let x,€ X, write n(g) = g-2,
for ge @, and set F = n(G). We shall say F is a homogeneous
space under the action of G if there is a Banach space Y and a
holomorphic map k: X — Y satisfying

(1) k(x) =y, for all xe F' and some y,€ Y;

(2) rangen'(1) = ker k'(x,);

(8) there is a neighborhood N of 1 in G such that %'(¢ - x,) has
closed range for g € N and inversion constant uniformly bounded over
N;

(4) H={9eG:¢g-2, =} is a Banach Lie group.

ExampLES. (1) Let A and B be Banach algebras with identity,
and let Hom (4, B) be set of continuous homomorphisms of A into
B. If ¢c Hom (4, B) we set

F, = {y~e Hom (4, B): 3be B~ with +(a) = bg(a)b™ for ac A} .

Denote by B the two sided Banach A-module consisting of B with
the products

a-b=¢@b, b-a =>bsla) for acA, beB.

Then if the Hochschild cohomology groups H'(A, B;) and H*A, B,)
vanish (for the definitions, see [3]), F; is a homogeneous space under
the action of B~'. That conditions (1), (2), and (8) hold is checked
in [9, §3]; (4) follows from the observation that {b€ B~ bg(a)b™' =
#(a) for a € A} is the set of invertible elements in ¢(A4)’, the commutant
of ¢(A), which is a closed subalgebra of B.

(2) Let F, be the set of continuous algebra multiplications on A4
which give algebras isomorphic to A. Then if the Hochschild groups
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H*(A, A) and H*(A, A) vanish, F, is a homogeneous space under the
action of L(A)™* given by

¢ - m(a, b) = 67" (m(g(a)$(d))) for acA, beB,

where ¢ € L(A)™ and m is a multiplication on 4. Again, (1), (2), and
(3) are checked in [9, §4]; (4) follows since the isotropy group of
the usual multiplication is the set of algebra automorphisms of A,
which is a Banach Lie group with Lie algebra the set of bounded
derivations of A.

THEOREM 3.3. Let F be a homogeneous space under the action
of a Banach Lie group G. Let M be a Stein manifold, N be a closed
submanifold of M and suppose E is a holomorphic fibre bundle over
M with fibre F and structure group G. Then

(I) If s: M— E is a continuous section such that s|y 1is
holomorphic, them s is homotopic in the space of sections which extend
s|y to a holomorphic section §: M — H.

(II) If two holomorphic sections f, and f, of E over M are
homotopic in the space of continuous sections, then they are homotopic
wn the space of holomorphic sections.

Proof. Let s: M — E be a continuous section whose restriction
to N is holomorphic, and let »: E — M denote the bundle projection.
We shall show that there is an open cover {U,};., of M by holomor-
phically convex sets such that E|,, is trivial for each j, and satisfying:

(*) Let @;: U; x F—p™'(U;) be a trivialization of E|;, and for
me U; define 9;,: F— p*'(m) by @;,.(e) = ®;(m,e) for ec F.
Then p;(e) = @;.,(e) for ec p~(U;) defines a holomorphic map p;
of p(U;) into F. There exist continuous maps s;: U; — G such
that wos; = p,os|,; for all j and such that s;|;,,y is holomorphic.

Let me M; it is enough to show that m has a neighborhood U
satisfying (*). Choose a neighborhood V of m such that

(a) V is relatively compact;

(b) E|, is trivial via @: VX F—p(V);

(¢) VNN is a co-ordinate neighborhood in N.
Since G acts transitively on the fibre F, there is some geG with
7(g) = @;'(s(m)). Define a continuous map ¢t: V — F by

t(m') = g7+« (Pris(m”)) for m'eV.

Then ¢ |,y is & holomorphic map of V' N N into FcX. By Theorem
2.1, there is a neighborhood WcCV of m in M and a holomorphic
map f of WN N into G such that wof = ¢|;ny.



534 TAIN RAEBURN

Let K = W. Then if G has Lie algebra &, C(K, G) is a Banach
Lie group with Lie algebra C(K, ®). As in Lemma 3.1, the sequence

b d k .
G - X = Y induces a sequence

(1) C(K, G)— C(K, X)—*- 0K, V)

of holomorphic maps. Since (ko #)(g) = ¥y, for geC(K, G), where y,
denotes the constant function value y,, the derivatives form a complex
(2) o, &) 22 o, ) ok, vy .

Now, since, near 1, C(K, G) can be identified with C(K, ®), we can
apply Lemma 3.1 to deduce that

(T Wy)(k) = ' L)yr(k) for eCK,®), ke K
(Ex)a)k) = K (x)ak) for acCK, X), ke K .

Now range z’(1) = ker k'(x,), and so in particular range (1) is closed.
Thus (see, for example, [6]) there is a continuous map 7: range 7'(1)
— X such that 7’(1)on is the identity on rangen’(1). Now let ac
ker k'(z,). Then a(k)cker k'(x,) for every % in K, and so 7o« is a
continuous map of K into X such that #/(1)(n-a) = a, proving that
the complex (2) is exact. For acC(K, X) close to z,, Lemma 3.1
gives

(B ()p)k = k(ak)pk) for BeC(K, X), ke K .

Thus, by Lemma 3.2, for a sufficiently close to x,, k’(«) has closed
range and bounded inversion constant. Hence we can apply [9,
Theorem 1] to the complex (1) and deduce that there is ¢ > 0 such
that if 4 eC(K, X) satisfies k(y) = Yo and ||+ — .|| <&, 4 has a
preimage in C(K, G).

Now choose a neighborhood W’ W of m such that || t(m’) — t(m) ||
<e for m'e W, and choose a neighborhood U of m such that
Ucint W’ and U is holomorphically convex. Since K is a compact
Hausdorff space, by Urysohn’s lemma there is a continuous function
¢: K—[0,1] withg =0 off W and ¢ =1 on U. Then ¢t +(1 — é)x,
is within ¢ of z, on K, and so there is a continuous map f: K — G
such that 7o % |3 = t|3. Now #~f is a continuous map of U N N into
H, and so by shrinking U if necessary, we can assume ¢ 'f is a
continuous map of U N N into a Banach space. Thus by Dugundji’s
extension theorem ~'f extends to a continuous map u of U N N into
H. Then v = tu is a continuous map of U into G with wov =t and
¥|yay = f holomorphic. The map § defined by 3(m') = gv(m') for
m’ ¢ U is the required lift of s.
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We are now in the situation that Ramspott is in after the first
paragraph of §4 of [10]. We can use the rest of his proof, using
Theorem 8.4 of [1] and Theorems A and B of [8, §3] in place of the
corresponding finite-dimensional theorems of Grauert. We note that
the hypothesis—which has not been used so far—that the isotropy
group of x, is a Banach Lie group is required to apply the lemma
in [10, §5].

Note. The results of Grauert, Ramspott, and Bungart apply to
bundles over Stein spaces; since our basic technique involves lifting
of power series it does not immediately apply in this more general
setting.
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