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GOOD CHAINS WITH BAD CONTRACTIONS

RAYMOND C. HEITMANN AND STEPHEN MCADAM

Let Ra T be commutative rings with T integral over
R. In the study of chains of prime ideals, it is often of
interest to know about primes qaq' of T such that height
(Q ΊQXheight {q'PiRlqΠR). In this paper we will consider
a chain of primes qiC:q2cz-"Czqm in T which is well behav-
ed in that height (qJqΰ^ΣT^ height (qjqi-ί), but which
suffers the pathology that height (#< Π Rlqi-ι Π R) > height
(qjqi-i) for each i—% *"ym. Our goal is to find a bound
on how large m can be.

Our main result is that if T is generated as an
i£-module by n elements, then there is a bound bn such
that m ̂  bn; moreover b2=2 and in general K^blzl+blzl-i-
• +δn_i +2. Let us quickly add that we do not claim that
this formula gives the best bound possible. (We rather
suspect not.) If c=δn_!+2, we also have, as part of our
main result, that m^gheight (<7e/0i)+&n-i (If m>bn-l9 so
that qc exists.) Finally, if we have the added assumption
that height fefe-^r for i=2, - ,m, then ra^2(r+l)n-2.

The bulk of our effort is needed to discuss the case that Γ=
R[u] is a simple integral extension of R. This is done in § 3. That
section also introduces a new "going down" technique of some in-
terest. Section 2 treats a highly special situation in which we
obtain a much sharper bound. This case has some interest in its
own right and also starts an induction needed in § 3. The fourth
section gives the main result mentioned above. Lastly, in § 5, we
present some examples. These illustrate the point that there is no
bound in general, even in the case of Noetherian domains, on m
which is independent of the size of the integral extension RaT.
Specifically, we show that bn -> ô as n-^oo. Thus our bounds,
while presumably not sharp, have the proper form.

DEFINITION. The chain of primes P1aP2ci' - czPm is taut if
height (PJP,) = ΣΓ=2 height (PJP^).

NOTATION. The following notation will be standard throughout
except when specifically indicated otherwise. RczT will be an in-
tegral extension of domains, qx c c qm will be a taut chain of
primes in T lying over p1c— -czpm in R. Έieightipjp^ will be
finite and heightipjpi^) > height(?i/g<_1), i = 2, , m. Finally, x
will be an indeterminate.
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2* Split simple extensions* In this section, as well as the
next, we will assume, in addition to the standard assumptions men-
tioned in the introduction, that T is a simple integral extension of
R. In order to be more specific, we make a definition.

DEFINITION. Let the domain T = R[u] be a simple integral ex-
tension of R with u a root of a monic polynomial f(x)eR[x\. We
will say that T is a simple integral extension of R via fix).
Throughout §§ 2 and 3, without further mention, we will assume
that T = R[u] is a simple integral extension of R via f(x) with fix)
having degree n and f(u) = 0. Furthermore, in the present section
we add one more assumption, namely that /(as) is split.

DEFINITION. The polynomial fix) e R[x] is said to be split if
R[u] = R[u'] for any two roots u and u' of fix).

Notice that if fix) = x2 + ax + 6 = (x — u)(x — u') eR[x], then
— u — u' — aeR so that R[u] = R[u']. Thus if n = 2, f(x) is split.
We will show in this section that when fix) is split, m is bounded
by deg/(#). Our first lemma is well known. We state it explicitely
because it is frequently used in what follows.

LEMMA 2.1. (a) Let p be prime in a ring A. Let g(x) be a
monic polynomial in A[x] with deg g(x) = d. Then there are at
most d primes of A[x] which lie over p and contain g(x).

> (b) Let T — R[u] be a simple integral extension of R via fix)
with deg/(a?) = n. Let p be prime in R. Then at most n primes
in T lie over p.

Proof, (a) follows from standard facts such as [3, §§ 1-5] and
the fact that taken modulo p, g(x) has at most d irreducible factors.
(b) follows from (a) by considering preimages under the map R[x] -»
R[u] = T.

THEOREM 2.2. Let fix) be split. Let q be prime in T with
p = q Π R- In R[x], let P be prime with P ΓΊ R = P and suppose
that fix) e P. Then for some root u of f(x), q is the image of P
under the homomorphism R[x] —> R[u] = T.

