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SUBMERSIONS
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By a submersion we shall understand a C°° sur jection / :
X-+Y between paracompact C°° manifolds with dim X > dim F,
subject to the condition that the differential of / have max-
imal rank at all points. This implies that the fiber fy over
any point yeY will be a smooth regularly imbedded submani-
fold of X. Differentiable fiber bundles constitute a special
class of submersions, characterized by the existence of local
product structures, and in this particular case all fibers fy are
homeomorphic to a standerd fiber F. The central result in
the homology theory of fiber bundles asserts the existence of
a convergent spectral sequence whose E°° term is the bigraded
group associated to some filtration of H*(X; G)1, and for which

in case the bundle is orientable over G. In the present paper
this result is generalized to arbitrary submersions. The E2

terms now come to be identified with certain groups Hs,t(f; G)
representing a homology functor from the category of sub-
mersions to the category of bigraded groups, which reduce of
course to HS(Y; Ht(F; G)) in the classical case.

The functor in question has been previously studied by Sekino
[4], who has shown that in its relativised form it satisfies axioms
of the Eilenberg-Steenrod type, for which a categoricity theorem
can be established. In § 1 we will give a direct constructive defini-
tion of the homology groups Hs>t(f; G). The construction of the spec-
tral sequence and identification of its E2 terms take place in §§2 and
3, followed by a final section setting forth a few applications of the
theory. We also note that §4 should be entirely comprehensible
following §1.

A few remarks on the subject of applications may be in order.
The usefulness of a spectral sequence clearly depends on the ease
with which the homology (or cohomology) groups representing its E2

terms can be evaluated or estimated in various geometric situations.
For the spectral sequence under consideration we have found that
these calculations can generally be effected with particular ease and
directness, and so far as the study of submersions is concerned, this
approach may well offer advantages over the sheaf-theoretic cohomol-
ogy approach represented by the spectral sequence of Leray. Our

1 Throughout this paper G will denote an arbitrary coefficient group and H* the
singular homology functor.
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construction capitalizes on two fundamental facts: firstly, that every
compact subset of a fiber can be enclosed in tubular a neighborhood,
a property which generalizes the local product structures character-
istic of fiber bundles, and which itself may be regarded as charac-
terizing the class of submersions.2 Secondly, we make stong use of
the fact that homology commutes with direct limits. These premises,
together with the circumstance that our base spaces are triangulable,
enable one to construct a homology theory and corresponding spectral
sequence constituting a particulary direct geometrical approach to the
problem at hand, which is to study the relations between the topol-
ogical structures of the total space, base space and fibers. To give
at least one example of such a relation at this point, we will cite
the following result established in §4.

THEOREM. Let f:X—>Y be a submersion between orientable
manifolds of dimensions n and m, respectively, having connected
fibers) and let U denote the subspace of Y corresponding to compact
fibers. The Betti number of X and U are then subject to the rela-
tion Rn^(X; (?) ^ i?m-i(Ef; G).

In particular, when Y is the real line this theorem asserts that
Rn_x(X; G) is bounded below by the number of components in U,
which might be a hitherto unnoticed result concerning real-valued
functions with nowhere vanishing gradient. It should also be pointed
out that our theorem pertains strictly to the theory of submersions,
inasmuch as it obviously fails for more general maps (the map
f:R2->R defined by the formula f(x, y) = x2 + y2 would provide an
easy counter-example).

1* Homology of submersions* Our construction hinges on the
concept of a simplicial bundle over a simplicial complex K, which we
define to be a function that assigns to each simplex σ e K a commu-
tative triangle

FE\σ\
\

where Eσ, Fσ are topological spaces, \σ\ is the closed space of σ, Φσ

a homeomorphism and πσ the natural projection, this data being subject
to the following descending face condition: for every face τ < σ and
xβ | τ | ,

2 From this point of view one could dispense with the assumpation of differenti-
ability.
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p~\χ) C P7\x) .

This insures that the projections pσ induce a projection p: E-* \K\,
where E denotes the topological sum of the spaces Eσ. A simplicial
bundle is said to approximate a submersion / : X —> Y with respect
to a compact subspace C c X provided C c E c X, f(C) c | K | c F
and p = f\E (the restriction of / t o J7). The essential connection
between simplicial bundles and submersions may now be expressed
in terms of the following basic approximation theorem.

THEOREM 1.1. Let f: X ~+Y be a submersion and C a compact
subspace of X. Let M be a simplicial complex such that3 Y = \M\.
Then there exists a simplicial bundle over some barycentric subdivi-
sion K of a subcomplex of M which approximates f with respect to
C, and whose total space E is compact.

