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DUAL MAPS OF JORDAN HOMOMORPHISMS AND
*-HOMOMORPHISMS BETWEEN C*-ALGEBRAS

FrREDERIC W. SHULTZ

A geometric characterization of the dual maps of Jordan
homomorphisms and *-homomorphisms between C*-algebras is
given.

Introduction. In [2] the authors gave a geometric character-
ization of state spaces of (unital) C*-algebras among compact convex
sets. They defined the notion of an orientation of the state space,
and showed that the state space as a compact convex set with
orientation completely determines the C*-algebra up to *-isomorphism.
Our purpose here is to show that this correspondence is categorical
by giving a geometric description of the dual maps on the state
space induced by unital *-homomorphisms. Along the way we will
also characterize dual maps of unital Jordan homomorphisms between
C*-algebras, and in fact in the larger category of JB-algebras: the
normed Jordan algebras introduced in [3]. Finally we remark that
the first result on this topic was Kadison’s [6]: the dual maps of
Jordan isomorphisms are precisely the affine homeomorphisms of the
state spaces.

Characterization of Jordan homomorphisms. Throughout this
paper A will be a C*-algebra with state space K. (All C*-algebras
mentioned are assumed to be unital.) Assume that A< B(H) is given
in its universal representation, and thus its weak closure can be
identified with its bidual A**, and K can be identified with normal
state space of A** [4, §12].

We will view elements of A and A** as affine functions on K.
In fact, the self-adjoint parts of A and A** are respectively isome-
trically order isomorphic to the spaces A(K) and A*(K) of w*-
continuous (respectively, bounded) affine functions on X [6]. If B
is also a C*-algebra and ¢: A — B is a unital positive map then the
dual map ¢* is an affine map from the state space K; of B into K =
K,, and is weak *-continuous; ¢ — ¢* is a 1 — 1 correspondence of
unital positive maps and w*-continuous affine maps. Our purpose in
this section is to characterize those affine maps from K, into K,
which correspond to Jordan homomorphisms of A into B. (In the
case that the C*-subalgebra generated by ¢(A) is all of B, another
characterization of the dual map has been given by Stermer [10].)

Recall that a convex subset F of K is a face of K if o +
1L —N)reF for 0,7€¢ K and A€ (0, 1) implies ¢ and 7 are in F. If
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a € A** is positive, then a*(0) is a face of K; such faces are said to
be (norm)-exposed. In [5] and [7] it is shown that every norm closed
face of K is exposed.

Exposed faces of K are in 1 — 1 correspondence with projections
in A**, with the face corresponding to a projection » being p~'(1).
Given an exposed face F', the corresponding projection p can be
recovered as the affine function.

(1) p=inflac AK)|[0<a=1l,a=1 on F}.

We will write F* for the face corresponding to 1 — p, i.e., F'¥ =
1 —p)A) = p%0). The face F'* is called the quasicomplement of
F and will play a key role in characterizing dual maps. (For details
on other geometric properties of these faces, which lead to the notion
of a “projective face”, see [1, §§1-3].) Note that when we give A
its universal representation all states are vector states; the states
in F' and F'* are then the vector states w, with & e pH (respectively
te(l — p)H).

The key to the role played by F and F* is their relationship to
orthogonality. Recall that each a = a* € A** admits a units a unique
orthogonal decomposition, ¢ = a* — ¢~ with 0 < a*, 0 < o~ and a*ta™ =
0. To express this in geometric terms, note that a, b€ (A**)*, are
orthogonal (i.e., ab = 0) iff the kernel of a contains (range b)~ =
(kernel ). In terms of the state space:

(2) a,b, €(A**)* are orthogonal iff there exists an exposed face F'
with a =0 on F,b=0 on F*

We are now ready for our first result. The natural context is
the category of JB-algebras: the normed Jordan algebras investigated
in [3] which include self-adjoint parts of C*-algebras as a special case.

PROPOSITION 1. Let A, and A, be JB-algebras with state spaces
K, and K,. A w*-continuous affine map : K, — K, is the dual of
a unital Jordan homomorphism from A, into A, iff ' preserves
quasicomplements, i.e., v (F*) = 4 (F)* for every exposed face F
of K..

Proof. We will prove the proposition for the case when A, and
A, are the self-adjoint part of C*-algebras and then indicate the
changes needed for JB-algebras.

Assume first that ¢: 4, — A, is a unital Jordan homomorphism
such that ¢* =+, and let F be an exposed face in K, say F =
p~'A) for p* = pe Af*. Then

P(EF) = (07 (Q) = (6™ () 7'A),
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while
v (F#) = 7 (p7H0)) = (**(p))7(0) .

Since ¢**: A}* — AF* is a Jordan homomorphism, then ¢**(p) is an
idempotent, so we have shown that ! preserves quasicomplements.

Conversely, suppose ' preserves quasicomplements. We first
show that ' sends exposed faces to exposed faces. If p*> = pe A}*
and F' = p~'(0), then

PHEF) = 47 (07(0)) = (Poy)7(0) .