Proof. As is well known, there is a g(x) e P such that P =
{hix) e R[x]/sh(x) e (p, g(x))R[x] for some s e R — p). Since R[x]czT[x]
is integral and qT[x] Π R[x] = pR[x]9 by going up we can find a
prime Q of T[x] with Q f] T = q and Q Π R[x] = P. Thus f(x) e
PczQ and as fix) splits in T[x], for some root u of fix) we have
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x — ueQ. Now g(x) ePczQ and as x = u mod Q, g(u) e Q Π T = g.
Thus the preimage of g under the map JR[#] —> i?[w] = T contains
g(x), and so is easily seen to be P.

COROLLARY 2.3. Let f(x) be split. Let p be prime in R.
(a) // Px and P2 are prime in R[x] with Px Π R[x] = p = P2ΓΊ

R[x] and f(x) e P1p\P2 then R[x]IPλ ^ R[x]/P2, this isomorphism fixing

(b) Let qλ and q2 be primes in T both lying over p. Then

T\qγ f& T/q2, this isomorphism fixing R/p.

Proof, (a) Let q be a prime of T lying over p. By Theorem
2.2, for roots uί and u2 of fix), q is the image of P* under R[x] ->
R[Ui] = T, i = 1, 2. Thus J ^ / P i ^ #K]/g = # M / g ^ iφ]/P 2 .

(b) If P is prime in R[x] with Pf)R = p and /(a?) e P, and if
q is any prime in T lying over p, then the proof of (a) shows that
T/q ** R]x]/P. Thus T/q, « i?[x]/P ^ T/q2.

THEOREM 2.4. Lei /(a?) be split. Then m <: άegf(x).

Proof. We first claim that there are distinct primes Qu , Qw

lying over pm satisfying q1 c Qy and height(Qy/gJ ^ height(g^i),
i = 1, , m. To do this, we induct on m. For m = 2, by going
up there is a prime qf

2 of Γ with qγ (Z.qf

2,q'2$\R — p2 and height(g2/
q±) = heightίpa/Pi) > heightC^/g^). Let Qx = g2 and Q2 = ĝ .

For m > 2 take #2 as above. The isomorphism in Corollary 2.3
between T/q2 and T/q̂  carries q2a cz qm isomorphically to a chain
^ c c ^1 which also lies over p 2 c c j ) m (since R/p2 is fixed).
By induction there are distinct primes Ql9 , QTO_! of Γ lying over
pm with gj c Qy and height(Qy/gJ) ^ height^/gO, i = 1, -, m - 1.
Since q2 c c gm and g£ c c q'm are ^isomorphic", height(gi/gi) =
height(gTO/g2). Recall also height(g2/gi) > height(gg/gj. By the taut-
ness of qx c c qm we have for j = 1, , m — 1, heightCQy/gO ^
height(Qy/g;) + heightigi/gj ^ height(gi/gj) + heightCg^) > height
(g«/g2) + heightfe/gj = height(gm/g1). That is, heightCQy/gJ > height
(Qm/Qi), for j = 1, , m - 1. Letting Qm = qm proves our claim.

Finally, as the number of primes in T contracting to any given
prime in R cannot exceed deg/(x), the existence of Qu , Qm shows
that m ^ deg/(α?).

The final result in this section discusses the situation when the
bound given by Theorem 2.4 is obtained.

PROPOSITION 2.5. Let f(x) be split and let m = deg/(a?). Sup-
pose that pQPίdPmQp' with p, p' primes in R and that qf)R =
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p, q' Π R = p' with q, q' primes in T. Then q c qf.

Proof. The proof of Theorem 2.4 shows that there are primes
Qu - ", Qm = Qm lying over pm, each of which contains qγ. By going
up, find a prime q[ of T with q c q[ and gί Π R = Pi- Now gx is
contained in m primes lying over pm (namely Qlf , Qm) and so by
Corollary 2.3 q[ is also contained in m primes lying over j>m. How-
ever, since deg/(cc) = m, Qi, , Qm are the only primes lying over
pm and so q c ?; c Qx n Π Q*.

Now consider iφ;]->#[¥] = Γ and let Q*, Qf, ••-,£* be the
preimages of q\ Ql9 , Qm respectively. Obviously Q* Γi i? = p',
Q,*Πβ = p , i = 1, - ,m and/(x)eQ*nQίn nQ£ since /(%) - 0 .
By [4, Lemma 3] (applied to R/pm) we easily see that there is a
prime P of i?[x] with PΠi? = pm, and /(a j e P c Q * . However since
degf(x) = m, at most m primes in R[x] can contain f(x) and also
contract to Pm. As each of Qί*, •••,<?£ do just that, obviously
P = Q; for some j = 1, , m. Thus QΫ = P c Q * from which we
see that Q, c g'. Thus q c Qx Π Π Qm c Qy c #' and we are done.

