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A GEOMETRIC INEQUALITY WITH APPLICATIONS
TO LINEAR FORMS

JEFFREY D. VAALER

Let CN be a cube of volume one centered at the origin
in RN and let Pκ be a iΓ-dimensional subspace of RN. We
prove that CN Π Pκ has iΓ-dimensionai volume greater than
or equal to one. As an application of this inequality we
obtain a precise version of Minkowski's linear forms theorem.
We also state a conjecture which would allow our method
to be generalized.

I* Introduction* Let CN — [ — 1/2, 1/2]̂  be the iV-dimensional
cube of volume one centered at the origin in RN and suppose that
Pκ is a if-dimensional linear subspace of RN. Dr. Anton Good has
conjectured that the iί-dimensional volume of Pκ Π CN is always
greater than or equal to one. In case K = N — 1 this has recently
been proved by Hensley [6], who also obtained upper bounds for this
volume. Our purpose in this paper is to prove the conjecture for
arbitrary K and to give some applications to Minkowski's theorem
on linear forms. In fact we prove a more general inequality for
the product of spheres of various dimensions which contains the
conjecture as a special case.

We write x for the column vector I I in Rn and

( n \ 1/2

for its length. We define the sphere Sn by

where ρn = π'1/2{Γ(n/2 + l)}Vί\ It follows that μn(Sn) = 1 where μn

is Lebesgue measure on Rn. Also we let Xu(x) denote the charac-
teristic function of a subset U in Rn.

Our first main result is contained in the following theorem.

THEOREM 1. Suppose that nlf n2f -- ,nj are positive integers,
QN = S%1 x Sn2 x x Snj is in RN, N = % + n2 + + nJf and A
is a real N x K matrix, rank(A) = K. Then

(1.1) |det ATA\~m ^ [xQN{Ax)dμκ(x) ,

where Aτ is the transpose of A.
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We note that if rank(A) < K then each side of (1.1) is infinite.
From Theorem 1 we easily deduce a lower bound for μκ{QN Π Pκ)-

COROLLARY. Let QN be as in Theorem 1 and let Pκ be a K-
dimensional subspace of RN. Then μκ(QN Π Pκ) ^ l

Proof. Choose A in Theorem 1 so that the columns of A form
an orthonormal basis for Pκ in RN. Then the left hand side of (1.1)
is 1 while the right hand side is μκ(QN Π Pκ).

The corollary clearly contains Good's conjecture since QN = CN

if nό = 1 and J = N.
Next we suppose that L0), j = 1, 2, , N are N linear forms

in K variables,

K

L0) = Σ Uji&k f

so that A = (ajk) is an N x K matrix. We assume that the forms
Lj are real for j = 1,2, , r and that the remaining forms consist
of 8 pairs of complex conjugate forms arranged so that L r + 2 j _i = Lr+2j

for j = 1,2, , β. Thus N = r + 2s. Let εx, ε2, , ε^ be positive
with εr+2i_1 = εr+2j for j = 1,2, , s. We define the NxN diagonal
matrix E bj E = (cfidk) where c, = εj1 iί j = 1,2, , r, c, = (2/τr)1/2e71

if j = r + 1, r + 2, , iSΓ and δifc is the Kronecker delta. Theorem
1 allows us to prove the following precise version of Minkowski's
classical result on linear forms.

THEOREM 2. Let M be a positive integer and suppose that

(1.2) M\άetA*E2A\1/2S 1 ,

where A* is the complex conjugate transpose of the matrix A. Then
there exist at least M distinct pairs of nonzero lattice points ±vm,
m — 1, 2, , M, such that

(1.3) IL^vJl^βj

for each j and each m. In particular if |det A*A\ > 0 then there
exists a pair of nonzero lattice points ±v such that

tA*A|1/2*(1.4)

for j

(1.5)

for j

= 1,2,

= r + l , r

,r

+

\L}(±v)\^

,and

\L3-(±v) ^ ( - 2

2, . . ,JV.
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Theorem 2 was first proved in the case N ^ K and M = 1 by
Minkowski [8, p. 104]. Subsequently the extension of Minkowski's
convex body theorem by van der Corput [5] allowed Theorem 2 to
be proved for N ^ K and arbitrary Λf. Of course if N — K then
(1.2) becomes the more familiar condition

—Y|detA|
π /

and if N < K then (1.2) is trivially satisfied since the left hand side
is zero. The novelty in our result is that Theorem 2 now holds for
1 <. K < N. Previously in the case 1 ^ K < N we knew only that
(1.3) held if

(1.6) 2KM £ μκ({x e Rκ: \L0) \ £ eif j = 1, 2, , N}) .

