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ON COMPACT METRIC SPACES WITH NONCOINCIDING
TRANSFINITE DIMENSIONS

LEONID A. LUXEMBURG

For every no more than countable ordinal number a we
shall define an ordinal number ψ(a) such that for every com-
pact metric space X with maX<a we have \nάX<φ{ά) and
there exists a compact metric spaces Xa with ind Xa— a,
Ind Xa=φ(a), where ind Xa and Ind Xa mean small and large
transfinite inductive dimensions respectively. In particular we
now extend the author's previous result on existence of com-
pact metric spaces with noncoinciding transfinite dimensions.

1* Introduction* In this paper we consider only metric spaces.
For instance, by a compact space we mean a compact metric space.
All mappings we consider are continuous and In denotes the n-
dimensional euclidean cube.

1* Definitions and statements of main results*

DEFINITION 1.1. (a) ind X = — 1<=>X = 0 .
(b) We assume that for every ordinal number a < β the class

of spaces X with ind X ^ a is defined. Then, we say ind X ^ β if
for every point xeX and a closed subset F, xίFczX, there exists
a neighborhood Ox of x such that:

Ox c X\F

ind FrOx <: a < β1

We put ind X = min {β: ind X ^ β}.
(c) We say that dimension indβ X of a space X in a point x e

X ^ β if there exists such a base {Oλ: λ e A} at this point, so that

ind FrOλ < β .

We put inds X = min {β: ind X <: β}.

DEFINITION 1.2. (a) Ind X = - 1 « X = 0

(b) Let, for every ordinal number a < β, the class of spaces
X with Ind X <; a be defined. Then, Ind X <; /5 if for every pair
of disjoint closed subsets F and G there exists a partition C2

1 Fr A denotes the boundary of A.
2 By a partition in X between sets A and B we mean a closed set C in X such

that X\C = U\JV, Un V = 0, AaU, BaV for some open sets U and V in X
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between F and G such that Ind C ^ a < β. We put Ind X =
min{/3: IndX<^ /3}.

We note that we can also introduce the dimension ind using
partitions, because if xeUc.X\F, and U is open, then FrU is a
partition between a? and F. Obviously, ind X <Ξ Ind X. For spaces
with a countable basis, in particular, for compact spaces dimension
ind X is no more than a countable ordinal (Hurewicz [4], p. 50),
and Ind X is no more than a countable ordinal even for all metric
spaces (Smirnov [16], p. 418). Dimensions ind X and IndX are not
defined for every metric space. For example, the Hubert cube Iω

does not have any transfinite dimension (Hurewicz [4], p. 51). Let

Z = Qjn

be the discrete union of cubes In. Then, obviously, ind Z = ω0.
However, the dimension Ind X doesn't exist. But if for a space X
the dimension Ind X exists, then ind X also exists. In this paper
we solve the following problem: to find a function ψ: Ω —• Ω defined
on the set of all ordinal numbers a < co1 and satisfying the follow-
ing conditions:

( i ) for every compact space X, having dimension ind X, we
have

τ/τ(Ind X) 5s ind X 5̂  Ind X .

(ii) for every a < ω19 there exists a compact space X = X(ά)
satisfying the following equalities:

Ind X = a; ind X = ψ(a) .

We shall also find such a function φ\ Ω —» Ω, so that for every
compact space X with dimension ind X

(iii) ind X ^ Ind X ^ ^(ind X).
(iv) for every a < ωu there exists a compact space X = X(α)

such that

ind X = a, Ind X = φ(a) .

The first examples of compacta with noncoinciding transfinite
dimensions were constructed by the author in [9]. Let us introduce
some notations. In § 1 small greek letters denote ordinal numbers.
For every ordinal number β the equality β = a + n holds, where
a is a limit number or 0, and n = 0, 1, 2, . Then we set K(β) —
n, J(β) = a. Further, for every β ;> ω0 by τ(β) we denote an
ordinal number, defined by the equality ω0 + τ(β) = β. If β < ω0

we set τ(β) = 0.
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DEFINITION 1.3. Put φ(β) = ω0 + ω0 x τ(β) for β ^ ω0 and

= /9 for β < α>o3.
Numbers β such that /3 = φ{β) shall be called invariant. It is

easy to prove that a number β > ω0 is invariant if and only if β~
α)?0 x 74 for some 7; and, every a <; ω0 is invariant.

DEFINITION 1.4. Put ψ(β) = min {α: £>(α) :> β}.

LEMMA 1.1. Functions φ and ψ have the following properties:
(a) Let a — ωQ + β + n where β is a limit number or 0, n =

K(a), and ξ is a number such that a)0 x ξ = β. Then

ωo + ξ + 1 if n > 0

0 + ί if n = 0

(b) ψ<w) = ?>(w) = ^ /or w = 0, 1, 2 .

(c) /3 + ω0 ^ 9>°t(iS) ^ /5.
(d) If a ^ ωQ then φ{a) is a limit number.
(e) If Ί> β then φ(y) > φ{β).
(f) Let 7 > ωQ, then ψ(y) = ^(/3) ijf J(/3) = J(τ) α^ώ ί̂ β

numbers K(β), K(y) are either both equal to 0, or δoίλ different
from 0.

(&) If β is a nonlimit number, ίfoew ψ(/3) αiso is α nonlimit
one.

(h) 1/ 7 ^ J(α) < α then ψ(y) < <f{a).
(i) If a is a limit number, then ψ(a) < ψ(a + m) where m —

1,2-...
(j) If a^ β, then <f(α) ̂  -f(/3).
(k) If a = sup {Tit i = 1,2, •}, ί/ιe» ?>(α) = sup

(1) If β < a and a is invariant number, then φ(β) < oc.
(m) If a = sup {7,: i = 1, 2, •}, then ψ(a) = sup {̂ (7*): i =

1,2, --.}.
(n) ψoφ(β) = β.
(o) <p(a) = ωox a for a ^ ω\, φ(ω0 + p) = α)0 x (p + 1),

ί + p) = ω\ x (9 - 1) + ωQ x p /or q = 2, 3, , p = 0, 1, 2,

Proo/. (a) Let n > 0. Since <p(d)0 + S + 1) = ωo + <®o x ί + ^0
we have ω0 + ξ + 1 ^ τ/r (α). Further, 9?(α)0 + ξ) = ΰ)fl-f ft)oxξ<«

3 We assume O x α = α x O = O, 0 + α = « + 0 = α for any α.
Let A, B be two well-ordered sets having types a, β respectively. In a product

A x B we introduce the following well ordering: (a, b) < («', 6) if bf > b or if
6' = b and a' > a. Then the type of i x 5 is denoted by a x β. Generally speaking
a X β Ψ β X a.

4 By definition ωJΌ = Sup {ωj: ft = 1, 2, •}
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Consequently ωQ + £ + 1 = ψ(a). Now let n ~ 0. Then φ(ω0 + ξ) —
a and φ(ω0 + f') = ω0 + α>0 x £' < a for £' < ς. Hence, ψ<α) = α>o+£

(b) is evident.
(c) follows from (a) and Definitions 1.3, 1.4.
(d), (e) are evident.
(f), (g), (h), (i) follow from (a).
(j) follows from (b) and Definition 1.4.
(k) If a < ω0 then the assertion is evident. Let a — ωQ + β,

then β = τ(a) = sup {r(7*): i = 1, 2, •}. Consequently, φ(a) =
sup {α>0 + ω0 x τ(Ti) = 9>(7i): i = 1, 2 •}.

(1) If α is invariant, then a = φ(a) and φ(β) < 9>(α) = a by
property (e).

(m) If α ^ ώ)0 or α is nonlimit number then the assertion is
evident. Let a be a limit number > ω0. Then a = a)0 + o)0 x ξ for
some f > 0. Then by virtue of (a), ψ{a) = ω0 + ξ. Obviously, for
some n > 0 each yk(k ^ n) has the representation:

(1) yk = oo0 + ω0x ξk + K(yk)

and 7k < ft)0 for k < n. Let f be a limit number and ζ > sup ί>% {ξJ.
Then s u p { f j + l < f and sup{7<}^sup{α)o+α)oXf< + α)o}<α)o+α)oxf = α
which contradicts the condition. Therefore

(2) f = sup {£,: ΐ > ^} .

Consequently, by virtue of (a), (1) and (2)

ψ(a) = <£)0 + f = sup {ω0 + ^ : i > n} ^ sup {ψ(7<): i = 1, 2 •} .

The inequality ψ»(α) ^ sup {α/r(7J: i > n} follows from (j). If ξ = f0 +
1, then a = ω0 + ω0 x ξ0 + ω0 and there is a number 7* such that
7, ^ <#o + ft>o x £0 + 1. By virtue of (a) ψ1 (7<) = coo + £0 + 1 = ωo +
£ = τK«). Hence (m) is proved.

(n) follows from (1), (0) is evident. •

We shall use the addition theorem for inductive dimensions,
proved in [8], Levsenko, Theorem 1, p. 255 and Theorem 1, p. 257.
Let a, β be limit numbers and p, q integers >̂ 0. Then put:

t β> ?) =

'a + p f or β < a

β + q f or a < β

a + p + q + I f or a = β.

ADDITION THEOREM (L). Let the hereditarily normal space R be
a union of two closed sets Rx and R2, having dimensions ind Rt ^
(X + p (respectively Ind R1 ^ a + p) and ind R2 <^ β + q (respectively
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Ind R2 ^ β + q). Then R has dimension ind R {respectively Ind R)
and the following inequality holds:

ind i?(Ind R) <: k(a, p, β, q) .

THEOREM5 1.1. Let X be a completely normal bicompactum (not
necessarily metrizable) having dimension ind X. Then X has
dimension Ind X and

Ind X ^ ^(ind X) .

Proof. If ind X < ω0 it is well known (Vedenisov [19] that
ind X — Ind X = φ (ind X). Suppose that ind X — β ^ ω0 and for
all 7 < β and for any completely normal bicompactum X having
ind X = 7 the theorem is proved. Let F and G be closed disjoint
subsets of X. Since X is a bicompactum, there exists a finite collec-
tion of open sets Ol9 , Os in X, such that:

0, n G = 0, ind FrO, ^Ύ,< β, U {0,: i = 1, , s} z> F ,

By the inductive assumption dimensions Ind FrOi exist and

Ind FrO, ^ φ (i

By property (e) from Lemma 1.1, φ(inά FrOt) < <p(indX). Since by
property (d) from Lemma 1.1 <p(β) is a limit number,

( 3 ) ^(ind FrO,) + ω0^ φ(β) .

From Theorem L and (3) it follows that

Ind (U {FrO,: i = 1, - - •, s}) ^ max {/(Ind FrO,): i = 1, ., s)

< max Mind FrO,): i = 1, , s} + ω0 ^

Since the set I) {FrO,: i = 1, , s} obviously contains a partition
between F and G, we have

Ind C ^ Ind U FrO, < φ(β) . Π

COROLLARY 1.1. For any completely normal bicompactum (not
necessarily metrizable) X having dimension ind X, we have Ind X^

5 In [8] Theorem 2, p. 260 an upper bound for dimension Ind was also obtained,
however it is less exact for completely normal bicompacta.
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Proof. Let us suppose that ind X < ψ (Ind X); then by defini-
tion of the function φ, <p(ind X) < Ind X which contradicts Theorem
1.1. D

COROLLARY 1.2. Let X be a completely normal bicompactum
{not necessarily metrizable). Then

(a) if ind X is an invariant number we have ind X = Ind X.
Let a be an invariant number, then
(b) If Ind X = a + 1, then ind X = Ind X.
(c) //Ind X = a, then ind X = Ind X.

Proof, (a) follows from Theorem 1.1.
(b) If ind X tί a, then <p(ind X) ^ <p(a) = α, by property (e) of

Lemma 1.1, and consequently, by Theorem 1.1 IndXr^α, which
contradicts our condition. Therefore, i n d X = a + 1.