3* Arbitrary simple extensions* We now drop the "split" as-
sumption and just assume that T is a simple integral extension of
R via fix) with deg/(αs) = n. We will show that there is a number
bn such that m ^ bn. We do not identify the best such bound al-
though we do give an inequality limiting the size of the best such
bound. To be explicit, let us use bn to denote the smallest number
such that m ^ bn for all such m.

We have already seen at the start of § 2 that if n = 2 then
fix) is split, and so by Theorem 2.4 we have b2 = 2. (This is best
possible, [5, Example 2, pp. 203-205].) We will now assume induc-
tively that 6W_! exists.

In our next lemma we start a chain at P2 rather than Pl9 since
that will be the situation when we apply the lemma.

LEMMA 3.1. Let P 2 c c. Pm be a taut chain of primes in
R[x] contracting to pza c p m in R. Let P2

rΦ P2 with P2'ΓιR = p2.
Let fix) be a monic polynomial of degree n with fix) 6 P2 Π Pi. Let
s > 0 be an integer with m > 6%_i(s — 1) + 1. Then for some i e
{1, , m — s} there is a taut chain P ί + 1 c c P'i+S in R[x] lying
over pi+1 c c pί+8 with height{Pi+jlPi+;-i) = heightiPi+ύjPi+ύ_^,
j = 2, , s and with P2'QP'ί+1 and heightiP/+1/P2') ̂  heightiPi+1/P2).

Proof. Obviously we may work modulo p2; so assume that
p2 = 0. Since fix) eP2f] Pi, R[x]/P2 and R[x]/Pi are simple integral
extensions of R via fix). Let R[x]/P2 ̂  R[u] and R[x]/Pi ^ R[u']
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with u and u' distinct roots of fix) (distinct since P 2 Φ P2'). Taken
modulo P2, P 2 c c Pm becomes a taut chain 0 = g 2 c c ^ in
R[u] lying over 0 = p2cz c pm. As R[u] c R[u, u'] is integral, we
lift 0 = q2a aqm to a taut chain 0 = g ? c c # * in Λ[M, u']f with
height #£ = height qm.

Since /(%') = 0, f(x) = (a? — u')g{x) with (/(a?) monic in jβ[V][#].
As π =£ w', we have g(u) = 0 so that R[u, u'] is a simple integral
extension of R[u'] via #(&). Since deg g(x) = n — 1, the induction
assumption concerning the existence of bn_x applies to R[u'] c R[u, u'].

Let b — &„_! and consider a subchain of q2 c c g*, namely
?? Cί?κ,-i) cgf+ίί,.!) c c gj^K,.!,, which, being a subchain of a taut
chain, is taut. (Note qt+h{s-x) exists since m > b(s — 1) + 1.) Because
this taut (sub)-chain contains 6 + 1 primes, by the induction as-
sumption for some 1 = 1, •••,& we must have he ight^+^.D Π
R[u']/QΪ+a-ius-i) Π R[u']) = height(g2*+Z(s_1)M*+(Z+1)(s_1)). Thus letting.i =
1 + (ϊ — l)(s — 1) we see that the tautness of g?+] c c q?+8 implies
that qf+1 Π R[u'] c - c qf+s ΓΊ i?]^'] is taut, and that height(gf+ in
R[u']/q?+j-i Γl R[u']) = heightiqt+j/qΐ+ό-i) which in turn equals height
(Qi+jlQi+j-i) 3 — 2, , s by the manner in which qf c c g j was
constructed. Also height(^?+1 Π R[u']) ^ height qi+1 since height qi+1 =
height qf+1.

Finally, recalling that R[u'] ^ R[x]/P2', the chain q?+1 Π i ? M c
cg*+β n 12iy] gives rise to a chain P/ + 1 c c P / + l in i2[#] with
P2' £ Pi'+i- That this chain satisfies the lemma follows easily from
what we know about qf+1 Π R[u']c: aq?+s Π J?[t6'].