The proof is substantially identical4 with the proof of Lemma 2
in Smith [6] and proceeds by an elementary inductive argument
involving tubular neighborhood constructions. Essentially the ap-
proximation theorem permits us to view a submersion as the direct
limit of an approximating system of simplicial bundles, an idea that
has been formulated in category-theoretic terms by Sekino [4] and
constitues the basis of his theory. For our present purpose it will
suffice to associate with any given submersion a sequence of simpli-
cial bundles satisfying the conditions of the following theorem, con-
ditions which insure that the given sequence is cofinal in the full
approximating system and consequently adequate for the computation
of direct limits.

THEOREM 1.2. Given a submersion f:X—>Y, there exists a
sequence {ap: aE-+\ aK \} of simplicial bundles such that

(1) for every compact subspace C c X there exists a positive
integer a such that ap: aE —> \aK\ approximates f with respect to C;

(2) for a < /3, aE c βE and there exists a nonnegative integer
n such that n

aK c βK [where nK denotes the wth barycentric subdivi-
sion of K).

3 Our differentiable manifolds are triangulable, and we will suppress the triangu-
lating homeomorphism by assuming the corresponding identifications.

4 The only difference being that in [6] we were concerned with simplicial bundles
"dual" to the bundled here envisaged, i.e., bundles for which our descending face condition
was replaced by a corresponding ascending face condition. While simplicial bundles of
the descending type are adapted to homology theory, bundles of the ascending types
are adapted to cohomology and obstruction theories. The only change required to adapt
the proof in [6] to the present case is to reverse the direction of the induction procedure
so as to go from high to low dimensions. See also Endicott [2], pp. 39-43.
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To prove this on the basis of our first approximation theorem,
one need only choose a covering of X in the form of a nested sequence
{Ca} of a compact subsets and proceed by induction. Thus we suppose
that for all a<^y we have simplicial bundles pa: aE-> \aK\ satisfying
condition (1) and (2), with the additional stipulation that each aK is
a barycentric subdivion of a subcomplex belonging to a given tri-
angulation L of Y. Let m be a nonnegative integer such that
mKr c L. Applying 1.1 with C = Cΐ+1 U fE and M = mL yields a
simplicial bundle on the (Y + l)-level which preserves our inductive
hypothesis, and this completes the proof.

At this point the fundamental idea underlying our construction
of the homology groups Hs>t(f; G) can be explained. Given a simpli-
cial bundle p:E-+\K\, coefficient group G and integer t, we will
define a corresponding chain complex C*(K; Ht(F; G)) in which the
homology groups {Ht(Fσ; G), σ e K) function as a local coefficient
system. Given a submersion f:X—>Y, we will choose an approxi-
mating sequence of simplicial bundles in accordance with 1.2, and
this gives rise to a corresponding sequence of chain complexes
C*(aK; Ht{aF\ G)), together with chain projections ψί defined for a < β,
constituting a direct system of chain complexes. The homology groups
in question may now be defined by setting

(H8,t(f; G)) = H.QimC&K; Ht(aF; G)))

or equivalently, as the direct limit of the direct system

aK; Ht(aF; G))), «&} .

It follows from the previously noted cofinality of our approximating
sequence {ap: aE-^ \aK \} that the groups HStt(f;G) can be identified
with the functorial homology groups investigated by Sekino, a fact
which we need not presuppose, however, and which will play no role
in the applications presented in §4.

We proceed now to define the chain complex associated with a
simplicial bundle p:E-+\K\. For s ^ 0 we let

(1.3) C.(K; Ht(F; G)) = Θ Hs(\ σ |, | σ |) (x) Ht(Fσ; G)

where K{8) denotes the set of s-simplexes in K and | σ \ the boundary
of |σ|. To obtain boundary operators, we note that the inclusion
maps5

3o Λ\σ\,\σ\) <

induce a direct sum representation
5 K* denotes the s-skeleton of K.
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{£.}: θ H.(\σ\,\σ\)~H.(K ,K-1),

and we let

qσ: HS(K% K-1) >Ha(\σ\,\σ\)

denote the corresponding projections. For every τeK{s~1] we can
define a homomorphism

el:H.(]σ\9\σ\) >HU\*\,\*\)

by setting εj = qτ o 3* o jα,f where

3,: H£K% K-1) > HUKS~\ JΓ-8)

denotes the connecting homomorphism for the triple (Ks, K8~\ Ks~2).
A simple direct calculation gives

LEMMA 1.4. Let T and p denote simplexes in K of dimensions
(s — 1) and (s + 1), repectively. Then

Σ ε>sσ

P = 0 .

For T < σ and x e | τ | one can define (by virtue of the descending
face condition) an injection iliX: Fσ —> Fτ through the formula

(1.5) iUv) = < ° Φr1 o Φa(x, y)

where π[: \τ\ x Fτ —>Fτ denotes the natural projection. Since the
homotopy class of iτ

σ>x is clearly independent of x, one obtains canoni-
cal homomorphisms

il:H*{F.;G) > H*(FT; G)

henceforth referred to as fiber projections, for which the following
transitivity condition is easily verified [4, p. 39]:

(1.6) rσoiσ

p = iτ

p f o r τ < σ < p .