(c) If i n d X < α, then by virtue of property (e) of Lemma 1.1,
φ{\nAX) < a. Then by Theorem 1.1 I n d X < α , which contradicts
the condition. Hence ind X = a. Π

THEOREM 1.2. For any countable ordinal number β < oolf there
exists a weakly countable dimensional6 compactum Xβ, such that

β = β,

THEOREM 1.2'. For any ordinal number β < ωu there exists a
weakly-countable dimensional compactum Yβ such that Ind Yβ=φ(β),
ind Yβ = β.

Theorem 1.2' follows [from Theorem 1.2, since ψ°φ(β) = β by
Lemma 1.1 (n). We can set in Theorem 1.2' Yβ = Xψ{β). Therefore,
we shall prove only Theorem 1.2.

Theorem 1.2 and Corollary 1.1 show that the function ψ posses-
ses properties (i) and (ii). Theorem 1.2' and Theorem 1.1 show that
the function φ possesses properties (iii), (iv). We restrict our
investigation to the field of compact spaces because every separable
space X is contained in a compactum K such that ind K — ind X;
Ind K = Ind X (see [10], Luxemburg).

Problem. Let α, β be two ordinal numbers. Under what con-
ditions does there exist a compactum X such that

( 4) ind X = α, Ind X = βl
6 A space is called weakly countable dimensional if it is a union of a countable

number of its closed finite dimensional'subsets. In this work by finite dimensional
space we mean a space with finite dimension dim.
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From Theorem 1.1 it follows that the condition

(5) a ^ β ^ φ{a) < ω1 .

is necessary. Is this condition sufficient? For this it is necessary

and sufficient to prove that for any a < ω1 there exists a com-

pactum Ya such that

( 6) Ind Ya = ind Ya = a .

Indeed, by Theorem 1.2 there exists a compact Z such that

( 7 ) Ind Z = β, ind Z =

Let α satisfy the condition (5), then by properties (n), (j) of Lemma

1.1

(8) φ(β) ̂  ψoφ(a) = a .

Put X= YaΌZ, Ya(λZ= 0 . Then, by virtue of (6), (7) and (8),
the condition (4) holds.

We begin now to prove preliminary results for Theorem 1.2.

2* Systems of general position*

DEFINITION 2.1. A system of finite dimensional sets A = {Aμ:
μ e ̂ £r) is in general position (g. p.) if for any finite number of
indexes μω, •••, μlk) of ^/S we have either

dim Π {AμU): i = 1, , k) ̂  max {dim Aμω: i = 1, , k} — (fc — 1)

or

n{A^(<):i = l, •••,&}= 0 .

We shall write A is (g. p.) if A is in general position.
In this section we consider A — {Aμ: μ 6 ̂ } to be a locally

countable system of closed sets in a finite dimensional space X, such
that l e i .

LEMMA 2.1. Let F= {Fu:ve^4^} be a locally countable system
of closed sets in X, such that for every veΛ" the system A(v) = A{J
{Fu} is g. p. Then, for the set φ = U {F»: v e Λ^} the system B =
A U M is g.p.

Proof. Let Aμω, >",Aμlk) be a finite subsystem of A. Since
A(y) is g.p., for every ve .y f we have

dim (Π {AμU): i = 1, , k) Π i^) ^ max {dim AμU), dim

i = 1, •••, k) -k
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if Fv Π n {AμU): i = 1, , k) Φ 0 . Since

Π { A μ ι t ) : i = l, . . . , k } Π φ = {J{f){AμU):i = 1 , •• ,

and the closed sets

: i = 1, , A?}, v 6

form a locally countable system, then by virtue of the sum-theorem
for dim we have:

dim{n{AμU ): i = 1, , k}Πφ} ̂  sup {dim {n{AμU): ί = 1, •••,&}

^ sup {max {dim AμU)9 dim 2<V. v e ^/^, ΓΊ {Aμ(ί): i = 1, , fc}

n F V =* 0} - &}

^ max {dim A^(<), dim φ: ί = 1, — , k} — k

if φ Π Π {Aμ^: ί = 1, , k] Φ 0 . Π

LEMMA 2.2. Let Fa UaX, where F is closed and U is open
in X, and let A be a locally countable system of sets such that A
is g.p. // U intersects no more than a countable number of elements
of the system A, then there exists an open set W, such that

(1) FaWdWdU

and

(2) the system A U {FrW} is g.p.

Proof. Let C be a subsystem of the system A, consisting of
all sets intersecting U, and let D be a system consisting of all
intersections of finite collection sets in C. Since, by hypothesis, the
system C is no more than countable, the system D is also no more
than countable. Then, see [14] Morita, there exists an open set W
such that condition (1) holds and

( 3 ) dim (FrWf) L) ^ dim L - 1 for L e D .

Let Aμω, , Aμ(k) be a finite collection of elements of A such that
L = n {AμU): i = 1, ••-,&}. Then, from property (3), it follows that

dim FrWΠ Π {Aμ{i): i = 1, , fc} ̂  dim n {Aμ(<): i = 1, , k} - 1

<; max {dim FrTF, dim Aμit): i = 1, , k} — k . •

LEMMA 2.3. The assertion of Lemma 2.2 is true without the
assumption that U intersects no more than a countable number of
elements of the system A.
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Proof. Let %S = {Uβ:βeB} be a locally finite open covering
of X, such that every element UβeU intersects no more than a
countable number of elements of A and

(4) if UβΓ\FΦ 0 then Uβ(zU, βeB .

Let F = {Fβ:βeB} be a combinatorial refinement7 of the covering
^% and let i^ be closed for every βeB. Then, by Lemma 2.2 for
any /SeJB there exists a set T^ such that

(5) FβdWβC:Wβ(zUβ

and the system

(6) A(β) = A U {FrTF,} is g.p.

We set W= U{TF̂ : WβΓ\Fφ 0;βeB}. From properties (5), (6) it
follows that FaWaWaU. Since f^ is locally finite and (5) is
true it follows that

FrWczH= Ό{FrWβ:βeB} .

From Lemma 2.1 and (6) it follows that the system A U {H} is g.p.
Consequently, A U {FrW} is g.p.

PROPOSITION 2.1. Lei Z7 be an open covering of a space X.
Then there exists a locally finite open covering W — {W»:veN} of
X, which is a refinement of U, and such that

( 7) The system B = A U {FrWv: v e ̂ } is g.p.
(8) dimFrWv<dimX.

Proof. Let V = {Vv: v e ̂ K) be a locally finite open refinement
of U, and F = {Fv: v e <yΓ) be a combinatorial closed refinement of
V. We can suppose that the set of indexes ^V is well ordered.
We shall construct by induction open sets Wv such that properties
(7), (8) hold and

(9) FVCWVCLWVC:VV f o r v e ^ .

Let v = 0. Then by Lemma 2.3 there exists an open set Wo satisfy-
ing condition (2) for W = Wo and condition (9) for v = 0. Suppose
that for all v < v0 we have constructed sets W» satisfying condition
(9) and such that the system A(v) = A U {FrWv>\ v' < v\ is g.p. Then,
obviously, the system

C = A U {FrW,: v < v0) is g.p.

i.e. Fβczϋβ for every βeB.
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Since A is locally countable and W is a locally finite system, C is
locally countable. By Lemma 2.3 (we now set A — C) there exists
an open set WVQ such that the system A U {FrWv: v <; v0} is g.p.
Hence, sets Wv satisfying condition (7) have been constructed. Since
XeA, condition (8) follows from (7). •

COROLLARY 2.1. Let ^ , i == 1, 2, , be a countable collection
of open coverings of X. Then there exist locally finite open cover-
ings Ti = {Vμ\ μ 6 Λ€) such that:

( i ) Ψl is a refinement of ^
(ii) The system A U {Fr Vι

μ: i = 1, 2, , μ e ̂ £\ is g.p.

Proof. We can construct the coverings Yl by induction, using
Proposition 2.1. •

COROLLARY 2.2. Every finite dimensional space X has a σ-
locally finite open basis with boundaries in general position and
having dimension < dim X.

Proof. Let ^ be a covering of mesh^ 8 < 1/i. Then we obtain
our assertion using Corollary 2.1. •

We denote by dk(X) the greatest lower bound of all numbers
ε such that there exists an open covering U(e) of X with order
U(ε) ̂  k and mesh U(ε) < ε. The number dk(X) is called the kth-
coefficient of Urysohn of X

COROLLARY 2.3. Let {^: i = 1, 2, •} be a countable collection
of coverings of X and let {εj be a sequence of positive numbers.
Then there exist closed sets CtCzX such that

( i ) the system A U {Cέ: i = 1, 2, •} is g.p.
(ii) the set X\Ct is a union of disjoint open sets with dia-

meter < et such that each of them is contained in some set Ua e ^ .
(iii) dim Ct ^ dim X - 1.
(iv)

Proof. Let ^ ^ be an open refinement of ^ and let mesh
< εJ2, then by Corollary 2.1 there exist locally finite open

coverings of X %, = {FJ: v 6 ̂ } such that:

5*7 is a refinement of 2^< and ̂ , mesh 5*7 < εJ2,
( } system 5 = A[J {FrV -.ve^, i = 1, 2, ...}

is g.p. Put
8 i.e., diameter U < 1/i for any
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(11) C , = \

Consequently applying Lemma 2.1 we obtain that the system i U
{Ci. i^k) is g.p. for each k = 1, 2, . Therefore, property (i)
also holds. Property (ii) follows from (10), (11). Then, property
(iii) follows from (i), because XeA, and X Γi C* = C,. Property
(iv) follows from (ii). •

LEMMA 2.4. Let F = {2 :̂ μ e ^^} be a locally finite collection
of closed sets in space X and let ^ = {Uμ:μe^t} be a collection
of open sets, such that

( i ) UμΏ, Fμ for any μ e Λ .
Then there exists a collection Ύ/^ = {Wμ:μe^^} of open sets such
that

(ii) Fμ<zWμa WμaUμ(μe^e).
(iii) I/n {FμU): i = 1, - , fc} = 0 ίftew n {WW i = 1, , fc} =

Proof Since a collection ί 7 is locally finite, we can select for
every point x e X an open set 0 , 9 a; such that:

(12) If x $ Fμ, then Ox Γ\ Fμ = 0 .

Since X is a metric space and, consequently, paracompact, we can
find an open covering Γ of a space X such that Γ is a star
refinement of the covering {OxixeX}. We consider a system of
sets: {Vμ = St(Fμ, T): μe^}\ We shall prove that

(13) If n{2^(i,: i = 1, , k} = 0 then Π{Vμ{i): i = 1, , k} ,

Suppose that Π {Vμ{i): i = 1, , k) Φ 0 and xe f]{VμH): i = l, - , k).
Then the set st(x, V) is contained in the open set Oy for some point
y eY. Since xe f] {Vμ{i): i = 1, ••-,&} then

βί(α?, 3*H Π JP^K, = ^ 0 for i = 1, - , k .

Consequently, 0]/ Π FμU) Φ 0 and by v i r t u e of (12)

y e Γ\{Fμ{i):i = 1 , • • • , & } .

This proves property (13). Let us take for every μe^£ a set Wμ

such that T̂ * c Vμ and such that property (ii) holds. Then property
(iii) follows from (13). •

LEMMA 2.5. Let F = {Fμ: μ e ^ \ be a locally finite collection
9 By st(A, B), where AcX, and B is a system of sets in X, we denote a star of a

set A with respect to a system B.
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of dosed sets of order r in a space X and ^ = {Uμ: ]«e^#} be a
collection of open sets such that Fμc:Uμ for μe^f. Then there
exist closed sets C<i = 1, , r such that

( i ) Every set G^ — 1, , r is a union of closed sets {Cf: v e
^ } forming a discrete system in X, and every set Cj is contained
in some set Uμe%f.