COROLLARY 3.2. Let the domain T be a simple integral exten-
sion of R via f(x) with degf(x) = n. Let q2 cz c qm be a taut
chain in T lying over p2 c c pm in R. Let q[ Φ q2 be prime in
T with q'2Γ\R = p2- Let s > 0 be an integer with m > δM_i(s — 1) + 1.
Then for some i e {1, , m — s}, ίAere is α £ew£ chain q'i+1 c c
g + s m T Z2/wsr over p < + 1 c c pi+s with heightiq'i+ilq'i+s-ύ — height

(qi+j/Qi+j-i), 3—2, "-, s9 and with q'2Qq'i+1 and height{qr

ί+1jq
r

2) ^ height

Proof. Let P 2 c cz Pm and P/ be, respectively, the preimages
of q2 c c qm and qr

2 under R[x] —> R[u] = Γ. Then, since /($) 6
P2Π P2', the hypothesis of Lemma 3.1 is satisfied. We complete the
proof by letting q'i+1 c c q'i+s be the images of P/+1 c c P/+s

given by Lemma 3.1.

PROPOSITION 3.3. Let b = bn_^ Let I ^ 0 be an integer and let
m^b1 + 61~1H hδ + 2. Then for some r = 1, , m, pr has lying
over it distinct primes Qu , Qi+1 in T such that q1czQ1Γ\
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and heightiQj/q^ > heίghtiqjqj for j = 1, , I + 1.

Proof. We induct on I. First, since height (pg/pj > height(g2/ft),
by going up there is a prime q'z of T with ftcg2 and height(#2/ft) =
height (Pa/Pi). If Z = 0 then r = 2 and Qx = g2 satisfy the proposition.

For Z > 0, we apply Corollary 3.2 with s = b1'1 + &ι"2+ + b + 2.
Since m > δ(s — 1) + 1 we have for some i e {1, , m — s} a taut
chain q'i+1 c c g +s in T lying over p<+1 c c pi+s with height
(Q't+M+d-i) = height(g<+y/?i+i-i) which is less than height^y/p^y^)
for j = 2, , s.

We apply the case I — 1 of the induction assumption to the chain
ft + 1 c Cft +S (recalling that s = b1"1 + δz~2H Vb + 2), to produce
an r € {i + 1, , i + s} and distinct primes Qu , Qι of Γ lying
over p r, with ?;+1 c Qt n Π Oι and height(Q, /g +1) > height(ί;/?{+i)
for j = 1, , Z. If we now let Qι+ί = ̂  , obviously Qί+1 is distinct
from Qlf , Qι and we now have q'i+1 c ^ Π Π Qι+ι and height
(Qy/βί+i)^ height(^;/g;+1) for i = 1, , I + 1.

We have ^ S ^ S ^ ί + i by Corollary 3.2. To complete the proof,
we must only show that height^/ί^) > height^/^) for j = 1, ,
Z + 1. To do this, we collect various facts.

( i ) height(^7^ί+i) — -bβight(gr/ ϊ̂+i) This follows from the fact
that height(ίί+ί /gί+ί -i) = height^+y/^+y.!) j = 2, , s by Corollary
3.2 and the tautness of qi+1 c c qi+s and g +1 c c gί+s.

(ii) height(Qy/gί+1) ^ height(gr/g<+1). This follows from (i) and
the previously noted fact that height(Q, /^+1) ^ height(g^/g + 1).

(iii) height(g +1/̂ 2) ^ height(gί+1/g2) by Corollary 3.2.
(iv) height^/gO > height^/tfi) by choice of q'2.

Finally, from the tautness of QΊC c g r and (ii), (iii), and (iv), we
have heights/ft) = height(gr/ft+1) + height(^ί+1/g2) + height(g2/ft) <
height(Qy/<r;+1) + height(ίί+1/?i) + heights/ft) ^ height(Qi/α1) for j =
1, , I + 1 to complete the proof.

At this point we can prove that bn exists and show that
bn <. bn~λ + bn~2+ +6 + 1 with b = bn^. To see this, with the
notation of Proposition 3.3, if m > bn~x + bn~2Λ \-b + 1 we would
have primes qrf Ql9 , Qn lying over pr which are distinct (by the
inequality in that proposition). However, as deg/(α?) = n9 at most
n primes can lie over prf a contradiction. Thus m ^ 6n"M \-b + 1.

We wish to introduce a "going down" technique which will let
us improve this inequality somewhat, giving bn <£ bn~2 + bn~3^ h
b + 2, b = δΛ_!, and which, in certain circumstances, allows us to
give a more substantial improvement on the bound on bn.

DEFINITION. Let p be a prime in the ring R. Let / be an
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ideal in R[x], Define k(p, I) = n if IRp[x] contains a monic poly-
nomial of degree n but no monic polynomial of lesser degree. (If
IRp[x] contains no monic polynomial let k(p, I) = oo.)