Since poqr(AF*)*, then «~'(F) is a norm exposed face of K,.

Next we show that 4 preserves orthogonality of elements of
Af. Suppose a,bc A and alb. Let F be a norm exposed face
of K, such that a =0 on F and b =0 on F*% Now ¢(a) and ¢(b) are
positive elements of A, which are zero on = '(F") and v (F'*) = «(F)*
respectively, and so ¢(a) L ¢(b).

Now suppose a is any element of A,, with orthogonal decomposi-
tion @ = at — a-. By virtue of uniqueness of the orthogonal decom-
position we conclude that ¢(at) — ¢(a~) is the orthogonal decomposition
of ¢(a) in A,; in particular ¢(a*) = ¢(a)*.

Since ¢ is positive and unital, then |[¢|| <1. Now the set of
all f eC(o(a)) such that 4(f(a)) = f(¢(a)) is seen to be a norm closed
vector sublattice of C(o(a)); by the Stone-Weierstrass theorem it
equals C(o(a)). In particular ¢ will preserve squares and then also
Jordan products. Thus ¢ is a Jordan homomorphism. Finally, we
consider the more general JB-algebra context. We can define ortho-
gonality by the property in (2). The proof above then applies without
change; the necessary background on the bidual, functional calculus,
facial structure and orthogonal decomposition can be found in [8],
[3, §2], and [1, §12]. |

As an illustration, let A; be the 2 X 2 real symmetric matrices
and A, the 2 X 2 hermitian matrices. The corresponding state spaces
are affinely isomorphic to the unit balls of R* and R® respectively.
(See the last section of this paper.) In each case the nontrivial
pairs of quasicomplementary faces are just the pairs of antipodal
boundary points.

Now suppose ¢: A, — A, is a unital order isomorphism of A, into
A, ie., a =0 iff ¢(a) = 0. Now ¢*: K, — K, will be surjective, and
one readily verifies that (¢*)* must preserve quasicomplements. It
follows that every unital order isomorphism from A, into A, is a
Jordan isomorphism. (This is not true in general.)

Characterization of *-homomorphisms. We first recall the notion
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of orientation defined in [2]. Let B be a 38-ball (i.e., a convex set
affinely isomorphic to the closed unit ball of E® of R®). If 4, and 4,
are affine maps of E® onto B, we say that +~ and +, are equivalent
if the orthogonal transformation +ri!oqr, has determinant + 1. An
orientation of B is then an equivalence class of affine maps from E*
onto B.

Recall that the state space S(M,(C)) of the 2 X2 complex matrices
is a 3-ball; in fact if we identify S(M,(C)) with the positive matrices
of unit trace, then an affine isomorphism z: £° — S(M,(C)) is given by

%(1 +a) %(b + dc)
(3) z(a, b, ¢) —l—(b——ic) 14
2 2

We will refer to the associated orientation as the standard
orientation for S(M,(C)).

If B, and B, are 3-balls with orientations given by ;: E°— B,
for + =1, 2, we say an affine map v of B, onto B, preserves orientation
if voqr, is equivalent to +,; else we say v reverses orientation. It
is not difficult to verify that the dual map of any *-automorphism
of M,C) will preserve orientation, while for a *-anti-homomorphism
orientation is reversed [2, Lemma 6.1].

Now let A be a C*-algebra with state space K. If p and o are
unitarily equivalent pure states then the smallest face containing p
and o is a 3-ball, which we denote B(p, 6). (If p and o are inequi-
valent, the face they generate is the line segment [p, 6]. See [2,
Lemma 3.4] for details.) In the future when we refer to a 3-ball
of K we will mean a facial 3-ball, i.e., one of the form B(p, o).

Let A(E® K) denote the set of affine maps from E® onto 3-balls
of K, with the topology of pointwise convergence. We let the
the orthogonal group O(38) of affine automorphisms of E*® act on
A(E®, K) by composition. Then A(E? K)/SO(3) — A(E®, K)/O@3) is a
locally trivial Z/2 bundle cf. [2, Lemma 7.1]. Note that a cross
section of this bundle is just a choice of one of the two possible
orientations for each 3-ball in K. We then define a (global) orien-
tation of K to be a continuous cross section of this bundle.

The state space of every C*-algebra is orientable. (Indeed, the
fact that face {p, o} is always of dimension 1 or 3, together with
orientability, characterize state spaces of C*-algebras among state
space of JB-algebras; this is the main result of [2].) To define the
standard orientation of K, we define the orientation on each 3-ball
Bin K. If pe A**is the projection corresponding to B (i.e., p~*(1)=B),
then pA**p is *-isomorphic to M,(C). If @:pA**p — M,(C) is a
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*-isomorphism, then we define the orientation of B to be that carried
over from S(M,(C)) by ¢*. More precisely, let U,: A** — A** be the
map a — p a p and let 7: E® — S(M,(C)) be the map defined by equation
(8); then the orientation of B is given by the map Ujo¢*or: E* — B.
If this orientation is chosen for each 8-ball, then it is shown in
[2, Thm. 7.3] that this cross section is continuous, i.e., is a global
orientation.