( ϋ ) UJUiC* = U{Fμ:μ

Proof We shall prove the lemma by induction on r. Let Φ =
U{Fμ: μe^}. For r = 1 the lemma is true because we can con-
sider Cλ~Φ. Assume that the lemma has been proved for (r — 1)
and W= {Wμ: μe^f} be a collection of open sets, satisfying the
hypothesis of Lemma 2.4. Obviously,

(14) The system W(l) = {Wμ: μe^e} has order ^ r .

Moreover, the system W(2) = {FrWμ: μe^f} has an order <: r — 1
on Φ. Indeed, let xeΦ Π Π {FrWμ(i): ί = 1, , r) then there exists
such index μ{0) that xe Wμm{\Φ. Therefore xe Π{WμU): i=0, •••, r)
which contradicts the condition (14). By Lemma 2.4 we can con-
struct a locally finite open collection of sets Q = {Qμ: μ e ̂ \ such
that

(15) Q has an order ^ r — 1 on Φ and

FrWμc.QμaUμ(μe^). For any μ we consider an open set Pμ

such that

(16) Fr WμciPμczPμ(zQμciUμ.

Set

(17) Cχ = Φ\\J{Pμ:μe^t}

(18) A - (Wu n Φ)\ U {Pμ: μ e Λ€) .

Then from conditions (17), (18) it follows that

(19) C, = U UV ^ 6 ̂ } .

Assume that the set ^ is well ordered and put

(20) C; = Dμ\U {D>: v < μ} .

By condition (16) we have WV{J Pv= WVU P,, then, by virtue of

(18), (20)

(21) C; = Dμ\{\J{Wu: v < μ) U {Pμ: μ

\ U {T7V U P>: v < jc€> U (P^: ̂
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From conditions (20), (21) it follows that sets Cμ are closed and
disjoint. Since CμaDμc: Wμ the system {Cμ: μ e ^£] is locally finite
and, consequently, discrete. Since by virtue of (19), (20)

U {Cμ: μ e ^ T } = U {Dμ: μ e ^ } = Ct

the set d satisfies the condition (i) for i = 1. From (15), (16) it
follows that the system P = {Pμ: μ e ^ \ has order ^ r — 1 on Φ.
Applying inductive assumption to locally finite closed system P
and open system Q = {Qμ: μ e^tf} we can find closed sets C2, , Cr

satisfying conditions (i) (since Qμ c Uμ) and the following condition:

U {C,: i = 2, - - , r} = U {Pμ Π Φ: μ e.

By property (17) we obtain the equality UίC*: i = 1, , r} = Φ. Π

COROLLARY 2.4. Le£ Ϊ7 6e an open covering of a space X, and
ord U 5̂  r. Γfce^ ίfeere exists a closed refinement of the covering
U, consisting of r discrete systems.

Proof Using paracompactness of a space X we can get closed
locally finite combinatorial refinement F of the covering U with
order F ^ r. Then, our corollary follows from Lemma 2.5. •

COROLLARY 2.5. For a space X the following conditions are
equivalent:

(a) dk(X)<ε.
(b) X is a union of k closed sets C*(l ^ i ^ k) such that every

set Ci is a union of closed sets {Cμ: μ e ^£\ forming a discrete collec-
tion in X, and diameter Cμ < ε for each pair i, μ.

(c) X is a union of k closed sets C^l ^ ί ^ k) such that d^C^) <
ε for every i ^ k.

(d) X is a union of k open sets Z7<(1 ̂  i ^ k) such that dx{ Ut) <
ε for each i ^ k.

Proof (a) => (b). Let dk(X) < ε, then there exists an open
covering U with mesh U < ε and order U ^ k. Then, using Corol-
lary 2.4 we obtain assertion (b).

(b) => (c). For proving it is sufficient to note that sets Cμ are
open in C*.

(c) => (d). By virtue of (c) for each i ^ k there exists a cover-
ing Yl — {Cμ: μ e ^£) where sets Cμ are open in Ct and disjoint, and
have the diameter < ε. Therefore the collection Tt is discrete in
X. Since X is paracompact, we can find open sets Uμμ e ^ such
that
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Cί c U;, diam Uj < ε, Uι

μ Π Uι

μ> = φ for μ Φμ' .

Put Ui= \J{Uμi μe^f). Then, the assertion (d) clearly holds.
Since a union of ft system of order <; 1 has an order <; ft, we

obtain the implication (d) => (a). •

3* The Main Lemma*

LEMMA 3.1 (The Main Lemma). Let S = {S^ i — 1, 2, •} δe α
countable locally finite system of closed sets in n-dimensional space
X and let S be g.p, and %f = {Uμ: μe^} be an arbitrary open
covering of X. Let also dim St S n — 1, i = 1, 2, , ft <; w — 1, w =
2, 3, 4, , D(w, ft) = [w/(ft + 1)], ε > 0 and let {Fr, Gr) (r = 1, . - , D(n,
ft)) be a system of pairs of disjoint closed sets in X such that for
any i and for r ^ D(n, ft)

(1) either SiΓιFr=0 or Si D Gr = 0.
ίfeere exist sets Drl ^ r ^ JD(^, ft) sî c

( 2 ) Dr is a partition between Fr and Gr.
(3) For ίfce set R = Π {J5r: l ^ r ^ D O t , ft)}

(4) dimi2 ^ dimX - D(w, ft).
(5) Tfee sβί R f] Si is a union of ft closed sets L\y , L\ such

that every set L) is a union of closed sets forming a discrete system,
and every element of this system is contained in some set Uμe^.

Proof. By virtue of Corollary 2.3 we can find closed sets Ci'j, i —
1, 2, , such that for any pair (i, j)

(6) the system S' = SU {C/: i, j = 1, 2, •} is g.p.
(7) d i m C / ^ Λ - 1 .
(8) d^XYJΪXe.
(9) The set X\Cj is a union of collection 2?/ = {E7/α: α e i ^ } of

disjoint open sets and each Z7/α is contained in some element Uμe^.
Let us consider a system of closed sets

(10) & = {Pi-. Pi^SiΠn {C/: j = 1, 2, •., ft}} .

Since

(11) SAP* = U {SAC/: i = 1, . . , fc} c U {X\C/: i = 1, • -, ft}

by virtue of (8) and Corollary 2.5

(12) dk(Sτ\Pi) < ε .

By virtue of (6), (7), (10) we have
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dim n {P,(.,: 0 ^ m S D(n, k)}

= dim n {Siim) Π Π {C/(.>: j = 1, - , &}: 0 ^ m ^ D(n, fc)}

<; max {dim Si(m)9 dim C/(m): 0 <; m 5̂  Z)(w, &)}

- (Z?(Λ, k) + 1)(A? + 1) + 1

= (n - 1) - (D(n, k) + l)(fc + 1) + 1 < n

Consequently,

(13) The order of & ^ &(nf k) .

Since the system S is locally finite and Pt c St the system ^ is
also locally finite. By virtue of (1) there exist such open sets OtZD
Pt that

(14) either 0, D Fr = 0 or 0, ΓΊ G> = 0 1 ̂  r ^ D(n, Λ) .

By Lemma 2.5 there exist D{n,k) closed sets C1? -- ,Cmntk) such
that

(15) U {Cr: r = 1, , J9(n, fc)} = P = U {P<: ί = 1, 2, - •} .

(16) Every set Cr is a union of a discrete collection of closed sets
{C> : j«6^^} and each set C/ is contained in some set Ot.

From (14) and (16) it follows that

(17) Either Cr

μ n Fr = 0 or Cf Π Gr = 0 for r ^ D(n, k) .

Put F: = Fr\J{Cf:Cr

μΠFrΦ 0 , μe^r], G'r = GrU{Cr

μ: Cr

μf]Fτ = 0 ,
tr}- Obviously, 2<V and Ĝ  are disjoint closed sets and

(18) F; U σ; 3 c r

(19) F ^ F , , G;=>G

Therefore, we can find sets Dr r ^ D(w, fc) such that i) r is a partition
between F r ' and G'r and

(20) dim Π (Dr: r = 1, , 2?(Λ, ft)} ̂  dim X - D(w, ft) .

Put

(21) Λ = n{D/.r = l, ...,Z)(n ffc)}.

Then condition (4) follows from (21) and (20). The condition (2)
follows from (19). From (18) it follows that DrΓ)Cr= 0 . Con-
sequently, by virtue of (15), (21)
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R n P = n tfV r = 1, • , D(it, fc)}

Π(U{C r:r = l, -. ,D(Λ,fc)})= 0 .

Hence

(22) RnSi

and by virtue of (12) the condition (3) is satisfied. By virtue of
(9), (11), (22)

R n s , c u [ULnΛ n s,: EteeB/,j = 1, --, &}

and collection 3^ = {UL Π Λ Π S<: Z7& e 5 / i = 1, , k} has an order
<ik and any element of TΓ is contained in some Uμ e <%f. By virtue
of Corollary 2.4 we now obtain property (5). •

LEMMA 3.2. Let VaZ and V = KU U {Rt: i = 1, 2, •},

ί/fce seίs i?i are open-closed in V, K is a closed set in Z and
( i ) RinRj = RiΓiK= 0 for iΦ j.

If
( i i ) \imi^ood1(Ri) = 0

then for any point xeK there is an arbitrary small neighborhood
Ox in Z such that

(iii) FrOx <zZ\U{R,: i = 1, 2, -}.

Proof. Let ε > 0. By virtue of (i) and (ii) there exist such
disjoint open in V sets Riai = 1, 2, , a e Ai so that Rt = U {ϋ?ία:
α e A}, diami? ία < εi9 lim^^Si = 0. Let N be an integer such that
for i > Net < e/4. Then there exists a number <?(0 < <? < e/4) such
that the neighborhood Oδ(x)10 doesn't intersect Rt for i < N. Put

(24) Ox = Oδ(x) U U {Ria: Rίa Π O,(α;) Φ 0 , i = 1, 2, , α 6 A%) .

Obviously the diameter Ox ^ diam Oδ + 2 sup {diam i?ία: i = 1, 2, ,
a e AJ < e/2 + e/2 = ε. Since sets i?ία are disjoint property (iii)
follows from equality (24). •

LEMMA 3.3. Let a space Z have the representation:
( i ) Z = iΓ U U {14: jf = 1, , k, i = 1, 2, •} wfeβre K is a

finite dimensional closed set and
(ii) Sets L((i = 1, 2, •) are open-closed in Kj = KΌ \J{L{: i =

1, 2, •}, are open-closed in Kj = KU U {L{: i = l,2, •}, K f) L( =
Li ΠI4= 0 /or i ^ i\

(iii)
Then, if

For any set ^^aX by O${^) we denote a ^-neighborhood of the ~^in a space
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(iv) ind (Z\K) ^ α, a ^ ω0

we have
(v) ind Z ^ a + (k - 1).

Proof. By virtue of (iv) it is sufficient to prove that

(25) ind, Z ^ a + (Jfc - 1) if x e K .

We shall prove this inequality by induction on k. Suppose that
k — 1, then by Lemma 3.2 there is an arbitrary small neighborhood
of x with boundary in K. Therefore, by virtue of finite dimen-
sionality of K we obtain (25). Suppose now k > 1, and ε > 0. Then
by Lemma 3.2 for every xeK there exists a neighborhood 0x3x
of the diameter < ε such that FrOx czZ\\J {Lϊ: i = 1, 2, •} = Zx.
(We consider that in Lemma 3.2 L\ = Rt.) Since Z1czK U U {L{: j=
1, , k — 1, i — 1, 2, •}, by inductive assumption we obtain
ind Zx ^ α + (k — 2). Consequently, ind ίYO# ^ α + (A; — 2). Hence,
the inequality (25) and Lemma 3.3 are proved. •

LEMMA 3.4. Let a space Z have the representation

where K is a finite dimensional set, and sets θ* are open-closed in
Z and disjoint. If l i m ^ dk(θt) = 0, K = Z\ U {β/. i = 1, 2, •}
ind ^ ^ α + (A; — 1) where a ^ sup {ind 6^: i = 1, 2, •}.