LEMMA 3.4. Let p be prime in a ring R and let I be an ideal
in R[x]. Suppose that k(p, I) = n < oo.

(a) // g(x) e I and deg g(x) < n then g(x) e pR[x].
(b) Let h(x) 6 / with deg h(x) — n and the leading coefficient of

h(x) outside of p. Let P be prime in R[x] with PΓiR = p. Then IQP
if and only if h(x) e P.

(c) The number of primes P in R[x] satisfying PΓ\R = p and
IS=P does not exceed n.

Proof. Without loss we may localize at p.
(a) Since k(p, I) = n < oo and (Bf p) is quasi-local, there is in I

a monic polynomial h(x) of degree n, and no monic polynomial of
lesser degree. If the result is false, then for some g(x) — akx

k-\
Λ-a^Λ hα0 e I with k < n we have at g p for some i. Assume
that g(x) and i have been chosen so as to make i as large as possi-
ble. Now akep since g(x) is not monic. We have akh(x) — xn~kg{x) e /.
Its degree is clearly less than n and its (i + n — k)th coeflScient is
not in p. This is a contradiction since i + n — k > i.

(b) Since h{x) (in part (a)) is monic, clearly / is generated by
h(x) together with those polynomials in / having degree less than
n. By part (a), each of these latter polynomials is in pR[x] c P.
Thus I £ P if and only if h(x)eP.

(c) This is immediate from Lemma 2.1 and (b).

PROPOSITION 3.5. Let pap' be primes in a ring R. Let I be
an ideal of R[x], and suppose that k(p, I) = k(p', I) < oo. If P' is
prime in R]x] with P' Π R = p' and IdP'f then there is a prime
P in R[x] with PnR = p and iQ

Proof. We may localize at pf. If k(p', I) = n then / contains
a monic polynomial h(x) of degree n. Thus h(x)eIczP'. By [4,
Lemma 3] (applied to R/p) there is a prime P of R[x] with PΠR = p
and h(x)ePaP'. By Lemma 3.4, / £ P .

We apply Proposition 3.5 to our special situation of RaR[u] = T
a simple integral extension of domains, u a root of the monic poly-
nomial f(x).

COROLLARY 3.6. Let pap' be primes in R. Let 1= ker(R[x]->
R[u] = T) and suppose that k(p, I) = k(p', I). If q' is prime in T
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with q' Π R = p' then there is a prime q of T with q Π R = p and
qaq'.

Proof. Since f(x) e I, k{p\ I) < oo. Let P' be the preimage of
q' under R[x]-*R[u]. Then P ' n B = p' and / c F . With P as in
Proposition 3.5 take q to be the image of P in T.

THEOREM 3.7. bn <: bn~2 + bn~3+ +6 + 2 w&ere 6 = 6H_lβ

Proo/. Let B = 6%~2 + 6»-sH h& + 2 and assume that m> B.
We will derive a contradiction. Applying Proposition 3.3 to the
chain qx c c gB we see that for some r 6 {1, , B) there are dis-
tinct primes Qu , Q%_x of Γ lying over p r with qι(zQιΓ{ Π QΛ_i
and height(Qi/gf

1) > height^Jίi) j = 1, - -, n — 1. Obviously <?r is
distinct from Qlt , Q%_x and if we let Qn = ^ r then, since deg
/(a?) = w, Qi, , Qn are all of the primes of T lying over pr and
we have height(Qi/g1) ^ heightto^i) i = 1, , w.

We claim that if p is prime in i2 with pr^p, then fc(p, I) = n
where / = keτ(R[x] -> Λ[%] = Γ). Since f(x) e I, k(p, I) ^ n. Also
prQp implies k(pr, I) ^ k(p, I) and so we must only show that
k(pr, I) ^ n. That this is true follows from Lemma 3.4 (c) and the
existence of Qu •••,<?».

We now consider a chain of maximal length between pr and pm.
Since k(p, I) = n for each prime p in that chain, we can use Corol-
lary 3.6 iteratively to find a prime q of T with q Γϊ R = pr, qaqm

and h.eight(qjq)^=height(pjpr). Since <?rc aqm is taut and height
(Pi/Pi-i) > keightteyg^) i = r + 1, • - , m, obviously height(gm/g) =
height(pjpr) > height(#m/#r), (here we use m > B ^ r). As
Qi, , QΛ are all of the primes which lie over pr, we must have
q = Q, , some i = 1, ••-,%. Thus heightίg/ffi) = heightίQy/ίi) ^ height
( 9 ^ ) . Thus height^,,/^!) ^ height^Jg) + height^/^J > height(<?m/
qr) + he ight^^J contradicting the tautness of ^ c c ? , . This
completes the proof.