We prove Theorem 2 by showing that the right hand side of (1.6) is
bounded from below by 2*|det A*JE2A|~1 / 2. AS will be clear from the
proof, Theorem 2 could be generalized to include linear forms with
values in Rn for various n.

In §5 we state a conjecture which would allow us to obtain a
significant improvement in Theorem 1. Specifically, we deduce from
this conjecture an analogue of Theorem 1 in which QN is replaced
by an arbitrary closed, convex, symmetric subset of RN having N-
dimensional volume equal to one.

The author wishes to thank Professors Patrick Brockett, Douglas
Hensley, and Bruce Palka for several helpful discussions on the subject
of this paper.

2* Preliminary results* In this section we briefly summerize
some facts about logarithmically concave measures and functions. A
more detailed discription can be found in the papers of Kanter [7]
and Prekopa [9].

A function / : Rn —> [0, oo) is said to be log-concave if for every
pair of vectors xlf x2 in Rn and every λ, 0 < λ < 1, we have

A probability measure v defined on the measurable subsets of Rn is
log-concave if for every pair of open convex sets U1 and U2 in Rn

and every λ, 0 < λ < 1, we have

(2.1) v{\U, + (1 - X)U2) ^ MUdYMUJ)1-1 ,

where + on the left hand side of (2.1) indicates Minkowski addition
of sets. Clearly (2.1) holds for all open convex sets U1 and U2 if and
only if it holds for all closed convex sets U1 and U2. The relationship
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between log-concave measures and log-concave functions is contained
in the following lemma.

LEMMA 3. Let v be a log-concave probability measure on Rn and
suppose that the support of v spans the k-dimensional subspace Pk

in Rn. Then there is a log-concave probability density function f
defined on Pk such that dv — fdμk, where μk is k-dimensional Lebesgue
measure on Pk. Conversely for any log-concave probability density
function f defined on a k-dimensional subspace Pk in Rn, the pro-
bability measure defined by dv = fdμk is log-concave, where μk is
Lebesgue measure on Pk.

The first part of Lemma 3 is a result of Borell [2, p. 123] while
the converse was proved by Prekopa [9], (see also Kanter [7, Lemma
2.1]).

Let vx and v2 be probability measures on Rn. We say that v2 is
more peaked than vx if

for all closed, convex, symmetric subsets U in Rn. (We recall that
U C Rn is symmetric if U — — U.) If f and f2 are probability density
functions on Rn we say that f2 is more peaked than f if the measure
f2dμn is more peaked than the measure fdμn. The notion of peaked-
ness was introduced by Birnbaum [1] and Sherman [10], A comple-
mentary relation is that of symmetric dominance in the sense of
Kanter [7]. If v3 and v4 are measures on Rn then v3 symmetrically
dominates v4 if

v3(Rn\U) ^ vJ,R*\U)

for all closed, convex, symmetric subsets U in Rn. It is clear that
if v3 and v4 are both probability measures then v3 symmetrically
dominates v4 if and only if v4 is more peaked than v3. For our
purposes it is more convenient to work with the relation of peaked-
ness.

If vγ and v2 are log-concave probability measures on Rn then the
convolution vfv2 is also log-concave on Rn (Kanter [7, Lemma 2.3]).
It follows that if vι and v2 are log-concave probability measures on
R%1 and Rn2 respectively then the product measure v1 x v2 is log-
concave on Rni x Rnκ Forming product measures also preserves the
peakedness relation.

LEMMA 4. Suppose that vu vtf v[ and v'2 are all log-concave
probability measures such that vx is mome peaked than v[ on Rnί and
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ZΛ, is more peaked than v[ on R%2. Then vγ X v2 is more peaked than
v[ x v[ on Rn± x Rnκ

For the proof of Lemma 4 we refer to Kanter [7, Corollary 3.2]
where the result is obtained for the more general class of unimodal
measures.

3* Proof of Theorem !• We begin by proving the following
lemma.

LEMMA 5. Suppose that nlf n2, , nj are positive integers and
QN = SnixSn2x x S n j is in RN, N = nλ + n2-\ Yny Then 1QN(X)

is more peaked than the normal density function exp { — π\x\2} on R1v.

Proof. Since the measures XQN(x)dμN(x) and exp { — π\x\2}dμN{x)
are both product measures which factor in Rnι x R%2 x x Rnj it
suffices to prove the peakedness relation in each factor space and
then apply Lemma 4. Thus we need only show that for each positive
integer n, XSn(β) * s m o r e peaked than exp{ — ττ|^|2} on Rn. Of course
it is trivial to verify that both of the density functions XsJβ) and
exp{ — τr|^|2} are log-concave on Rn.