Proof. Let (4(6^) < ε* and lim^^ e4 = 0 then by Corollary 2.5
there exist closed sets L{j = 1, •••,&, such that d^Li) < εif U {Ly.
j = 1, , fc} = ©i(i = 1, 2, - -). Therefore Z=KU U {I/t:i = l, 2 ,
^# = χf ••-,&}. Obviously, all conditions of Lemma 3.3 are satisfied.
Consequently Lemma 3.4 follows from Lemma 3.3. •

4* Compacta Rβ+

DEFINITION 4.1. Let {Yμ:μe^t} be a collection of spaces and
{p} be some point. Then by ω(p, Yμ: μ 6 Λ€) we denote a space

U U {Γ :̂ μe^f}, Yμ Π Yμ> = YμΠ{p}= 0 for μ Φ μ'

where in set U {Yμ: μe^t} the topology is defined as in a discrete
union of spaces Yμ, and in the point {p} it is defined by the open
basis:

ω(p, Yμ: μ e ^)\U {YμH): i = 1,2, ••-,*}, μ{i)eΛT, k = 1, 2, . .

We note, that if the set ^£ is countable, and Yμ are compact
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metric spaces, then ω(p, Yμ: μe ^£) is also a compact metric space.

LEMMA 4.0. // the set ^ is countable, then for any metric on
the set ω(Yμ: μe^f) and any ε > 0 the inequality diam Yμ < ε
holds for all but only finitely many μe^f.

The lemma is evident.

DEFINITION 4.2. (See [14] Luxemburg). Let (An+1, Bn+1\ - ,
(An+k, Bn+k) be a fixed collection of pairs of opposite faces in Eucli-
dean cube In+k. If Cn+i is a partition between An+i and Bn+i i =
1, , k and

dim Π {Cn+i: i = 1, , k) = n

then the set Q = Γ\ {Cn+i: i = 1, , k} is called ^-dimensional
pseudocube. (We note that Q is always of dimension ^ n, Hurewicz
([4], p. 40).) The rest n pairs Ai9 Bt of opposite faces in cube In+k

are called improper faces of pseudocube. The intersections F€ =
Ai n θ , Gi = Bid Q(l ̂  i ^ n) are called opposite faces of the
pseudocube Q.

LEMMA 4.1. The product of n-dimensional and k-dimensional
pseudocubes is (n + k) dimensional pseudocube.

The lemma is evident.

LEMMA 4.2. Let Qn be an n-dimensional pseudocube and (Fit

Gi)i = 1, , ϊ, I <; n are l-pairs of its opposite faces. Then for any
collection of partitions C* between these pairs

( i ) dim Π {C,: i = 1, , 1} ̂  n - i.
( i i) // dim Π {C,: ΐ = 1, , 1} ̂  n - Z ίfee^ ίfee set R = Π {C,:

i = 1, , Z} is aw (w — i) dimensional pseudocube.

Proof. Let the pseudocube Q" has a representation

where sets Dn+j are partitions between opposite spaces of some
cube In+k. Let

A,nQn = Ft, Bt n Qn = Gif i = 1, - - , n

where Ai9 Bt are proper faces of the pseudocube Qn. Let Dt be a
partition between At and JB̂  in the cube In+k such that DiΓϊQn=Ci.
Then
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n { C , : i = l , •• , l } = Γ\{Di+n:j = l, •••,&}

The set R is an intersection of (fc + i) partitions between opposite
faces in cube JΛ+fc. Consequently d i m R ^ n + k — (k + l)^=n — I
(see Hurewicz [4] p. 40) and if also dim R<^n —I then R is a
pseudocube. Π

In this and in the next section by a we mean a limit ordinal
number or 0, and n = 0,lf2,

DEFINITION 4.3. We shall define for every ordinal number β<(*),
a class pβ consisting of compacta. Suppose that β is a finite
number, then pβ consists of all /5-dimensional pseudocubes. If β is
a limit number, then pβ consists of all compacta Rβ having the
following representation

Rβ = ω(pβ;Rr:<yeΓβ)

where pβ is an extra point, Rrepr and Γβ some cofinal subset in
φβ = {7:7 < β}. If β = J(β) + K(β), K(β)>0, then class ^ consists
of all compacta Rβ such that

In what follows Rβ will denote an element of class pβ. Let us
introduce some notations. In this and following sections we consider
a to be a limit number or 0 and n — 0, 1, 2, . If β — ξ + 1 then
put β — 1 = ξ. For every compactum i2α+w we have by definition:
Ra+n = Rax Rn for some Ra e |θα, Rn e pn. Obviously, Ra+n has the
representation:

(1) Ra+n = Bn\J\J{RrxRn:yeΓa}

where Γa is some cofinal subset in φa = {7: 7 < α}, and βΛ = {pα} x
i?w and pa is an extra point in Ra. Representation (1) we shall call
a standard representation of a compactum Ra+n-

DEFINITION 4.4. (See Smirnov [17].) For any β < ωί9 we define
a class of compacta ΐ[β. If β < ω0, then Π0 consists of all /3-
dimensional compacta. If β is a limit number, then Π0 consists
of all compacta X such that X = α>(p; Yr: Γ r 6 Πr: 7 < β) where p
is an extra point. Moreover, if β — J(β) + K(β), XβJlJ{β)9

Y^ϊίκ(β) then I x Yeΐ[β. Thus, for any /3 < ωl9 we have defined
the class Π^
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In [17], (Smirnov) it was proved, that for any β < ω0

(2) IndX^β iί Xeΐlβ.

LEMMA 4.3. Every compactum Rβ is contained in some com-
pactum XeJ[β.

Proof. Let YeJlβ, then from Definitions 4.3 and 4.4 it follows
that a discrete sum X = Y($Rβ is an element of ΐ[β. •

COROLLARY 4.1. ind Rβ <* Ind Rβ <; β.

Proof. It is directly derived from (2) and Lemma 4.3. Q

LEMMA 4.4. For any q-dimensional compactum K the following
inequality holds:

Ind Rβ x K <: Ind Rβ + q <; β + q .

Proof. Let β = a + n, then Rβ = Ra+n = Ra x Rn, Rβ x K =
#* x (i2» x JSΓ). Let l D i ? α a n d ! e Π* then by Definition 4.4 X x
CRn x K) e Πα+β s = dim i?w x K ̂  % + g. From property (2) it follows
that Ind (XxRnxK)<^cc + s<*a + n + q = β + q. Since, obvi-
ously Rβ X KdX x Rn x Kf Inά Rβ x K ^ β + q. •

Let (1) be a standard representation of a compactum Ra+n, then
by i we denote the natural homeomorphism i: Rn-> Rn.

LEMMA 4.5. Let (1) be a standard representation of a com-
pactum Ra+n and F be a closed subset in Ra+n such that F S ^ U U
{Rr x Cr: y 6 Γa)

(3 ) where Cr c Rn dim Cr <: k, k = — 1, 0, 1, .

Then for any pair of closed disjoint sets (A, A'), A{J A' aRn there
exists a partition D in compactum Ra+n between A and A' such that

(4) Dr\Rr x CydRr x c;

where C'r c Rn> dim Cf ̂  k - 1 for k ̂  1 α^rf Z> n i? r X Cr = 0 /or

Proof. Let Do be an arbitrary partition in Rn between i(A)
and i(A'), then there exist open in Rn sets C7 and V such that

(5) Rn\D0= UU V, A<zU, A'aV.
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Consequently, there exists a sequence of pairs of open sets Un, Vn

such that

4 c P . c l / , + 1 , A ' c 7 . c 7 , + 1 , U{Z7.:Λ = 1,2, •••}= U,

U { 7 . : * = 1,2, . . . }= V.

Let τ:N-+Γa be a bijective mapping of the set of all integers N
onto Γa. Then there exists a partition /)„ in Rn between i(Un) and
i(V») such that:

dim (Dn Π Cr(n)) ^ fc - 1 for Λ ̂  1 and dim Dn f] Cτ{n) = - 1
( } f or k ̂  0 .

We put

( 8 ) ΰ = A U U {Λr{., xfl.:w = l , 2 , . . . ) .

Then by virtue of (7)

Df]RrXCr = RrX (Dv-iσ) Π Cr) = Rr x C;

where C' = Dτ-iσ) Π Cr and dim Cϊ <^ k — 1 for & ̂  1 and C'r = 0
for fc ^ 0. By virtue of (5), (6), (8) D is a partition between A and
A' in Ra+n. •

LEMMA 4.6. // conditions of the Lemma 4.5 are satisfied, then
for the set F inάF ^ a + k for k^O and inάF <Ln for k < 0.

Proof We shall prove the lemma by induction on k. Suppose
k = — 1 or α = 0 then the assertion is evident. Let k ^ 0, α: ̂  α>0

and (A, Ar) be an arbitrary pair of disjoint closed sets in F. By
virtue of Lemma 4.5 there exists a partition D between An Rn

and A! Π Rn such that property (4) holds. Consequently, FΠ flc
Λ,U U{i?r x C r':7eΓα}, dimC/^A - 1 for & ̂  1 and flnFcϊ,
for & = 0. Therefore, by inductive assumption

( 9 ) Ind D n JP ̂  a + & - 1, or Ind D f] F ^ n .

Since .F is a compactum, there exists a finite collection of ordinal
numbers τ(l), , τ(s), s = 1, 2, such that for the set X = jpτ\ U
{Rru) x C r u ): i = 1, , s} we have

(10) The set D f] X is a partition in X between Af] X and
A' Π X Let Y = F \ X = UBrui x Cr(t), then from condition (3) and
Lemma 4.4 it follows that

Ind Y ^ max {Ind Rr{i) x Cr(<): i = 1, ••-,«}

^ max {γ(ί) + fc: ΐ = 1, , β} < α .
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Therefore, an arbitrary partition D' in Y between YΓ\A and YnA'
has the dimension IndD' < a. Since Xf] Y= 0 , l U Y = F, then
(F Π D) U D' is a partition in F between A and A', and

Ind (Df)F)UD' ^ max (Ind {D n î 7), Ind D') ^ α + & - 1

f or k ^ 1 ,

Ind (D n F) U £>' < α for k = 0 .

In any case Ind (D Π JP) U D' < a + fc. Π

LEMMA 4.7. Lei (i^, G<)i = 1, , n be a fixed system of pairs
of closed sets in a space 1 , ^ . 0 ^ = 0 . If for any partition Gi

between these pairs we have

(11)

then

(12)

(13)

]

for any k ^ n

.nd Π {Cii i =

k

Ind Π Ct ^

I n d X ^

1, ••-,%} ^

/3 + ^ — k

β + n.

Proof. Let inequality (12) be false. Then there exist partitions
Ck+u ''', Cn such that Ct separates Ft and Gι k + 1 t^lίkn and IndΠ
{Cii i = 1, , fc} < /9. This contradicts inequality (11). From pro-
perty (12) it follows that

Ind Ci ^ β + (n — 1) for every partition between i*\ and Gx.
Hence, inequality (13) holds. •

LEMMA 4.8. Let Rn be a pseudocube, and (Ai9 B^){i = 1, •••,&)
k ^ n be any system of its opposite faces. Consider a system of
pairs of closed subsets (AiXRβ, BiXRβ) in the compactum Rβ+nepβ+n,
Rβ+n = RβxRn β < (£>!. Then for any collection of partitions between
these pairs we have:

Ind Π {C<: i = 1, , k} ^ /5 + n - & .

We shall prove the lemma by induction on β. For β < ω0 our
assertion follows from Lemmas 4.1, 4.2. Suppose β = a + q ^ α>0,
<7 = o, 1, and for all 7 < β our lemma is proved. We can suppose
Rβ = Ra x Rg. Let A be a system of all opposite faces of pseudo-
cube Rn+q = RnxRq. Then the following system & = {AiXRq, Btx
Rq: i = 1, •••,&} is a subsystem of A. By virtue of Lemma 4.7 it
is sufficient to prove that for any collection {D^ i = 1, , n + q} of
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partitions in Rβ+n between distinct pairs of the system (X x Ra,
Y x Ra), (X, Y)eA we have

(14) Ind Π {A: i = 1, , n + q} ̂  a .