We repeat that we doubt that equality holds in Theorem 3.7.
Let us note that b2 ^ δ3 ^ b4 ^ . To see this, observe that if T
is a simple integral extension of R via f{x)f then it is also a simple
integral extension of R via xf{x). The examples at the end of this
paper show that bn—>oo as n —> oo.

We now consider situations in which we can give other bounds
on the size of m.

LEMMA 3.8. Suppose that m > bn-x. Let c — bn_x + 1. If p is
any prime of R containing pc, then k(p, I) = n where I — ker(jR[#] -+
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R[u] = T).

Proof. Since f(x)el, obviously k(pc, I) <; k(p, I) <; n. We must
show k(pc, I) ^ n. For this we may localize at pc. If k(pc, I) < n
then I contains a monic polynomial g(x) with deg g(x) — d <. n.
Clearly T is a simple integral extension of R via g{x). However
the existence of the chain ^ c c g , with c > bn_x ̂  hd contradicts
the definition of bd.

LEMMA 3.9. Suppose that m > b^ and let c = bn_x + 1. Let p
be any prime of R containing pc and let q be any prime in T lying
over p. Then qλc:q.

Proof. Let Px and P be the preimages of q1 and q, respectively,
under the map R[x] -+ R[u] = T. We claim that k(p, Pλ) = n. The
result follows, since obviously f(x)eP1 Π P and so by Lemma 3.4 (b)
(with h{x) = f{x) and / = Px) Px c P. Thus qx c q.

To show that k(p, Pλ) = n, we may work modulo plm That is
we go to RjPi c Tjq1 and so assume that px = 0 = ̂ ^ Now P1 =
ker(J2[x] —> Γ) and Lemma 3.8 gives k(p, Pλ) = n.

THEOREM 3.10. Suppose that m > bn^ and let c — bn^ + 1.
Then m ^ height(qcjq^) + b^^

Proof. Consider a chain of maximal length between pc and pm.
By Lemma 3.8, for each prime p in that chain, k{p, I) — n with
/ = ker(iϋ|>] —• T). By iteration of Corollary 3.6, we can find a
prime q of T with q Π R = pc,qQqm and height(gΛ/g) = height(pw/pc).
By Lemma 3.9, qλc:q. Since ^ c c g . is taut we have XΓ+1

heightto^g^O + heightiqjq,) = height(qJqJ ^ height(gw/g) + height
(q/qj = height (pw/pβ) + height (g/gj ^ ΣΓ+i height (p^p^) + height

Thus height (9β/9l) ^ Σow

+1[height (ft/p^J - height^/β^J]+
By our underlying assumption concerning how qx c

cg m contracts to pt c c pm, each term in this last summation
is at least one. Thus height(gc/gΊ) ^ (m — c) + height^/gi) >̂ m —
c + 1 = m — 6n_le Thus m

COROLLARY 3.11. Suppose that m>bn_λ and that
r for i = 2, , 6Λ_1 + 1. Then m ^ (r + 1)6^!.

Proof. Immediate from Theorem 3.10 and the taut ness of
ί iC cgβ.

Suppose that we fix r > 0 and restrict our attention to chains
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q1 c c qm with height(gί/gi _1) ^ r, ί = 2, , m. Let δ̂  denote
the best possible bound on m for such chains when άegf(x) = w.
Then Lemma 3.8 through Corollary 3.11 can be repeated, replacing
bn_x with bn-if thus showing that b'n ̂  (r + l)δ£_i. Since δ£ = 2, by
induction we get K ^ 2(r + l)n~2.

THEOREM 3.12. If heightiqjqt^) ^ r for i = 2, , m, then
m ^ 2(r + 1)%-2.

4* Finitely generated modules* We give our main result, as-
suming only that T is a finitely generated i2-module.

THEOREM 4.1. Let RaT be domains with T a finitely generat-
ed R-module, generated by n elements. Let q1ci ••• (zqm be a taut
chain of primes in T lying over p1a- apm with height(pjp^)
finite. Suppose that heightipjpi^) > height^Jq^ i = 2, , m.
Then m is subject to the following:

(ii) if m > &„_!, ίfeew m ̂  height(qjq^ + δu_i wift c = δΛ_! + 1
(iii) m ^ 2(r + ΓΓ~2 mίfe r = m&xiheightiqjqi^li = 2, , m}.