Let ΣΛ-I = {̂  G ^ % : 1̂ 1 = 1} so that for each x Φ 0 in Rn we have
the unique polar decomposition x = rxr where r = \x\ and x' e Σ*-i
If U is a, closed, convex, symmetric subset of Rn then it follows that

(3.1) \ exv{~π\x\2}dμn{x) = f [ lv{rxf) exp {-πr2}rn-γdrdxf ,
JU J Σ % _ ! JO

where dx! is the induced Lebesgue measure on Σ»-i Now for each
fixed x! e Σw_i we have either

(3.2) XLr(rx') ^ X8n(rx') f 0 ^ r < oo

or

(3.3) Xs%(rx') £ Xv{rx') , 0 ^ r < oo ,

since SΛ and i7 are convex. If (3.2) holds at xf then

t,(ra') exp {-πr2}rn-ιdr
(3.4) J°

If (3.3) holds at x' then
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irx') exp {- πr^r^dr

£ Γexp {-πr2}rn-]dr = n-
ιπ'nίir(— +

= Γ
Jo

J
Jo

Combining (3.1), (3.4) and (3.5) we obtain

\

Σ % _i

Thus XSn(x) is more peaked than exp{ — π\x\2} on Rn and the lemma
is proved.

We now prove Theorem 1. If N = K then (1.1) is trivial so we
may suppose that K' — N—K is positive. Let Pκ be the If-dimensional
subspace of RN spanned by the columns of A. Next let W be an
NxN matrix whose first K columns are the columns of A and whose
next Kr columns are the columns of an Nx Kf matrix B. We choose
the columns of B so that they form an orthonormal basis in RN of
the IΓ-dimensional subspace which is orthogonal to Pκ. Identifying
jβ^ with Rκ x Rκ' we may write each z e RN as z = (x/y) where
xeRκ and yeRκ'. For each ε, 0 < ε <̂  1 we define

max

and

R[ = 1^6/2^': max 1̂ 1 ^
2

Clearly Hε is a closed, convex, symmetric subset of RN and so is the
image of Hε under the nonsingular linear transformation determined
by W. Thus by Lemma 5,

(3.6) ί exv{-π\Wz\2}dμN(z) ^ \
J H ε J H ε

Multiplying each side of (3.6) by {μAH'J}'1 = eΓκ' and factoring H&

into Rκ x H[ we find that

ε~κ'\ \ exv{-π\Ax + By\2}dμκ,(y)dμκ(x)
(3.7) J^JHί

( ( fZ^(Aa + By)dμκ,(y)dμκ(x) .
Hs
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By the orthogonality condition \Ax + By\2 = \Ax\2 + \By\2 and so as
ε —> 0 + the left hand side of (3.7) clearly converges to

[ exp{ - π I Ax \2}dμκ(x) = | det ATA Γ1/2 .

To evaluate the corresponding limit on the right hand side of (3.7)
we observe that for 0 < β <̂  1 and each x e Rκ,

By)dμAv) £ 1 •

Since QN and H' are both bounded we have

ε-x' \ 1QN{AX + By)dμAv) - 0

for sufficiently large \x\ independent of ε. Thus by dominated con-
vergence the limit on the right of (3.7) as ε-^0+ is

(3.8) ( jlimε-^S XQN(AX + By)dμAv)\dμκ(x) .

Clearly

lim e~κ' \ 1QN{AX + By)dμAv) = *QN(AX)

except possibly when Ax is a boundary point of QN f] Pκ, Since this
boundary has Z-dimensional measure zero we see that (3.8) is equal to

We have now shown that as ε->0+ on each side of (3.7) we obtain
(1.1) and this proves the theorem.

4* Proof of Theorem 2* By van der Corput's extension of
Minkowski's convex body theorem [5] (see also Cassels [4, Chapter
III, Theorem II]) the condition (1.6) implies that there exist at least
M distinct pairs ±vm, m = 1, 2, , Mf of nonzero lattice points such
that (1.3) holds. If rank(A) < K then (1.2) and (1.6) are both trivially
satisfied. Thus to eatablish the first part of Theorem 2 it suffices
to show that if rank(A) = K then

(4.1) 2*|det A*E2A\~1/2 ^ μκ({xeRκ: \Ld(x)\ ^ εif j = 1, 2, , N}) .