Let Rn+q U U {Rγ x Rn+q' Ύ e ^«} ^ e a standard representation of a
compactum Rβ+n = Ra+n+q. Let yeΓa then

#r x Λ +ff = Rr+n+g c Rβ+n, Π {A: * = 1, , n + β} Π Ra+n+q c Π
{D<: i = 1, , n + g}. Since for every ί ^ n + q the set JD, n i2r+w+g
is a partition between a pair (X x Rr, Y x i2r), (X, 7 ) e A by
inductive assumption we obtain Ind Γl {A Π Rr+n+q: i — 1, , n + q}^
7. Since sup {y: 7 e Γa} = a we obtain inequality (14). •

The following lemma is evident.

LEMMA 4.9. Let Y = α>(p; F,: i = 1, 2, •) ίfeβ^

Ind F = sup {Ind F<: i = 1, 2, •}

ind F = sup {ind Yt: i = 1, 2 •} .

COROLLARY 4.2. i^or α̂ /̂ β < o)x we have Ind ϋĴ  = ŝ.

We shall prove the corollary by induction of β. Suppose β is
nonlimit ordinal number, then Rβ = Ra x Rn{n = 1, 2, •)• Let (A,
ΰ) be a pair of opposite faces of pseudocube Rn. Then by Lemma
4.8 for any partition C between A x Ra and B x Ra in ΐ ^ Ind C ^
a + n — 1. Consequently, lnάRβ^ β. The inequality lnάRβ^β
follows from Corollary 4.1. Let β be a limit number, then by
definition Rβ = ω(pβ: β eΓβ) and our assertion follows from the in-
ductive assumption and Lemma 4.9. •

LEMMA 4.10. Every compactum Rβ e pβ is weakly countable di-
mensional.

We shall prove this lemma by induction on β. If β < co0, then
our lemma is evident. Suppose all compacta Rr are countable
dimensional for y < β. If β is the limit number, then Rβ = co(pβ:
Rr:yeΓβ). Since β < ω19 Γβ is a countable set. Consequently, Rβ

is a union of countable number of its weakly-countable dimensional
closed subsets. Therefore, Rβ is also countable dimensional. If β—
a + n, then Rβ — Ra x Rn and Ra is weakly countable dimensional
by inductive assumption. Consequently, Rβ is also weakly countable
dimensional. Π

5* The proof of Theorem 1*2* First we introduce some
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notations. For k = 0, 1, 2, , put m{k) — k — [k/2]. Let Rn be a
pseudocube. Let us number all pairs of its opposite faces. Then
by A(s, t, Rn) we denote a subsystem of a system of all pairs of
opposite faces such that A(s, t, Rn) contains all pairs with numbers
s, , t(s ̂  t). By definition the system A{s, t, Rn) x Ra consists of
all pairs (F x Ra, G x Ra) where (F, G) e A(s, t, Rn)

n. Let A be a
system of pairs of sets, then for the set X, A A X denotes the
system of pairs (F Π X, G Π X) where (Ff G)eA. In this section
we consider Γa = {j: y < a}.

PROPOSITION 5.1. Let Ra+n = Ra x Rn, n ̂  2. Then for any
system A(l, m, Rn), m = m(n), there exists a eompactum La+m c Ra+n

such that
( i ) Ind La+m <^ a + m.
(ii) For any collection of partitions D^i = 1, , m) between

the pairs of the system A(l, m, Rn) x Ra we have:
(iii) ind La+m = ψ{a Λ- m).

Ind Π {Dii ί = 1, , m} Γί Lα+m ^ a

We note, that from Lemma 4.7 and conditions (i), (ii) it follows
that Ind La+m = a + m. We shall prove the proposition by induction
on a. Suppose a = 0 and Dw+1, , Dn is a collection of partitions
between the pairs of the system A(m + 1, n, Rn) such that for the
set Lm — Π {ΰ»+i: ΐ = 1, , n — m} we have dim Lm = m. Then by
Lemma 4.2 Lw is m-dimensional pseudocube and A{1, m, Rn) Π Lm is
a system of pairs of its opposite faces. Thus property (ii) follows
from Lemma 4.2, and properties (i), (iii) are evident.

Suppose a = a0 ̂  α)0 and for any a < a0 our proposition holds.
Let ΓaaΓa be a subset of Γa consisting of all ordinal numbers 7
with

(1) K(j)>m.
Let f:N->Γa be a bisection of the set of all integers n > 0 onto
Γα. Further, since σ-locally finite open base in a compact space is
obviously countable, by virtue of Corollary 2.2 we obtain an open
basis T - {Vk: k = 1, 2, •} in eompactum Rn such that

(2) άimFrVk^n-l.
(3 ) the system {FrVk: k = 1, 2, •} is g.p.

Obviously we can also require the following condition: either Vk Γ)
F<= 0 or Vk Π G, = 0 for (F<f G«) e A(l, Λ, i?J, (A? = 1, 2, . . ) . If
we apply Lemma 3.1 to the system Sp = {Vk: k £ p}, k = 1, ε = 1/p,
we obtain for any peN a closed set Cpci?w such that

(4) Cp is an intersection of [n/2] partitions between pairs of

11 For « = 0 w e consider that ^4(1, m, Rn) x Ra = A(l, my Rn).
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the system A{m + 1, n, Rn) in Rn.
( 5 ) dx(Cp n FrVk) < 1/p (1 ^ k ^ p).
( 6) dim Cp^m = n - [n/2].

From conditions (4), (6) and Lemma 4.2 it follows that Cp is an m-
dimensional pseudocube. Let Ra+n = Rn U U {i?r x #*: τ e Γ α } be a
standard representation of compactum Ra+n. Put

( 7 ) Sα+Λ = ^ U U {Λ/(p) x Cp: p = 1, 2, - -} aRa+n.
We set /(/(p)) = ξP9 K(f(p)) = s(p), m + s(p) = w(p). Then by virtue
of (1)

( 8 ) m ^ [n(p)/2], m ^ w(p) - [n(p)/2] = m(n(p))
and Jf?/(p) x Cpeρf(p)+m = pζp+n{p). Let 22/(p) = Rξp x Sβ ( p ). By virtue
of Lemma 4.1 the set Ralp) x Cp is ^(^)-dimensional pseudocube. If
A(l, «(p), Λ.(p)) - {A/f By: i ^ *(p), A(l, m, Cp) = {F,, G,: i ^ m}, then
obviously

^(p), i2.(p) x Cp) - {Ay x Cp, Bs x Cp, Λ.(p)

x Fi9 Rs(p) xGt:i<L m, j ^ s(p)} .

Let us number elements of the system A(l, w(p), iϊ, (p) x Cp) by such
a way that a pair jββ(p) x Ft9 R8{p) x Gi gets a number i(i ^ m).
Let us apply inductive assumption to the system of -pairs A(l, m(p),
-Bβ(p) x Cp) and to the compactum Rf{p) x Cp e pζp+n{p) where m(p) =
n(p) — [n(p)/2] = m(n(p)). Then there exists a compactum L f 2 ) + m ( p ) c
JB / ( P ) X C P C R α + n such that:

( i p ) Ind Lζp+m{p) ^ξp + m(p).
(iip) For any collection of partitions D?(i — 1, , m(p)) in a

compactum Rζp+n{p) = Rf{p) x Cp = Rξp x (R8{p) x Cj,) between pairs
of the system A(l, m(p), J2β(p) x Cp) x Rζp we have:

Ind (L, p + m ( p ) ίΊ Π {Dt. i = 1, , m(p)}) ^ f, .

(iiip) ind L f p + w ( p ) = ^(f p + m(p))
and Lζp+m{p) c 22/(p) x Cp = Rζp+n{p) c i2β+H. We put

( 9 ) L α + w = 5 * U U {Lξp+m{p): p = 1,2, . .} <zSα+nczRα+n .

By virtue of (6), (7) and Lemma 4.6 Ind Lα+m ^ Ind Sα+m <^ α + m.
Hence, the condition (i) holds. Let us prove property (ii). Let
Di(i ^ m) be a collection of partitions between the pairs of a system
A(l, m, Rn) x Rα and p be an arbitrary integer > 0. By virtue of
chosen numeration of elements of the system A(l, m, R8{p) x Cp) we
have

(10) A(l, m, JB.(P) x Cp) x i2 f p = (A(l, m, ΛJ x Λβ) Λ (Λ/(,, x Cp) .

Put
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(11) D? = Dtn Rflp) x Cp c La+m .

Then Df is a partition in compactum Rf{p) x Cp between a pair
A(i9 i, R8{p) x Cp) x Rξp. By virtue of (8) m ^ m(p) = n(p)~ [n(p)/2].
Therefore, by Lemma 4.7 and condition (iip)

(12) Ind (n {Dfi i = 1, , m} Π Lξp+m{p)) ^ξp + (m(p) - m) .

Since & + (m(p) - m) = J(τ) + (ϋΓ(τ) + m) - [(#(7) + m)/2] - m =
J(7) + JK(7) + [(J5Γ(7) + m)/2] for 7 = /(p) we have sup {fF + (m(p) -
m): peN} = sup {J(τ) + ^(7) + [(K(y) + m)/2]: 7 < α, #(7) > m} - α.
Therefore by virtue of conditions (11), (12), property (ii) holds. We
have noted above that from properties (i), (ii) follows the equality
Ind£rα+» = a + m. Then, by virtue of Corollary 1.1

(13) ind La+m ^ ψ{a + ra) .

Therefore, we have only to prove inequality:

(14) ind, La+m ^ ψ(a + m)

for any x e La+m. If x e Lζp+m{p) c La+m then inequality (14) follows
from the inductive assumption. Indeed, by virtue of Lemma 1.1
(i) Ψ(ξP + m(p)) ^ Ψ(« + w&) and since Lζp+m{p) is obviously open in
La+m, inequality (14) follows from (iiip). Therefore, by virtue of (9)
it is sufficient to prove inequality (14) for xeRn. Let us consider
an open in La+m set U = U(k, q), where

(15) U = Vk x (ββ\U {Λ/(p): P = 1, , ί}).Π La+m, Vk e T .

Since the system of open sets {U(k, q): k, 1 = 1, 2, •} forms a basis
in any point x e Rn it is sufficient to prove that

(16) ind {FT U f] La+m) < ψ{a + m) .

By virtue of (9), (7) and (15) we have

FT U Π La+m c (FT Vk x Ra) n La+m aϊίn{J

U{(FτVk x RaΠCpx Rfw) Π L ί2,+w(P): P = 1, 2, - ••} .

Further, we obviously can consider that metric p in a space Ra+n-
Ra x Rn is defined by the equality

p((x, y), (x\ y')) = pfa, xf) + ^ ( ^ y'), x, x'eRat y, y' eRn,

where px and p2 are metrics in Ra and i?Λ respectively. Therefore,
by virtue of the equality FτVk x i?α Π Cp x Rf{p) = (FτVk Π Cp) x
JB/(P) we have
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xRaf)Cpx RM) n L.f+uW) £ d^FrV, x Ra ίl Cp X R,w)

^ d1(FrVk Π C,) + diam Rfw .

Since ϋJα=<w(ί>α, Rr: y e Γα), we have by Lemma 4.0 limp_M diam R/w

0, therefore by virtue of (5)

(18) lim d^FrV, xRar)Cpx R,w) f] Lίp+m(p)) = 0 .

Put

(19) Θp = (FrVk x.Ra Γ\Cpx Rf{p)) n Lξp+mW .

By inductive assumption we have

(20) ind Θp ̂  ind Lεp+m{p) - ψ(ξp + m(p)) .

Moreover, by Lemma 1.1 (j)

(21) sup {̂ (fp + m(p))ι p = 1, 2, - •} ̂  ^(«)

Since the sets Θp are open-closed and disjoint in

(22) M=Rn\J\J{θp:p = l,2, •••},

by virtue of (18), (19), (20), (21) and Lemma 3.4 we obtain

(23) ind M ̂  ψ(a) .