Proof. Since T is a finitely generated ίϋ-module only finitely
many primes of T lie over pm, and we may choose ueqm but in no
other prime lying over pm. Obviously qm is the only prime of T
lying over qm Π R[n\ and so height(<?w Π i?M/^i Π i?[^]) = heightto™/^)
(by going up since height(gw Π R[u\lq1 Π R[u\) ^ height(pm/pj) < 00).
Clearly we have (gL Π R[u\) c c (qm Π i?M), a taut chain in ϋί[w]
with height (qt Π ΛM/ί*-! ΓΊ R[n\) = height (qjqt^) < height (pJPi^)
ί = 2, , m. A standard determinant argument shows that u
satisfies a monic polynomial of degree % over R, and our result fol-
lows from the existence of bn and Theorems 3.10 and 3.12.

COROLLARY 4.2. Let R be a domain with integral closure R'.
Suppose that R' is a finitely generated R-module with n generators.
Let the domain T be an integral extension of R. Let 0 = g x c c
qm be a taut chain of primes in T lying over 0 = px c c pm in
R with height pm finite. Suppose that heightipjpi^) > heightifi^q^
i = 2, , m. Then (i) m ^ bn; (ii) if m > bn_^lf then m ^ height
(ffβ/ϊi) + bn_i_; and (iii) m <; 2(r + IT'1 with r = m&xiheightίqi/qi^) \
i = 2, -..,m}.

Proof. If T' is the integral closure of T, we may lift 0 =
g x c cg m to a taut chain 0 = q[d cg» in T with height ^^ =
height qm. By going down in Rf c Γ , height #' Π i?; = height #' and
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we see that 0 = (q[ Π R') a a(q'm Π 12') is taut in R' and height
(βlΓiRΊQ't-iΓίR') = height(^Li) = heightfo/g,^) < heightfo/p,^) i -
2, , m. Applying Theorem 4.1 to 0 = (q[ D 12') c <=(<& Π 12'),
we are done.

5* Examples* In this section, we construct a family of examples
which demonstrate that bn —> °° as w —> co. We also show that if
ϋJ c T is an infinite integral extension, no bound need exist at all.
This construction is a generalization of Nagata's Example 2 [5, pp.
203-205] and is very similar to [2]. However, except for the quo-
tation of one key theorem, the presentation of the basic example
will be self-contained.

EXAMPLE 5.1. Retaining the previous notation, we show any
m can be realized in some finite integral extension RaT (which
depends on m). Moreover, our example is Noetherian.

Fix an integer m ^ 2. Let K be a countable field of charac-
teristic zero and let yu , ym_u z£\ , zf1) be indeterminates.
We iteratively define a sequence of Noetherian domains JK~= 2\c
Γ 2 c Γ 2 c f 3 c ! r 3 c cΓT O = Γ as follows: Set Ti+1 = TJίVt] for
each i — 1, , m — 1. Suppose Zt e K[[Vi\\ is a formal power series,
say Zt = 0?% + αίi)»ϊ+ . If we set z<*> - («<*> - Σy-i αΓ»ί)/»?
for each ^ ^ 0, then

Thus we may define a direct union of simple transcendental exten-
sions of Ti+1, Tt+1 = lim^̂ oo 2*i+i[2»}], for each i = 1, , m — 1. More-
over, by [2, Corollary 1.6], we may choose the formal power series
Zt in such a way that Ti+1 will be Noetherian.

The nature of the construction makes it very easy to determine
the primes; primes in the intermediate rings extend to primes in T.
Hence we easily see, for each i = 1, , m, qt — {yl9 , yt^T is
prime. Also, by (*), z^eytT for each i, n. By the Krull Altitude
Theorem, height qt <£ i — 1. (0) = g 1 c ^ 2 c cg m is a taut chain
and heightfe+i/gO = 1 i = 1, , m — 1. Before leaving this chain,
we make one additional observation, also apparent from the con-
struction. The quotient T/qt is canonically isomorphic to the sub-
ring St = K[yif , z«\ - ,!/«_!, , 4 m " υ , •] for each i = 1, , m.

Next we iteratively define a second chain (0) = dcQoCQgC
cQ m . First note that, using (*) again, z™ = (z{

n

ί]

+1 + af^y, - 1) +
si'ίi + αi'i!. Thus zZl, = «i*> - α i ^ m o d ^ - 1)). So if we set, for
each ΐ = 1, - , n - 1, £>ί+1 = Q* + (^ - 1)Γ and Qi+1 = Qi+1 +j^Tf

we have (using equality to denote canonical isomorphism) T/Qi+1 —
S<+i[«o<}] and T/Qi+1 = S<+1. So these ideals are prime as required
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and another application of the Krull Altitude Theorem guarantees
that this chain is taut.