Let G0), j = 1, 2, , N be linear forms defined by G3-(x) = L0)
for j = 1, 2, , r and
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Gr+2j-i(%) =

Gr+2j(x) =

for j = 1,2, , s. We write B = (bjk) for the corresponding real
N x K matrix so that

Next we let QN = Sni x Sn2 x x S%r+s where nό — 1 for j =
1, 2, >-,r and % = 2 for j = r + 1, r + 2,^' , r + s. It follows that
|L5 (£)| ^ s5. if and only if ll2εγG0)sSn., i = 1, 2, , r, and

if and only if

i = 1, 2, . . . , s. Therefore

^({» 6 Λ ' : |L,(x)I ^ ey, i = 1, 2, • •, iV})

^ = 2^ | det BTE2B\~1/2 .det(—EB)T(—EB

An easy computation shows that BTE2B = A*E2A and so completes
the proof of (4.1).

To prove the second part of Theorem 2 we choose e3- = |det A*A\ί/2K

for j = 1,2, - ,r and εό = (2/ττ)1/21det A*A\1/2K for j = r + 1, r + 2,
•• ,ΛΓ. Then

I det A*^2^ I - 1

and so (1.4) and (1.5) follow from the first part of the theorem.

5* Lower bounds for arbitrary convex bodies* In this section
we suppose that QN is a closed, convex, symmetric subset of RN with
^γ(Qiγ) = l If A is an NxK matrix, rank(A) = K, we will be inter-
ested in the problem of finding a lower bound for

(5.1)

The method used to deduce Theorem 1 from Lemma 5 will also lead
to a lower bound in this more general situation, provided that we



A GEOMETRIC INEQUALITY WITH APPLICATIONS TO LINEAR FORMS 551

can find a suitable normal density function on RN which is less peaked
than XQN(X). We succeeded in proving Lemma 5 because the special
structure imposed on QN allowed us to appeal to Lemma 4. We now
describe an alternative method which leads to a conjectured lower
bound for (5.1).

We write Q for QN and we assume that Q is a fixed, closed,
convex, symmetric subset of RN, μN(Q) = 1. For each positive integer
m let

XlΓKx) = XξXξ - • XQ(x)

be the m-fold convolution of XQm We define the dilation operator Dλ

for X > 0 and for integrable real valued functions / on RN by

Dλ(f)(x) =

Next we define a sequence of positive numbers λm, m = 1, 2, by

(λj*%Hό) = l .

With this notation we have the following

CONJECTURE 6. For each positive integer m, XQ(β) is more peaked
than Dλm(X{

Q

m)(x).

Now let Ω be the N x N covariance matrix determined by a
random vector which is uniformly distributed on the convex body
Q. That is Ω = (α>rβ) is the N x N matrix defined by

where yr and ys are the rth and sth co-ordinate functions of y, r =
1, 2, , N, and s = 1, 2, , N. It is clear that Ω is symmetric and
nonsingular since Q has a nonempty interior. By the Central Limit
Theorem (Breiman [3, Theorem 11.10]) we have

= (2ττ)-iNΓ/2(det Ω)~ί/2 exp [-^Q^

uniformly for x e RN. It follows that

lim _ ^ = (2ττ)1/2(det Ω)1/2N

and hence

lim DλJX{

Q

m))(x) = exp{-π(άet ΩY^Ω-'x}

uniformly for xeRN. If the Conjecture 6 is true then for each
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positive integer m and each closed, convex, symmetric subset U of RN

(5.2)

Letting m —> oo on the left hand side of (5.2) and we have proved
that XQ(0) is more peaked than exp{-π(det Ω)1/NxΓΩ-1x] on RN. By
the same method used to prove Theorem 1 we obtain

THEOREM 7. Assume that the Conjecture 6 holds and let A be
a real N x K matrix, rank(A) = K. Then

(5.3) (det Ω)~K/2N I det ATΩ'1A Γ1/2 ^ ( lQ{Ax)dμκ(x) .
JRK

If the set Q in Theorem 7 is such that Ω is a constant multiple
of the identity matrix then the left hand side of (5.3) is simply
I det ATA\~1/2. Just as in our proof of the corollary to Theorem 1,
we deduce that in this case μκ(Q Π Pκ) ^ 1, where Pκ is a iΓ-dimen-
sional subspace of RN. There is also an application of Theorem 7 to
linear forms. If L0), j = 1,2, , N, are N linear forms in K-
variables we could determine precise conditions under which

( N
i/p

at a nonzero lattice point v for any p ^ 1 and ε > 0. At present,
however, these results remain hypothetical since they depend on the
open problem stated in Conjecture 6.
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