By virtue of Lemma 1.1 (j) ψ(ά) < ψ(a + m). Therefore, by virtue
of (17), (23) FrUΠLa+mc:M and inequality (16) holds. Thus, in-
equality (14) is proved. The proposition is completely proved. •

Proof of Theorem 1*2* For any nonlimit number β there
exists such a number a + n(n ^ 2) so that β = α + m(w). We can
merely put a + n = β + K(β). Therefore, by virtue of Proposition
5.1 there exists a compactum Xβ = La+^,{n) c Rβ+K(β) such that

(24) Ind Xβ = /3, ind Xβ = ̂ 03)

Since by Lemma 4.10 Rβ+K{β) is weakly countable dimensional, X^ is
also weakly countable dimensional. Let β0 be a limit number. Then
we put

(25) Xβo - ω(p, Xβ: β < β0, K(β) > 1) .

Since Xβ are weakly countable dimensional, XβQ is also weakly
countable dimensional. By virtue of Lemma 4.9 and (24) InάXβo =
s u p {Ind Xβ = β:β< β0, K{β) > 1} - β0

(26) ind Xh = sup {ind Xβ = ψ(β): β < β0, K(β) > 1} .
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By virtue of Lemma 1.1 (m) and (26) indX^ = ψ(βo) Theorem 1.2 is
completely proved. As it was mentioned in ξ 1 Theorem 1.2' follows
from Theorem 1.2. Therefore, Theorem 1.2' is also proved. •

From Proposition 5.1 and an equality (25) it follows that com-
pactum Xβ imbeds in some compact Rβ+κm e pβ+κ{β) for nonlimit β,
and Xβ imbeds in Rβ for limit β. Therefore the following assertion
holds:

COROLLARY 5.1. For any β < o)1 there exists a compactum Xβ

satisfying condition (24) and having an imbedding in some compact

6* On small inductive dimension of product of spaces* This
section is auxiliary. We shall prove here some results available for
estimation of the small inductive dimension.

DEFINITION 6.1. (See [6] Katetov). A mapping f:X->Y is
called uniformly zero-dimensional if for any ε > 0 there exists δ > 0
such that if the diameter of a set Ma Y is less than δ, then
f~\M) is a union of a discrete collection of sets of the diameter <
ε. We need the following assertions:

(Kl) If / : X—> Y is uniformly zero-dimensional mapping, then
ind Y ^ ind X. (See [20], Zarelua.)

(K2) (See [6], Katetov.) dim X ^ n if and only if there exists
a uniformly zero-dimensional mapping f:X-±In of the space X in-
to ^-dimensional cube.
We also need the following theorem (see [18], Toulmin).

(Tl) If a space X has a dimension indX then i n d I x / ^
ind X + I where / = [0, 1] is a segment.

LEMMA 6.1.12 Let f:X—>Y be a uniformly zero-dimensional
mapping and g: XxZ-^YxZ be a mapping defined by the equality
g(xf z) = f(x), z(xeX, zeZ). Then g is also uniformly zero-dimen-
sional.

The lemma is evident.

PROPOSITION 6.1. For any finite dimensional space X and for
a space Y having the dimension ind Y the following inequality
holds\

12 In what follows, we consider that on product X x Y of spaces X, Y the metric
is given by the following equality: p((x, y), (x'f /)) = px(x, x') + ρy(yf / ) , (x, x' eX, y,
/ G F), px, py are metrics in X and Y respectively.
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(1) ί n d ( Z x 7 ) ^ ind Y + dim X .

Proof. By Theorem (K2) there exists a uniformly zero-dimen-
sional mapping f:X->In, where άimX = n. By Theorem (Tl)

(2) ind (Y x /•) S ind Y + n = ind Y + dim X .

Let g: X x Y—>Inx Y be a mapping defined by the equality

g ( x , V) = f i x ) , V xeX, y e Y .

Then, by virtue of Lemma 6.1 g is uniformly zero-dimensional
mapping. From Theorem (Kl) and inequality (2) follows (1). •

PROPOSITION 6.2. Let {U8\ s = 1, 2, •} be a collection of open
sets in a space X such that

(3) U8^U8+lf Ux = X

lim^eo diam U8 = 0 and n {t/.: β = 1, 2, •} = {p},

where p is a point in X.

(5) ind(J7e\U.+1) x In ^ a

for some n = 1, 2, , α *> α>0 αwd /or αwi/ s = 1, 2, . Then for
any space K with dim K ^ n the following inequality holds:
ind (Xx K)^a + [(n + 3)/2].

At first we need some preliminary lemmas. Let (n + 1) dimen-
sional cube In+1 be a product of segments [0, 1] = /. Then In+1 =
I x In. We denote by Tn the set {0} x Ine In+ι. We suppose that
there is a collection of open sets JΓ = {V8: s = 1, 2, } in cube
Γ+1 such that

The collection Tλ = {Fs Π (I*+1\/*): β = 1, 2, •}

is locally finite in (Γ+1\Tn) .

The collection ?ς = {FrT,: s = 1, 2, •}

is g.p. and dim FrV8 ^ n .

(8') The system 3^ forms a basis in all points xeTn .

Then the following lemma holds:

LEMMA 6.2. Lei (F, G) be a pair of disjoint closed sets in
cube In+1 and

(8 ) p(F, G) > sup {diam V8: s = 1, 2, .}
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where ρ(F, G) = inf {p(x, y): xeF, y eG}, p is a metric in In+1. If
<%f = {Uμ: μe^€) is a locally finite in U = (In+1\Tn) open covering
of the set U and k = [(n + l)/2], then there exists a partition C in
cube In+1 between F and G such that for any s = 1, 2,

(9 ) The set C Π FrU8 Π U is a union of k closed sets L\ , Lk

such that every set Lj(j ^ k) is a union of a discrete in U countable
collection Lj of closed sets L{(i — 1, 2, ) and every set L{ is con-
tained in some set Uμe^ί.

Proof. By virtue of (8) there exist open (in cube In+1) neighbor-
hoods OF and OG of sets F and G respectively such that

(10)

(11) Either Vs Π OF = φ or Vs Π OG = φ for any Vs 6 T .

Then, obviously

(12) (F~

We note that by virtue of (6), (7) the collection ?ς = [FrVsf] U:
s = 1, 2, •} is locally finite, and is g.p., and dim FrV8 Π U ̂  n.
Therefore, by virtue of (10), (11) the conditions of Lemma 3.1 are
satisfied for

(13) Fl

D(n + 1, k) = [(n + ΐ)l([(n + l)/2] + 1)] = 1, fc = [(n + l)/2], X = U.

By Lemma 3.1 we obtain a partition C in U between F1 and Gx such
that the condition (9) holds for C = C\ (We note, that collection
Jίfj is countable, because U is separable.) For proving our lemma
it is sufficient to show the existence of partition C between F and
G such that

(14) c' = cnu.

Since C is a partition between F and G in U there exist disjoint
open sets Hx and H2 such that: H^ Flf H2^GU Hx{} H2 = U\C,
H.ΠH^ φ. Then by virtue of (13) H^UXG.aUSpGal^ψG.
Similarly, H2aIn+1\0F. Therefore by virtue of (12) H1Γ\G=φ,B2n
F = φ. Since In+1 is hereditarily normal space, there exist open in
In+1 sets Hu and H2 such that

H.-DH.ΌF, ΪΪ2Z)H2{JF, H1{\H2 = φ

therefore the set C = In+1\(H1 U H2) is a partition between F and (?
and condition (14) holds.
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LEMMA 6.3. Let f:X-+Y be a mapping and Y, = KU U {Ll:
i = 1, 2, , j = 1, , &}. If the set f~\K) is closed and finite
dimensional, sets L{(i = 1, 2, •) are open-closed in Kj = if U U {14:

L{nlrί = ^ /or ΐ =£ i', L( n K = φ for any i.
= 0, ind (X\f~\K)) ^ α, α ^ <*)„ tλβα ind/" 1 ^) ^

Proof. Put Z = f~\X), then obviously all conditions of Lemma
3.3 are satisfied. We have only to change notations. Consequently,
our lemma follows from Lemma 3.3. •

In this section we shall consider that a space X, satisfies the
conditions of Proposition 6.2.

LEMMA 6.4. There is a mapping f: XxIn-> Ix In = In+1 such
that:

(A) If for a sequence of sets Mi9 Mt e In+1 lim^^ diam Mt = 0,
lim^oop(ΐn, M^ = 0, where p(ϊn, Mt) — inf {p(x, y): xeTn, yeMt9 p is
a metric in In+1, J Λ = 0 x Γ}9 then lim^oo diam f-^MJ = 0.

(B) For any point xe{p} x In aX x In and a closed set F,
x In we have:

f{F)$f{x).

(C) The restriction of f to f~\Ίn) is a homeomorphism and

f-\ϊη = {p} x i\

Proof (A) Let us put E = {p} U U {FrU8: s = 1, 2, •}. Then
j? is a closed subset of space X. We define a continuous function
g:E-+1 by the equalities: #(p) = 0, g(FrU8) = 1/s. By Urysohn's
theorem there is a continuous function fe: X—> I = [0, 1] such that
the restriction of h to E coincides with g and if xeU8\U8+1 then
1/(8 + 1) 5̂ h(x) ^ 1/β. We shall consider a continuous mapping / :
XxΓ->Γ = In+1 defined by the equality: f(x,y) = h(x),y;xeX,
yeΓ. Let πx: X x In->X, π2: X x Γ-+Γ, πz: I x I»^In, π4:1 x
In -»I be projections. As it was mentioned above, we can consider
d((x, y), (x\ y')) = px(x, x') + pjn(y, y'), x, xf e X, y, yr e In, where d,
px, Pj» are metrics in X x In, X, In respectively. Therefore, for
proving (A) it is sufficient to show that

(15) lim diam π^f-^M,)) = 0
i-*oo

(16) lim diam πt{f-\Mt)) = 0 .

It is evident that if p(T\ Mt) < 1/β then π^f-
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Consequently, by virtue of (4), equality (15) holds. Moreover, we
obviously have π2{f~\M^) — πz(M^). Since lim^oo diam Mt = 0 we
obtain lim^oo diam πs(Mi) = 0. Therefore, equality (16) holds, and
property (A) is proved.

(B) If x 6 p x In, x £ F then there is such a set U89 and an
open in In set V such that xeU8 x VaX x In\F, then obviously
f(x) 6 [0,1/β + 1] x F c J x In\f(F) and since [0, l/(β + 1)] x V con-
tains an open neighborhood of a point f{x) in In+\ property (B)
holds. Property (C) is evident. •

DEFINITION 6.2. (See [1] Borsuk). A covering ^ of an open
set UczY is called canonical if for any point xe Y\U and its any
neighborhood V there is a neighborhood Wsx in Y such that if
G e ^ and GftWΦφ then G c V.

In [1] (Borsuk) it was proved that for any open set Ud Y there
is an open canonical covering of U.

LEMMA 6.5. Let f: X x In —> In+1 be a mapping satisfying the
condition of Lemma 6.4 and let in Lemma 6.2 a covering U be
canonical. Then, for the set C satisfying the condition (9) we have

Proof. By virtue of property (C) in Lemma 6.4 and by virtue
of (4)

f~\C) = (f-\ϊn)_ Π f-\C)) U U {f~\C)

n((CTΛCU)2xI ):8 = l ,2 , •••}.

Since the sets f~\C) n ((U\U8+2) x /*) are open in /^(C), then by
virtue of (5) we have only to prove

(18) ind, f-\G) <S a + [(* + l)/2] for x e f~\C) n /-Xl'1) .

From Lemma 6.4 and condition (8') it follows that the collection
{f~\V8): s = 1, 2, •} forms a basis in each point xef-\C)(\f-\Ίn).
Since Fr(J'\V^)c:f-\FrVB) it is sufficient to prove that for any
8 = 1, 2,

(19) ind /- '(Fr F8 n C ) < a + [{n + l)/2] .