The desired boundary operators

3: CS(K; Ht(F; G)) > CUK; Ht(F; G))

may now be defined for s ^ 0 through the formula6

(1.7) 3(α (x) c) = Σ eί

where

6 Since ετ

a — 0 unless τ < σ, the formula makes sense.



284 PATRICK C. ENDICOTT AND J. WOLFGANG SMITH

(1.8) a <g> c 6 Hs(\ σ |, | σ |) ® i ^ F , ; (?) ,

and it follows by (1.4) and (1.6) that dod = 0.
This completes our construction of the homology groups

HS(K; Ht(F; G)) associated with a simplicial bundle. It should be
pointed out, however, that for a simplicial bundle approximating a
submersion / : JSΓ —• Y, the fiber projections iτ

σ admit a simple geometric
interpretation. The homeomorphisms Φσ: \σ\ x Fσ—>Eσ now consti-
tute tubular neighborhoods in X, and without loss of generality one
may assume that these tubular neighborhoods are associated with a
given "horizontal distribution" on X, i.e., a distribution of m-planes
which is transverse to the fibers. If for each σ e K we identify Fa

with p^Xbo), where bσ is (say) the barycenter of σ, then it turns out
that the fiber projection ίj is induced by an injection i: Fo -* Fτ in-
duced by the horizontal liftings of some path in \σ\ from bσ to 6r.

It remains now to construct the chain projections φβ

a associated
with an approximating sequence (1.2), for which purpose we need to
consider canonical (or "barycentric") subdivisions of simplicial bundles
[4, p. 42]. Let p: E —> \K\ be a simplicial bundle. For each s-simplex
ω belonging to the wth barycentric subdivision nK of K there exists
a unique σeK{s) such that \ω\ c \σ\, and setting nFω = Fof

 nEω =
p~\\ω\), nΦω = Φσ\\ω\ x Fσ and npω — pσ\

nEω one obtains a new sim-
plicial bundle np: E-* \nK|, which is the nth. canonical subdivision.
On the chain level one obtains a corresponding chain homomorphism

Sd\ CS(K; Ht(F; G)) > C.{*K\ Ht(*F; G))

through the formula

(1.9) Sdn(a (g) c) = Sd:(a) <g> β

where again α (x) c is given as in (1.8), and

Sd::H.(\σ\,\σ\) > ®Hs(\ω\, \ώ\)

is essentially the classical subdivision operator, which may be defined
a s f o l l o w s . L e t A = {"K'-'l Γι\σ\, a n d l e t i : ( \ σ \ , \ σ \ ) c (\σ\, A ) a n d
iω

σ\ (|ω|, |ώ[) c (|σ|, A) denote inclusions. Then

constitutes a direct-sum representation [8, p. 474], and one has

(1.10) S<% = {e}-1 o i , = Σ B.% .
ω

Now let {ap: aE -^\aK\) denote an approximating sequence as given
by 1.2, and let a < β. This determines an integer n such that
IK a βK. Moreover, for every σeaK

Ls) and ωeβK
{8) w i th \ω\ c \σ\,
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we may identify aFo and βFω with aPa\x) and βpz\%), respectively,
for some x e \ω\. Since aE c Eβ, one thus obtains an inclusion induced
injection j°J: aFσ -> βFω, whose homotopy class is independent of x.
The desired chain projections

Φί: C.(aK; Ht(aF; (?)) > Cs(βK; Ht(βF; G))

are defined on the generators a (x) c by setting

(1.11) Φί(a ® c) = Σ B*ω(a) (x) jUfi) ,

and it is obvious that the transitivity conditions for a direct system
are satisfied.

2* The spectral sequence of a simplicial bundle* As previously
affirmed, we shall define a spectral sequence corresponding to a given
submersion f:X —>Y whose E?,t term may be identified with the
homology group HS}t(f; G) constructed in the course of §1. Again our
procedure will involve two basic steps: firstly, we will define a spectral
sequence associated with a simplicial bundle p: E-*\K\, whose E?tt

term may be identified with the corresponding homology group
HS(K; Ht(F; G)). In § 3 we shall once more consider an approximating
sequence of simplicial bundles, which gives rise to a direct system
of spectral sequences, from which we obtain the desired spectral
sequence in the direct limit.