Our next step is to construct R. Again we construct a chain
of rings T = R^R2i) D R m ~ R. For each i = 1, , m — 1,
set Ri+1 = St+ί + (qi+1 Π Q i + 1 Π 12*). Since Si+1 (zSta Riy Ri+1 c Rt as
desired. We claim that Rt is an integral extension of Ri+1, generat-
ed by two elements as an 12ί+1-module. To verify the claim, con-
sider the canonical 12ί+1-module homomorphism πt: 12* -> (RjQi+ί Π Rt)(B
(RJQi+1 Π Ri) = Si+10 S<+1. Note ^(1) = (1, 1) and *<(»,) = (0, 1)
together generate Si+10 S<+1 = i m a g e d ) and so 12* = (1)22<+1 +
(Vi)Ri+1 + k e r n e l ^ ) . However, k e r n e l ^ ) = qi+1nQi+1nRic:Ri+1 and
so Ri — Ri+ί + ViRi+u proving our claim. Therefore T is generated
as an jR-module by 2m~1 elements. Consequently, by Eakin's Theorem
[1, p. 281], R is a Noetherian domain.

It now only remains to show RaT exhibits the desired chain
behavior. As dim fi+1 = (dim Tt) + 1 and dim Ti+1 = (dim fi+1) + 1
for each i = 1, , m — 1, dim T — 2(m — 1). So, by going up,
dim R = 2(m - 1). Thus (0) = Q, Π Ra Q2 Π 12 c Q2ΓΊi2 c c Qw Π i?
is taut; then ζ^ n 12 c Q2 ΓΊ 12 c aQm Π 12 is likewise taut and
height(Q i + 1 n R)/(Qi Π 12) = 2 for each i = 1, , m - 1. However,
by construction, Qt Π 12 = qt Π 12 and so height(^ i + 1 Π R)KQi Π 12) = 2.
As (0) = ?! c c g w is a taut chain in T and height^+i/q^) = 1, we
have the desired chain.

In particular, this example shows him_x ^ m and so bn —> co as

EXAMPLE 5.2. There is an infinite integral extension RaT and
an infinite taut chain in T, (0) = q^q^cz , such that (0) =
ί i f l δ c is taut and height(<?ί+1/#*) = 1 < 2 = height(g<+1 n 12/?4(
for each i. Necessarily, 12 is not Noetherian.

Example 5.2 will be a direct union of domains constructed in
the manner of (5.1). We begin as in (5.1) with a sequence of do-
mains K = T1 c T2 c Γ2 c c Tm c , this time choosing an infinite
sequence. For each fixed m, we perform the construction in (5.1),
super scripting our symbols with (m) when confusion is possible.
Thus Tm = Γ ( m ) and we have 12 ( m )c Γ ( m ).

Noting T ( w ) c Γ ( m + 1 ) , qim)(zqim+1) and Ql m ) cQ{ w + 1 ) for each i =
l,-- ,m, and S Γ ) c S | m + 1 ) for each ΐ = l, « , m , we have direct
unions Γ = U Γ(m), qi = U gim), Qέ - U <2im), and S, = U Sim) with
Γ/9< = S, = Γ/Q,. Next, using the fact that Sim) = ί = S ^ 1 1 and
some obvious containments, we have 12(m) = R^] = S1^ + toΓ) Π
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R(m+1). Thus, we also have a direct union R = UuJ(w). We claim
R c T is the desired extension.

If y 6 T, y e Γ(m) for some m and so is integral over R(m) and
consequently i?. Thus we have an integral extension. Since R and
T are direct unions, the statement about the q/s is valid because
it holds in R{m) c Γ(m) for each m.

EXAMPLE 5.3. There is a Noetherian domain R such that, for
each m, we may find an integral extension T of R and a taut
chain of primes (0) = q1 c q2 c c gm in Γ such that & π Re: c
gm Π i? is taut and heightfo+i/?,) < height(gί+1 n R/Qt Π i2) for each
i = 1, , m — 1.

This example will not be formally constructed. It is obtained
by combining two construction ideas. One constructs a family of
local Example (5.1)'s and combines them in the manner of Nagata's
Example 1 [5, p. 203] (the Noetherian ring with infinite Krull dim-
ension). This is a useful and straightforward way of obtaining
this sort of infinite bad behavior.
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