If the condition (9) is satisfied and U is canonical covering, then
obviously lim^oo diam L{ — 0, lim^oo p(ϊn, 14) = 0 for j ^ k=[(n + 1)/
2]. From Lemma 6.4 it follows that

(20) lim diam f-\I4) = 0 .

Put
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(21) K=(CnFrV8nn.

Then, obviously, C ClFrV9 = K\J (C ΓiFrV.Γϊ U). From condition
(9) it follows that

(22) CΠ FrV8 = KU U {L(: i = 1, 2, . , j = 1, -., &} .

(23) Sets I/f are open-closed in Kj = K U UΓ-i £ί and L| fi 14 = Φ
for i ^ £' and Kf) L( = φ for any i.
From Lemma 6.4 (C) it follows that dim f~\K) ^ n. Moreover,
since

f-\C ΠFrV8f)U) = f~\C n FrV8)\f-\K) c X x /*\{p} x J

we obtain by conditions (4), (5)

(24) ind (f-\C n FrV8)\f-\K)) ^ a .

We put X = f~\C Π FrV8), Y = C Π FrV8f then f~\Y) = X and by
virtue of conditions (20)-(24) and by Lemma 6.3 we have ind f~\C Π
FrVg)£a + (k — l)<a + k. Therefore, the inequality holds. The
lemma is proved. •

LEMMA 6.6. There exists a collection of open sets T* = {F s :s=
1, 2, •••} in cube In+1 such that conditions (6), (7), (8') hold, and
diam V8 < ε /or #iwm ε > 0.

Proof. By virtue of Corollary 2.2 there exists an open basis
A = {Ua: α e j / } with boundaries of dimension dim FrUa ^ n and a
collection {jPrί7α:αeA} is g.p. We can select for any i = 1, 2, •••
a finite covering Aέ of the set ϊn, consisting of elements of collec-
tion A and satisfying the condition: diam T < ε/i for TeAt. Put
T = U {^: i = 1, 2, •}. Then 3^ obviously satisfies conditions (6),
(7), (80.

LEMMA 6.7. ind (X x In) ^ a + [(n + 3)/2].

Proof. From conditions (4), (5) it follows that ind .̂ (X x In)<La
for any a e l x /Λ\{p} x I w . Therefore we have only to prove that

(25) ind, (X x In) ^ a + [(n + 3)/2] for 0 e {p} x In .

Let f: X x In -+ In+1 be a mapping, satisfying conditions A, B, C of
Lemma 6.4 and let xe{p} x In be any point. If F is a closed set
in XxInx$F, then by virtue of (B) y=f(x)$f(F) = G' β y virtue
of one theorem in [1] Borsuk, there exists an open canonicla covering
<%f of a set U — In+1\ϊn. By virtue of Lemma 6.6 there exists an
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open collection {V8: s = 1,2, •••} satisfying t h e conditions (6), (7),

(8') and diam Vs < ε = p(f(x), jW)) = p(v, G). Hence, the conditions
of Lemma 6.2 hold and there is a partition C in In+1 between y and
G, satisfying the condition (9). Then f~\C) is obviously a partition
between % and F in X x In and by Lemma 6.5

ind f~\C) ^ a + [{n + l)/2] < a + [{n + 3)/2] .

Consequently, inequality (25) holds.

Proof of proposition 6.2. By virtue of Theorem K2 there exists
a uniformly zero-dimensional mapping g: K—>In. Let r: X x IT—>
X x In be a mapping defined by the equality r(x, y) = x, ^(T/) OJ e X,
y eK. Then by Lemma 6.1 r is uniformly zero dimensional. Con-
sequently, by Theorem Kl and Lemma 6.7 ind(iίΓx X)5gind(Xx
In) ^ a + [(n + 3)/2]. Π

7. On dimensions of Smirnov's compacta* It is easy to
show for a space X = i?α, where a is a limit ordinal number, that
all conditions of Proposition 6.2 are satisfied and, consequently,
inάRa+n ^ a + [(n + 3)/2]. However, we can obtain more accurate
estimation for inάRa+n.

PROPOSITION 7.1. For a compact space Ra+n we have

(1) inάRa+n^a + [(n + 2)/2]

where a is a limit number, n = 0, 1, 2,

Proof. Since for w ^ 2 inequality (1) follows from Corollary 4.1,
we can assume n ^ 3. We consider a standard representation of
the compactum Ra+n Ra+n = 5WUU {Rr x J?%*. 7 e Γα}. It follows from
Corollary 4.1 that

(2) ind Rr+n = inά Rr x Rn ^ y + n < a (yeΓa).

Since the set Rr x i?w is open in Ra+n for any yeΓa we have only
to prove that

(3 ) ind, Ra+n ^ a + [{n + 2)/2] for ^ 6 5 . .

Let f:N—> Γa be a bisection of the set of all integers N onto jΓα.
We put

(4) X, = Ra\\j{Rf(i)ιi = lf 2,

Let δ > 0 then we put
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(5) F^O&r, F2 = Rn\O2δ(x)f G = O2δ(x)\Oδ(x)

By Corollary 2.2 there is an open basis T = {V8: s = 1, 2, •} in Rn

such that f is a σ-locally finite collection (and since Rn is a com-
pactum, the collection 7Γ is countable) and

collection Tx = {FrV8: VseT, s = 1, 2, . •}
( Ό )

is g.p., dimFrVs ^ n — X .

We can obviously consider that

(7) either V8ΠF1 = φ or VsnF2 = ψ (seN) .

Let k = [n/2], ε == 1/p, D(Λ, fc) = [Λ/([Λ/2] + 1)] - 1 and Sp = {F8:
s ^ p} be a subcollection of a collection JΓ. Then by virtue of (6),
(7), the conditions of Lemma 3.1 are satisfied and by this lemma
there exists a partition Cp in Rn between Fγ and F2 such that

(8) dk(CpΠFrVι)<l/p Z = l , • • - , » .

Let g 6 iV, then we set

( 9 ) D = D(δ, q,x) = GUΌ {Rf{p) x C'p\ p = q9 q + 1, •} aRa+n

where Cp is an image of Cp under the homeomorphism: i: Rn-> Rn.
Then D is obviously a compactum. Let us show that

(10) ind D ̂  a + [n/2] .

By virtue of (2) it is sufficient to prove that

(11) ind* D ̂  a + [n/2] for a e G .

We consider a collection of open sets A = {Xp x Vp: p = 1, 2, •}
(V£ = i(yp)) where Xp is defined by (4). Then, obviously, A forms
a base in points of the compactum Rn and, consequently, in points
GaRn. Therefore we have only to prove that

(12) ind (Fr(Xt x VI) Π D) S a + ([Λ/2] - 1) .

It follows from (8), (9) that

(13) {FrXι x 7 / ) n ΰ c 5 , U U {Λ/(P, x (FrV{ Π Cf

p): p = q, q + 1, •}

(14) d k ( F r V ί x C ί ) ^ l / p l^p .

Moreover, from Definition 4.3 and Lemma 4.0 it follows that

(15) lim diam Rf{p) = 0 .

Here by 0§(x) we mean a ^-neighborhood of x in i?w (ε = d,
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Consequently, from (14), (15) it follows that

(16) lim dk(Rf{p) x (FrV/ n CJ)) = 0 .
p-*oa

Since Rfip) x (FrVl ΓiCp)ciRfip) x i?Λ, from condition (2) it follows
that

(17) sup {ind Rf(p) x (FrVl Π CJ): p = ί, ff + 1, •} ̂  α .

Prom condition (13), (16), (17) and Lemma 3.4 it follows that

ind (Fr(Xt x VI)) Π D < ind 5 . U U {Rf{p) x (ίV 7/ n Q : p

= Q, Q + 1, •} ^ OL + (k - 1) = a + [n/2] - 1 .

Thus, inequality (12) holds; consequently inequalities (11), (10) also
hold. Prom construction of the set D — D(d, q, x) it follows that

for any closed set F and a point xeRn there exists a 5 > 0

(18) and q = 1, 2, , such that the set D(δ, q, x) is a partition

between F and x.

From conditions (10), (18) follows (3) and, consequently (1). •

DEFINITION 7.1. (See [17] Smirnov). For any ordinal number
β < ω19 we shall define a compactum Kβ. For β < ω0Kβ is a /3-
dimensional cube. If β is a limit number we put Kβ = ω(p^; ifr:
7 < β). lί β = a + n,a = J(β)9 n = JBL(/S) > 0 we put ̂  = Kaxln.

It is evident that Kβepβ (see Definition 4.3). In what follows
Kβ will denote a compactum defined above. In [17] (Smirnov) it
was proved that

(19) Ind Kβ = β

however, the equality

(20) ind Kβ = Ind Kβ .

From Proposition 7.1 it follows that for K(β) ̂  3, β ^ ω0 equality
is not true (20) is false. However, for some β it is true.

THEOREM 7.1. // n = 3, 4, -a is a limit number < ω19 then
for compactum Ka+n, we have

(21) ind Ka+n ^ a + [(n + 2)/2] < a + w = Ind Ka+n .

// α is an invariant ordinal number then for i = 0, 1, 2,

(22) ind ifα+i = Ind Ka+i = α + i
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and besides that

(23) ind Ka+B = a + 2 .

Inequality (21) follows from inclusion Kβepβ and Proposition 7.1.
If i = 0, 1 then equality (22) follows from (19) and Corollary 1.2
(B), (C). Let us suppose that

(24) ind Ka+2 ^ a + 2 .

Since obviously Ka+2 is topologically contained in Ka+Z we have
ind Ka+S ^ a + 2. The opposite inequality follows from condition
(21). Since by virtue of (19) ind Ka+2 ^ Ind Ka+2 = α + 2, we have
only to prove (24). To prove this inequality we need some pre-
liminary results.

DEFINITION 7.2. Let X be a set in a product E2 x Γ of a plane
E2 and an arbitrary space Y, and p: i?2 —> J572 be a reflection with
respect to a straight line πczE2. Let us consider a mapping p(π):
E2 x Γ - > # 2 x Γ, defined by the equality

p(π)(x, y) = p(a ), 1/ xeE\yeY.

The mapping p(ττ) is called a reflection in E2 x Y with respect to
π. The mapping p(ττ) is obviously a homeomorphism, and p(π)(c) = c
f or c 6 π x Γ.

DEFINITION 7.3. Let I c £ 2 x Γ be an arbitrary set. We
define O(X, Y) as a minimal collection of sets in E2 x F such that

(a) XeO(X, Γ).
(b) If ZeO(X, Y) then for any reflection q: E2 x Γ - > S 2 x Γ

we have q(Z) U ZeO(X, Γ).

LEMMA 7.1. Let A, B be a pair of parallel straight lines in
E2, a be a limit number and pa be an extra point in a compactum
Ka = co(pa: Kβ: β < a). Let M be a set in E2 x Ka satisfying the
condition

(25) MΓ\Bx Ka = φ .

If the set M contains a set Q x V, where Q is a square in E2 such
that one of its faces is contained in A, and VaKa, then for any
compactum K c A there exists a set XeO(M, Ka) such that

(26) Xf)Bx Ka = φ,

Proof. Let R be a rectangle in E2 such that one of its faces
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is contained in A, and μ, v be a pair of two parallel straight lines
containing two faces of R which are perpendicular to A. Let
rXτμ):E2->E2, pu(pμ): E2 x Ka->E2x Ka be reflections in E2 and in
E2 x Ka with respect to v (respectively μ). We put

T\R) = rv((rμ(R) U R)) U (rμ(R) U R) ,

U = (Λ x F) = p,(p,(Λ x F) U (Λ x F)) U (p,(Λx F)U(i2x F)) .

Then obviously L\R x V) = T\R) x V and the set Γ^i?) is also a
rectangle such that one of its faces is contained in A. Therefore,
sets L\L\R x V)), T\T\R)) are defined. We put

L(n+1)(R x V) = L'CZ/CK x F)) ,

T[n+1\R) = T\Tn(R)) .