Our first step follows an approach introduced by Chern and Spanier
[1], and subsequently extended by Spanier [8], which considers the
filtration of the total space X induced from the skeletal filtration
resulting from a triangulation of the base space. This filtration of
X induces a filtration7 of the singular chain complex S(X; (?), which
in turn gives rise to a spectral sequence [8; §§9.1 & 9.2]. Applying
this idea to the case of a simplicial bundle p: E-* \K\, we let Es

denote the empty set for s < 0 and set

Es = U Eo for s ^ 0
σeKs

to obtain the following result, which is a special case of Theorem 2
[8; p. 469].

THEOREM 2.1. There exists a convergent E1 spectral sequence
with

d1 corresponding to the connecting homomorphism 3* of the triple

7 This filtration is convergent and bounded below.
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(Es, Es_l9 E8_2), and E°° isomorphic to the bigraded group associated
to the filtration of H*(E; G) defined by

FSH*(E; G) = Im [H*(ES; G) > H*(E; G)] .

It will be shown that there exist isomorphisms

ψs: CS(K; Ht(F; G)) ~ Hs+t(Es, JSU; G)

under which the boundary operators (1.7) correspond precisely to d*.
This fact, together with 2.1, will give our first main result,

THEOREM 2.2. Given a simplicial bundle p: E —>\K\ and coeffi-
cient group G, there exists a convergent E2 spectral sequence with

E*,t~H.(K;Ht(F;G)),

and E°° isomorphic to the bigraded group associated with the filtra-
tion of H*(E; G) described in 2.1.

We begin our construction8 of ψs with

L E M M A 2.3. For every σ e K(s) the homology cross product defines

an isomorphism

μσ: Hs(\σ\,\σ\)(g) Ht(Fσ; G) ~ Hs+t((\σ\, \σ\) x Fσ;G) .

This follows directly from the Kϋnneth formula [8; 10, p. 235].
Next, the homeomorphism Φσ of the simplicial bundle furnishes as
isomorphism

Φσ*: i 2 * ( ( k | , \σ\) x Fσ; G) e* H*(Eσ, E a\ G)

where Ea — p^\\σ\). The third step is given by

LEMMA 2.4. The inclusion

i'σ:(Eσ,E;)c:p-\\σ\,\σ\)

induces an isomorphism between corresponding homolgy groups.

To prove this, let e denote a closed s-cell in the interior of \σ\,
let e denote the interior of e, and consider the commutative diagram9

HΛEσf #.) _*L> H (E p-ifl^i - e))

I, \σ\ -ej)

8 Here one should recall (1.3).
9 For brevity we will suppress G in some diagrams.
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induced by inclusion maps. Since Eσ and p~\\σ\) can differ only over
σ\, and \σ\ lies in the interior of (\σ\ — e), one sees that h2 is an

excision induced isomorphism. Moreover, since \σ\ is obviously a
deformation retract of ( |σ |—έ), the isomorphism Φa guarantees that
Eσ is likewise a deformation retract of p7\\σ\ — e), which implies
that hx is an isomorphism. But since any deformation retraction

ro:pΛ\σ\ - e) > E-

extends trivially to a deformation retraction

(2.5) <:p-\\σ\-e) >p-\\σ\),

it also follows that h3 is an isomophism, and this proves our lemma.
The final step in our construction of ψs is provided by the fol-

lowing result, which is an exact analogue of Lemma 2 [8; p. 474].

LEMMA 2.6. The inclusions

induce a direct-sum representation

{#}: θ H*(vΛ\σ\, \σ\); G)~ H*(E., E.^; G) .

Moreover, in view of the deformation retractions (2.5), Spanier's
proof carries over verbatim to the present case.

Combining the isomorphisms established in the four preceding
steps, we may now define ^ s by the formula

(2.7) i = {v)o[ΘW4θft]

where the direct sums extend over all σ eK{8) and iσ = i"°i'a denotes
the inclusion (Eσ, E;) c (Es, Es_^).

It remains to be shown that the isomorphisms ψs commute with
the respective boundary operators. Before embarking upon this some-
what delicate calculation, we shall establish the following lemma,
which turns out to be crucial.

L E M M A 2.8. Let σeK{s) and τ an (s — l)-face ofσ. Let α ? o e | r | ,

and let

Φl:{\τ\,\τ\)xFσ > (Eσ, #•)

denote the map induced by Φσ. There exists a homotopy

H:(\τ\,\τ\)xFσxI >(ES,ES_1)



288 PATRICK C. ENDICOTT AND J. WOLFGANG SMITH

such that

H:i7oφzo(lr x HtXQ) ̂  iσoφi

where l r : ( | r |, \τ|) -» ( | r |, | f |) is ίfte identity and % XQ: Fo —» Fτ the

injection given by (1.5).

To construct H, we first define a map

M M , | ί | ) x Fo >(|r |, | r | ) x Fτ

by setting

ρ(x, y) = (a?, ̂ ,(1/)) .