If 4: K, — K, is an affine map between state spaces of C*-algebras,
we say o preserves orientation if + preserves orientation for each
3-ball of K, whose image in K, is a 3-ball of K,. In general « will
not map 3-balls to 3-balls, even if + is the dual of a *-homomorphism,
but the following lemma shows this happens often enough for our
purposes.

The following observation will be useful in the proof. If 7: A —
B(H) is an irreducible representation, then n* maps the normal state
space N(B(H)) bijectively onto a face of K, which we will denote
by F.. To see that F. is a face, note that #* N(B(H)) is just the
annihilator in K of the ideal ker 7, where #: A** — B(H) is the o-
weakly continuous extension of . (In fact F. will be a minimal
split face of K, containing the pure states whose GNS representations
are unitarily equivalent to =, ef. [2, Prop. 2.2], but we will not need
this.) Since % is surjective, z* will be 1 — 1.

LEMMA 2. Let A, and A, be C*-algebras with state spaces K, and
K,, and ¢: A, — A, a *-preserving unital Jordan homomorphism.
Then each 3-ball of K, which lies in ¢*(K,) is the image of a 3-ball
m K,.

Proof. Let B = B(p, 0) S ¢*(K,) be a 3-ball of K;,. Then (¢*)~*(0)
is a nonempty w*-closed face of K,, so contains a pure state 0. Let
(z, H, &) be the corresponding GNS representation of A,, and let ¢ be
the projection on ((wo9)(A,)&)~. Identify ¢qB(H)q and B(qH); define
v: A, — (B(¢H)) by

Y(a) = p(rog)(a)p .

Then v is an irreducible representation of A, and so v* maps the
normal state space N(B(qH)) bijectively onto the face F; of K,. Since
o and o belong to a 3-ball, they are unitarily equivalent; thus ¢ =
wyoy for some vector state w, on B(¢H). It follows that B < FY,
and thus there is a 3-ball B* in ¢7'(1) = (B(¢H)) which is mapped
onto B by (wog)*. Finally, n* maps N(B(H)) bijectively onto the
face F. of K,, and therefore n*(B') is the desired 3-ball of K,. []

PROPOSITION 3. Let A, and A, be C*-algebras with state spaces
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K, and K,. A *-preserving unital Jordan homomorphism ¢: A, — A,
18 a *-homomorphism iff ¢* preserves orientation.

Proof. Assume ¢ is a *-homomorphism, and let B, and B, be
3-balls such that ¢*(B,) = B,. Let pe Af* be the projection corre-
sponding to B,, i.e. B = p7(1), and denote by ¢: A}* — A}* the o-
weakly continuous extension of . Now since pA*p and @(p)A;*3 ()
are both isomorphic to M,(C), it follows that ¢: pA}*p — ¢(p)AF*3 ()
is a *-isomorphism. From the definition of the standard orientations
of K, and K,, it follows that ¢*: B, = (#(p))"'(1) — B, preserves orien-
tation. (We note for use below that if ¢ were a *-anti-homomor-
phism, the argument above shows that ¢*: B,— B, would reverse
orientation.)

Conversely, assume now that ¢*: K, — K, preserves orientation.
Let C be the C*-subalgebra of A, generated by ¢(A),); clearly it suffices
to show ¢: A, — C is a *-homomorphism.

We will first show that ¢*: K, — K, is orientation preserving
(where K, is the state space of C). Let B, and B, be 3-balls in K,
and K, with ¢*(B;) = B,. By Lemma 2 we can choose a 3-ball B, in
K, such that the restriction map sends B, onto B,. By the first
paragraph of this proof the restriction map preserves orientation;
by assumption so does ¢*: B,— B;,. It follows that ¢*: B — B,
preserve orientation.

Now let #: C— B(H) be any irreducible *-representation of C.
Since ¢(A,) generates C, then zmog: A, — B(H) will be an irreducible
Jordan homomorphism. By [9, Cor. 3.4] mwog is either a *-homomor-
phism or *-anti-homomorphism. Let B be any 38-ball in K, contained
in the image of the state space of B(H) under (mog)*. (By the
remarks preceding Lemma 2 such a 3-ball will exist unless
dimH=1.) Now by Lemma 2 there is a 8-ball B' in K with
¢*(B') = B and a 8-ball B? in the state space of B(H) with
n*(B%) = B'. Since n* and ¢* preserve orientation, then (ro¢)*: B*— B
does also. By the remarks in the first paragraph of this proof,
this rules out the case where mog is an anti-homomorphism unless
dim H =1, and so in all cases 7og is a *-homomorphism. Since =
was an arbitrary irreducible representation of C, it follows that ¢
is a *-homomorphism. |

PROPOSITION 4. Let A and Bbe C*-algebras and + a w*-continuous
affine map from the state space of B into the state space of A. Then
A is the dual of a wnital * homomorphism from A into B iff
preserves quasicomplements and + preserves orientation.

Proof. Immediate from Propositions 1 and 3. O
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