One verifies by a simple direct calculation that

(2.9) φΐOp = joφι

where

j:p?(\τ\, \T\)a(E^E:)

denotes the inclusion. Composing both sides of (2.9) with ΐ_, and
observing that i7oj is a restriction of iσ, one obtains

iToφzo p = iσoφ .

It will therefore suffice to construct a homotopy

H:(\τ\9\τ\) x F σ x / >(|r|, | ίl) x Fτ

such that

(2.10) H: p = l r X i^,0

from which the desired homotopy ί ί can be obtained by setting
H — iz © Φr o H. To construct fl", we observe that there exists for
each xe\τ\ an obvious homotopy Hx: Fσ x I—>F- such that

which results from (1.5) by identifying / with the line segment in
| r | from x to xQ under the canonical affine map. One can then define
H through the formula

H(x, y, t) - (x, Hx(y, t))

which gives (2.10), and establishes our lemma.
The desired commutativity reduces to the formula

(2.11) ^s-!°3(α(x)c) = d* ψs(a®c)

which we will now establish by direct calculation. Since 3 is given
by (1.7), one obtains
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(2.12) Ψs-χ d(a <8> e) = ψ._, Σ ei(o) (x) £(c)

where the sum can be thought of as extending over all τeK{8-ι).
Applying (2.7), and bearing in mind that μr represents the homology
cross product, one may rewrite (2.12) in the form

(2.13) fs_!θ3(α(x)c) = Σ v W Φ ) X H(c)) .

It follows from our definition of the fiber projections (given in §1)
that

for any a? o e|r | , which together with a well-known property of the
cross product [8; 11, p. 235] gives

εσ

Γ(α) x il(c) = (l r x «,.0)*(e;(α) x e) .

Substituting this into (2.13) and applying (2.8) gives

(2.14) ta-i ° 3(α (8> c) = Σ iα ° ^Γ*(εσ

r(α) x c) .

Before going further, we must introduce some additional spaces
and maps. We will let \σ\ denote the union of all closed (s — 2)-faces
in σ, and set E σ = p7W5\). This brings into play the new inclusions

i'σ: (E'σ, E a) c (J^,_ι, Es_2) ,

together with the homeomorphism

Φ-(\σ\,\σ\) xFσ~(E;,E )

constituting a restriction of Φσ. Since

ia°Φ
τo = k°Φ;°(iτ X 1^)

one may rewrite (2.14) in the form

(2.15) f._! o d(a (g) c) = Σ V ° Φi* ° (ίΓ X l^)*(εσ

Γ(α) X c) .
r

Using [8; 11, p. 235] once more, one has

(2.16) (iΓ x lFσ)*(eτ

β(a) X c) = ί*oεσ

Γ(α) x c .

By a tedious but elementary calculation, for which we refer to [2;
pp. 36-37], one verifies that

(2.17) Σ f t ° e ί ( α ) = δ' (α)
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where

d'«:H£\σ\,\σ\) > HU\σ\, 1*1)

d e n o t e s t h e c o n n e c t i n g h o m o m o r p h i s m of t h e t r i p l e ( | σ | , \σ\, \σ\).
L e t t i n g

3ϊ: Hs+t(Eσ, Ey, G) > H.+UEi, Ey; G)

denote the connecting homomorphism of the triple (Eσ, Eό, E σ), one
obtains

(2.18) d'*(a) X c = 3'*'(α x c)

which follows as a special case of [8; 15, p. 235], bearing in mind
that the exact sequence of a triple constitutes a special case of the
relative Mayer-Vietoris sequence [8; pp. 180-190]. Combining (2.16),
(2.17), and (2.17), and (2.18) with (2.15) gives

(2.19) ψβ_L o d(a (x) c) = i'a. o Φ . o d'ί(a x c) .

Now let 3*" denote the connecting homomorphism of the triple
(10*1, IάI, |σ|) x Fσ. By naturality of the connecting homomorphism
one obtains

(2.20) Φi.o3;' = aς"oφα.

and for the same reason

(2.21) %,odr = d*oiσ^

Substituting (2.20) and (2.21) into (2.19), one obtains

(2.22) fs^ o d(a (X) c) = 3* o v o φσ£a X c) .

Recalling the definition (2.7) of ψ89 together with the fact that μ0

represents the cross product, one sees at last that the right side of
(2.22) reduces to 3* °ψs(a (x) c), which confirms (2.11) and completes
the proof of Theorem 2.2.

3* The spectral sequence of a submersion* We now turn to the
main task, which is to construct a spectral sequence a spectral sequence
associated with a given submersion f:X-*Y. Let {ap: aE —> \aK |}
be an approximating sequence of simplicial bundles supplied by (1.2),
and for each a let {aE

r, ad
r} denote the spectral sequence associated

with the corresponding simplicial bundle and given coefficient group
by the construction of § 2. Condition (2) in Theorem 1.2 implies
that the inclusion aE c βE (defined for a < β) is filtration preserving,
i.e., that aEsaβEs for all s, and consequently induces a homomor-
phism β

aφ
r between the respective spectral sequences. This system of
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homomorphisms obviously satisfies the requisite transitivity conditions,
and one therefore obtains a direct system of spectral sequences.
Taking the direct limits

Er = lim aE
r

dr = lim ad
r

gives, for each r ^ 1, a bigraded group Er, together with a differ-
ential dr of bidegree (—r, r — 1). The remaining ingredient of a
spectral sequence, i.e., a system of bigraded group isomorphisms
θr: H(Er) & Er+1, can likewise be obtained as a direct limit of the
corresponding isomorphisms aθ

r: H{aE
r) & aE

r+1. More precisely, the
fact that β

aφ
r constitutes a homomorphism of spectral sequences implies

commutativity of the diagram

H(aE
r) - ^ *Er+ι

H(βE
r) -^—> βE

r+1

so that {aθ
r} constitutes an isomorphism between the given direct

systems of bigraded groups. Since homology commutes with direct
limits, one obtains the desired isomorphism θr: H(Er) e& Er+1 by setting

θr = lim aθ
r .

We have thus constructed a (first quadrant) E1 spectral sequence
{Er, dr) associated with the given submersion, and it remains to verify
our claims concerning its E2 and E°° terms.

To begin with the E°° term, we must first exhibit an increasing
filtration F8H*(X; G) of the graded group H*(X; G), and must sub-
sequently identify E°° with the bigraded group associated to the given
filtration. Consider the filtrations {FSH*(«E'> G)} of H^JS; G) defined
in 2.1. The inclusions aEsdβEs induce homomorphisms

&: F.H+UE; G) > FsHΛβE; G)

which give rise to a commutative diagram

> FH(E)• FH(E)> • FH(E) H{E)

where the ajs are actual inclusions and m — dim Y. This constitutes
a direct system of filtrations, and we define
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j s = lim ajs .

Since the direct limit of monomorphisms is a monomorphism, and
since also

lim H*(aE; G) = H*(X; G)

one concludes that {FaH*(X; G), j8} is a filtration of H*(X; G). To
achieve the desired identification of E°°, we note that for every α
there is a short exact sequence

0 > F^Hs+tiαE; G) > FsH8+t(αE; G) • αE™t

 > 0 .

By functoriality of this sequence [3; 3.1, p. 327] there is a commuta-
tive diargram

0 777 ΎJΓ / Ύ71\ Λ * ' 5 ~ l TΓT TT / ΊJ1\ Λ

 v XP°° v ί\

' •*• β—l " β + ί\α-«-'/ z •*• s-^-^s+ίVα-" / α LJstt 7 v

> r g^Hg+t^βΆ ) > Jo si2s+t{βlίj) > βJbs.t > U

for α < β, giving a direct system of short exact sequences. More-
over, since {2*7% dr] is a convergent spectral sequence, it is obvious
that

E°° = l im αE°° .

One therefore obtains a short exact sequence

0 > Fg^Hs+tiX] G) > FsHs+t(X; G) > EΓ,t > 0

in the direct limit, as was to be shown.
It remains to establish an isomorphism

Eί9t ~ H8,t(f; G)

taking Theorem 2.2 as our starting point. By naturality of the
isomorphism [3; 3.1, p. 327]

and once again taking into account that homology commutes with
direct limits, it will suffice to establish commutativity of the diagram

C8(αK; Ht(αF\ G)) > H8+t(αEs, αE8^; (?)

4
CA,K; H.UF; G» -Ά HMUE., ,E,.,; G)
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for a < β, where φί is given by (1.11), ψs by (2.7) and πβ

a is inclusion
induced. Now this diagram splits into three diagrams, corresponding
to the three factors in terms of which ψs is defined. Taking into
account (1.9), (1.10), and (1.11), the first of these subdiagrams becomes

Hs(\σ\,\σ\)® Ht(aFσ; G) - ^ Hs+t((\σ\,\σ\)x aFσ; (?)

H.Q σ\,A)(g) Ht(F; G) — Hs+t(\ σ |, A) x (aFσ; G)

W.}<S>i {(Cxi)*}

0 H.(\ ω I, I ώ I) <g> fΓ,ςFβ; G) ̂  0 fl,+l((| α> |, | ώ |) x ^ G)

θ iϊ.(| α> [, I ώ I) (g) fΓ t(^β; G) % φ ,ffs+ί((i α> | , | ώ |) x ^ ω ; G)

which commutes by naturality of the homology cross product. Next
we have the subdiagram

H . + 1 ( ( | σ \ , \ σ \ ) x aFa; G) ^ > H.+t{,JΞ., aEh; G)

( iχ i) l I
iϊ s + t((|σ|, A) x aFσ; G) - ϋ H.+ί(Jί?w ^ ( A ) ; G)

0 Hs+t((\ ω I, I ώ I) x α F σ ; G) — ^ 0 jff.+ί(βSβf aE-, G)

0 if s + ί((| ω I, I ώ I) x ,i^ω; G) — ^ 0 Hs+t(βEω, βE-ω; G)

in which the vertical maps on the right are inclusion induced. The
top two rectangles derive from commutative diagrams on the space
level and consequently commute by functoriality. On the other hand,
since the homeomorphisms aΦω and βΦω derive from independent tu-
bular heighborhood constructions, the space level diagram correspond-
ing to the bottom rectangle need not commute. But once again we
are saved by the fact that the space level diagram in question is
homotopy commutative; i.e., we shall prove

LEMMA 3.1. There exists a homotopy

H: (|β)|, |ώ|) x aFa x / >(βEω, βE;υ)

such that
H:hΐoaφωgίβφωofi .

For convenience we will identify the fibers aFa and βFω with
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aPoKxo) and βP^iXo), respectively, where xoe\ω\, so t h a t j%: aFσ -» βFω

becomes an actual inclusion. Moreover, this implies that

for all yeaFσf and likewise for βΦω. Let

π:\ω\ x aFσ > aF0

denote t h e na tura l projection, and for each xe\co\, let ψx: I-+ \ω\

denote t h e affine line segment from x to α?0. The desired homotopy

H may now be defined t h r o u g h t h e formula

H{x, y, t) = βΦω(x, πopφ^OaΦXψ^t), y)) .

It follows immediately that

H(x, y, 0) - aΦσ(x, y)

H(x, y, 1) - βΦω(x, y)

and this establishes our lemma.
So far as the third and last subdiagram is concerned (we will

not exhibit it), one sees that it is composed entirely of inclusion
maps and therefore commutes trivially. This concludes our proof of
the following

THEOREM 3.2. Let f:X—>Ybe a submersion and G a coefficient
group. There exists a convergent E2 spectral sequence with

E!,t ~ H8)t(f; G)

and E°° isomorphic to the bigraded group associated with a filtration
of H*(X; G).

4* Some applications* The applications to be set forth arise
by way of our main result 3.2 from the following fact regarding
the homolpgy groups H8tt(f;G).

THEOREM 4.1. Let f: X —> Y be a submersion and U an open
subset of Y. If Ht(fy; G) - 0 for all y$U, then

Hatt(f;G)~H9tt(f\U;G),

where f | U denotes the restriction of f to the preimage of U.

To establish this results, it will be convenient to introduce a few
definitions relating to tubular neighborhoods. By a compact tubular
neighborhood we shall understand a homeomorphism Φ: B x F —> V,
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where B is a compact neighborhood in Y and V a compact subspace
of X, such that /© Φ is the projection B x F -+ B. Given y e B we
will set ί\ — V Γ\fy, and will let

denote the homeomorphism induced by Φ for y, yr e B.

LEMMA 4.2. Let Φ: B x F -* V be a compact tubular neighborhood
such that B does not meet U, and let zaFy be a singular t-cycle,
where y6JS. Then there exists a compact subspace C c l such that

(4.3) Φ;ίs~0 in CΠfy ,

/or αM y'eB.

The proof runs as follows. Our acyclicity assumption implies
that for every point y' e B there exists a compact subspace Cy> such
that

Φ*ϊz - 0 in Cy, .

By compactness of B one may conclude with the aid of an elementary
tubular neighborhood theorem [7] that there exists a finite sequence
of points ylf , y8 and corresponding compact tubular neighborhoods

such that
( i ) each J3, is a convex neighborhood of y%\
(ii) {Bu . . . ,BJ covers B;
(iii) Cy. c Vi for i = 1, , s;
(iv) F ί l /"'OB*) c V, for i = 1, - , s.

We claim now that (4.3) holds with

c - vx u . u v8.
For let τ/; e β. By (ii) there exists an index i such that y' eBif and
by (iii) one has

iΦ$βv\z) ^ 0 in C n Λ' .

Since

it will suffice to show that

= *<
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But the desired homotopy may be constructed exactly as in Lemma
3.1, by virtue of conditions (i) and (iv).

We may now proceed to the proof of Theorem 4.1. Let {Ua} be
a covering of U by an increasing nested sequence of compact sets,
and let {ap: aE —> |«2f|} be an approximating sequence of simplicial
bundles satisfying the conditions of Theorem 1.2, together with

(4.4) for every a and σeaK, if \σ\ meets Uai then \σ\a U.

Let aK denote the largest subcomplex of aK such that \JL | c U, and
let ap: aE-> \aK\ denote the corresponding simplicial bundle. We note
that (4.4) implies Ua c \aK |. One therefore obtains a direct subsystem

i f = {C+iaK; Ht(aF; G)), φί}

of chain complexes such that

It will therefore suffice to show that the inclusion

i f c i f = {C*(aK; Ht(aF; G)), φί]

induces an isomorphism in the direct limit. Since the direct limit of
monomorphisms is again a monomorphism, it only remains to check
surjectivity. Given a generator

a®ceH.(\σ\,\σ\)®Ht(aFc;G)

for σ e aK, we must show that there exists β > a such that

(4.5) φί(a (g) e) e Cs(βK; Ht(βF; G)) .

Let A denote the complement of U in \σ\9 and assume without loss
of generality that A is nonempty. We may identify aFσ with PoXy)
for some y eA and let c be represented by a singular ί-cycle z c p7\y).
Since A is compact, we conclude by Lemma 4.2 that there exists a
compact C aX such that

(4.6) σΦ$z~0 in C Π Λ ,

for all y' eA. Choose β > a such that C(ZβE. Recalling (1.11), one
sees that (4.5) may be established by showing that for every ωe βK

(sl

with |o) | c | (τ | and ω£βK one has j%*(c) — 0. But given such an ω>
there must exist a point yr e \ ω \ fι A, and one may identify βFω with
Pω\y') The map j%: aFσ-> βFω is then represented by aΦ\' (followed
by the inclusion p7\y')^PZ\y'))> and consequently (4.6) implies the
vanishing of jo*(c).

Theorem 4.1 will be of interest in two special cases. In the first
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place, if / : Xn —> Ym is any submersion having connected fibers, the
conditions of (4.1) are seen to hold if one takes U to be the subspace
of Y corresponding to compact fibers, and takes t = n — m. More-
over, the restriction /1 U will now be a fiber bundle, and if X, Y
are both oriented, the homology groups Hn_m(fy; G) may be canonically
identified with G for all y e U. It is therefore easy to evaluate
•ff.,»-»(/l U; G), and one obtains

(4.7) H.,n..m(f;G)~H,(U;G).

Secondly, the conditions of (4.1) may hold for an empty set U, in
which case one has

(4.8) HBtt(f; (?) - 0 for all s .

It should also be noted that (4.1) fails when U is not open.
Theorems 3.2 and 4.1 together give rise to an indefinite number

of geometric propositions, which we shall illustrate by means of a
few examples. The most immediate of these consequences is no doubt
the Vietoris-Begle theorem for submersions, which we have previously
established [7] by elementary methods. Turning to new results,
one has

THEOREM 4.9. Let f:X—>Ybe a submersion between orientable
manifolds of dimensions n and m, respectively, such that every fiber
fy is either a homology (n — m)-sphere or else acyclic over a given
coefficient group G. Then there exists an exact sequence

> H8(X; G) > HS(Y; G) > iJ s_% + m_x(C7; G)

where Ua Y denotes the subspace corresponding to compact fibers.

This clearly generalizes the Thom-Gysin sequence for sphere
bundles, and we also note that for submersions of codimention 1 the
result has been previouly established [5] by different methods. To
prove our theorem, one concludeds by (3.2) and (4.8) that E}tt is trivial
except when t equals 0 or (n — m), which means that dn~m+2 is the
only nontrivial differential in our spectral sequence. One therefore
obtains exact sequences

0

and

0 > E£ln+m>n_m > H8(X; G) > E™Q > 0

which by the standard "splicing trick" give rise to a long exact
sequence
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. . . > HS(X; G) > Es,0 > Es-n-vm-y,n-m > .

Since

•Es2-» + m-l,ί*-m ^ HS-n + m-l(U; G)

by (3.2) and (4.7), and clearly

El, ~ HS(Y; G) ,

one obtains the result in question.
It is of interest to note that some of the information contained

in the generalized Thom-Gysin sequence for large values of s carries
over under much weaker assumptions; for example, one can obtain

THEOREM 4.10. Let f:X—>Ybea submersion between orientable
manifolds of dimensions n and m, respectively, whose fibers are con-
nected. Then there is an inequality

involving the Betti numbers of X and U, where U c Y corresponds
to the compact fibers.

To show this we note that E! t is trivial for s > m, and by (4.8)
it is also trivial for t > n — m. Since all differentials touching
E^_1>n_m are therefore trivial for r ^ 2, one has

Em~i,n-m ^ Έm-Un-m

But by (3.2) and (4.7), this implies that

and the desired rank inequality follows now by the last assertion
contained in (3.2).

We will close with another result of this nature, which may be
established through a simlar consideration.

THEOREM 4.11. Let f:X—>Y be as in 4.10, with the additional
stipulation that the fibers are G-acyclic in positive dimension
n — m — 1. Then there is an additional rank inequality

where UaY corresponds to compact fibers.
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