Therefore, the following condition holds

A c U {TΛ+1CR), n = 0, 1, •••},' TΛ+I(i2) x F = ZΛ̂ CR x F) .

Consequently A x Va{J Ln+1(R). Therefore, for any compactum
KczA, there exists a number n such that

(27) Kx VaL\Rx V) .

Now let R — 0. Let Oλ(M, Ka) be a minimal collection of sets,
satisfying the following conditions:

MeO±(M, Ka).

If XeO±(M, Ka), π_LA, then (p(π)(X) U X) e O±(M, Ka), where p(π)
is a reflection with respect to π. Then, obviously O±(M, Ka)a0(M,
Ka) and for any n = 1, 2, there exists a set XeO±(ikf, iΓα) such
that I/W(Q x V)dX. By virtue of (27) we have only to prove that

(28) If XeO±(M, Ka) then Xn B x Ka = φ .

By virtue of (25) it is sufficient to prove that

(29) If X (Ί B x Ka = φ, μ±A, then P(μ)(X) \3XpiBxKa = φ.

Since μ±A, A\\B and P(μ) is a homeomorphism, we have P(μ)(B x
Ka) = Bx Ka,

φ = P(μ)(X) Π P(j")(S X JBΓβ) = P{μ){X) ί)Bx Ka .

Therefore B x Ka n (P(i")(X) U I ) = P(i")(-X") U X Π B x Ka=φ. Thus
property (29) and Lemma 7.1 are proved. •

LEMMA 7.2. Let U be a subset in E2 x Y. If WeO(U, Y)
then there exists a set LeO(FrU, Y) such that FrWaL.
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Proof. Let R: E2 x Y-+E2 x Y be a reflection, and ZaE2 x
Y. Then since iϋ is homeomorphism, we have

Fr(Z U R{Z)) Q FrZ U FrR(Z) = ίVZ U R(FrZ) .

Therefore, if FrZaLeO(FrU, Y) then Fr(Z Ό R(Z)) cz (L U R(L)) e
O(FrU, Y). Our lemma now follows from Definition 7.3. •

COROLLARY 7.1. Let the conditions of Lemma 7.1 be satisfied,
and M be an open set. Then there exists an open set X such that

(30) FrX is a partition between B x Ka and K x V.

(31) There exists a set Ce O(FrM, Ka) containing FrX.

Proof. Since the set M is open, the collection O(M, Ka) consists
of open sets. By Lemma 7.1 there is a set XeO(M, Ka) satisfying
the condition (26). Since X is open, the condition (30) holds. The
property (31) follows from Lemma 7.2. •

We shall use the following proposition proved in [18], (Toulmin).

(T2) Let A, B be a pair of closed sets in a space S, AU B = S.
If there is a homeomorphism f:B-^A such that f(c) = c for any
ceAf]B and dimension indS is defined, then inάS = ind A

LEMMA 7.3. Let Z be an arbitrary set in a space E2 x Y,
then for any XeO(Z, Y) we have: ind X = indZ.

Proof. Since any reflection R: E2 x Y-+E2 x Y is a homeo-
morphism and R{c) = c for any point ceR(A) Π A and any set A c
E2x Y, Lemma 7.3 follows from Theorem T2 and Definition 7.3. •

LEMMA 7.4. Let (F, G) be a pair of opposite faces of a square
I2. Then there is a partition C in compactum I2 x Ka = Ka+2

between F x Ka and G x Ka such that

(32) ind C < ind Ka+2 .

Proof. Since spaces E2 x Ka and Ka x I2 have imbeddings into
each other

(33) ind Ka+2 = ind Ka x I 2 = ind E2 x Ka .

Let φ: I2 -> E2 be a linear imbedding and A, B be a pair of straight
lines in E2 such that Az)F, Bi)G. We consider imbedding ψ:
Γ x Ka -> E2 x iΓα defined by the equality
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ψ(x, y) = φ(x\ y (xeP,ye Ka) .

Now we can consider that P x Ka is imbedded in E2 x Ka by-
means of ψ. For any point peF = F x pα (where pαeίΓα is an
extra point) there exists a neighborhood Msp in E2 x Ka such
that

(34) ind FrM < ind E2 x ifα J l ί n ΰ x i Γ « = ^

Then there exist sets V and Q such that: F is open in Ka, Q is a
square in i?2, such that one of its faces is contained in A, Q x F c
M and

(35) V=Ka\\jUKn (8 = 1,2, - • - , 7 < < α ) .

By virtue of Corollary 7.1 there exists a set C1 such that

(36) C1 is a partition in E2 x ifα between B x Ka and F x 7 .

(37) C1 is contained in some set R e O(FrM, Ka) .

By virtue of Lemma 7.3 and conditions (34), (37) we have:

(38) ind C1 ^inάR = ind FrM < ind E2 x Ka .

Let T = U?=i Ku = ^A^. Since obviously sets E2 x T and I 2 x Γ
have imbeddings into each other and Kn x P = ίΓri+2, by virtue of
(21), (35) we have ind E2 x T < a. Therefore for any partition C2

in E2 x T between B x K Π E2 x T and F x T

(39) ind C2 < a ^ ind E2 x Ka .

We put C3 = C1 U C2. Then by virtue of (36) the set C3 contains a
partition C4 in E2 x Ka between B x Ka and F x Ka. Moreover,

(40) C1 n C2 = φ .

Consequently, by virtue of (38), (39), (40):

(41) ind C4 ^ ind C3 ^ max (ind C1, ind C2) < ind E2 x Ka .

We put C = C4 Π P x Ka, then C is a partition in P x Ka between
F x Ka 2inά G x Ka = B x Kar\ P x Ka, and by virtue of (41), (33)
ind C ^ ind C4 < ind E2 x Ka = ind Ka+2. Π

LEMMA 7.5. For any partition C in Ka+2 between F x Ka and
G x Ka {where (F, G) are opposite faces of P) we have indC^α + 1.

Proof. Since Ka+2 e pa+2, by Lemma 4.8 Ind C ^ a + 1. Let
ind C 5g a. Since a is invariant number and by virtue of Theorem
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1.1, Ind C ^ £>(ind C) ^ φ(a) — a. Consequently, ind C ^ a + 1. Π

As we mentioned above, for proving Theorem 7.1 it is sufficient
to prove inequality (24). However, this inequality directly follows
from Lemmas 7.4, 7.5. Thus Theorem 7.1 is proved. •

COROLLARY 7.2. The equality indX x / = i n d X + 1, where 1 =
[0, 1] is false even for a compact space X.

Proof. We put X = Kωo+2. Since ω0 is an invariant number
and Kωo+Z = Kωo+2xl then by Theorem 7.1 ind Kωo+2xKind Kωo+2 + l.

D

THEOREM 7.2. There exists a compaction X such that for any
finite dimensional separable space Y with dimension ind Y > 0 we
have ind X x Y < ind X + ind Y.

Proof. We put again X = Kωo+2. Since Y is separable space,
ind Y = dim Y and by Theorem K2 (§ 6) there exists a uniformly
zero-dimensional mapping / : Y'—> /* where w = ind F. Let #: iΓωo+2x
Γ-^lζ^+a x In = Kωo+n+2 be a mapping, defined by the equality g(x,
y) = #, /($/). Then by virtue of Lemma 6.1 g is a uniformly zero-
dimensional mapping. Consequently, by Theorem Kl § 6 and by
Theorem 7.1

ind X x Y = ind KωQ+2 x Y ^ ind ifωo+%+2 ίg ft)0

+ [(n + 2)/2] < ωQ + n .

The last inequality holds because n > 0. Π

8* On D-dimensioru In [2] Henderson defined a transfinite
D-dimension in the class of all metric spaces14 For any space X,
D(X) is either ordinal number or abstract symbol Δlh.

DEFINITION 8.1. We put D{φ) = -1. If XΦφ then D(X) is
the smallest ordinal number β such that there exists a collection of
sets {Aξ: 0 ̂  ξ ^ 7} satisfying the following conditions:

(a) X = U{Aξ:0^ξ^7}.
(b) Every set Af is closed and finite dimensional.
(c) For any δ ^ 7 the set U {Aα: 3 ̂  α ^ 7} is closed in X
(d) J(/3) = 7, dimAr^ίΓ(/3).
(e) For any point a e l there exists the greatest number δ<^7

14 Some results on 2)-dimension see also in [11], (Luxemburg).
15 It is considered for every ordinal number β that β < Δ, Δ + β = Δ.
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such that x e Aδ. If there is no such number β we put D(X) = Δ.
If the conditions (a)-(e) hold then equality (a) is called a /3-JD-repre-
sentation of a space X.

In [2] Henderson proved that for any compact space X having
the dimension Ind X we have

(1) indX^InάX^D(X).
(2) I D(X) I ̂  weight X, where | D{X) | is a cardinality of

D(X).
(3) If X is a finite dimensional space then dim X = D(X) =

IndX.

PROPOSITION 8.1. (see also [12] (Luxemburg)). For any com-
pactum Y such that Ind Y ^ ω0, D(Y) < Δ and for any ordinal
number 7, D(Y) ̂  7 < <#i ίfrere exists a compactum Yr containing
Y and satisfying the following condition

D(Yr) - 7, Ind Yy = Ind Y, ind Γr = ind F .

Proof. In [2] D. W. Henderson constructed for any 7 < 00x a
compactum Xr such that ind Xr = Ind Xr = ω0, jD(Xr) = 7. Let us
put 7 r = I r U Γ , 7 f l I r = f Then, obviously Yγ satisfies the
conditions of Proposition 8.1. Π

COROLLARY 8.1. There exist compacta X such that i n d X <
I n d X < D(X).

Proof. By virtue of Theorem 1.2 there exists a weakly-coun-
table dimensional compactum X such that Ind X > ind X. In [3]
(Henderson) proved that every countable dimensional separable space
X has dimension D(X) < Δ. From (2) it follows that D(X) < ω,.
Consequently, Corollary 8.1 follows from Proposition 8.1. •

THEOREM 8.1. // for a space X, D(X) < A then X has dimen-
sion ind X and

(4) i n d X = ^D(X) + Γ6 .

LEMMA 8.1. If for any point y e Y there exists a neighborhood
0y3y such that ind Oy < a, then ind Y ^ a.

The lemma is evident.
16 There is a mistake in [7] Kozlovsky, Proposition 11, where the author asserts the

inequality ind X ̂  D(X) in equivalent statement.
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LEMMA 8.2. Let (a) be a β-D-representation of a space X, K(β) =
n > 0 and C c X be a closed set such that

( 5 ) dim C Π Ar ^ n - 1 .

Then D(C) ^ J{β) + (n - 1).

Proof. We put

(6) B ξ = C Γ i A ξ ζ ^ Ύ .

Then by virtue of (5)

(7 ) dim By ^ (n - 1)

and

(8) C=

Since a) is a /^-^-representation of X, from (6), (8), (7) it follows
that (8) is a (β — l)-D-representation of C. •

LEMMA 8.3. Let (a) be a β-D-representation of a space X and
7 ^ Q)o. We put

(9) Uδ

Then the set Uδ is open and D{ Uδ) ^ δ + s < 7 /or some s = 1, 2 .

Proof Since (c) holds, Uδ is open. Let <5 = T(β) + K(δ). We
put

(10) BJiδ) - U {A(J(i)+<) n

(11) J?, = ^ Π Z7,

(12) β = dim BJW .

Then

(13) Uδ = U {5Λ: ^ ^ J(δ) = J(S + 8)} .

Since (a) is a /3-D-representation of X and by virtue of (10), (11),
(12), the equality (13) is a (δ + s)-Z?-representation of Uδ. •

Proof of Theorem 8.1. We shall prove the theorem by induc-
tion on β = D(X). If JD(X) < ft)0 then by virtue of (3)

Ind X = D(X) = dim X ^ ind X .

Let 2?(-X") = β ^ O)0 and (a) be a ^-^-representation of X Let us
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show that

(14) ind (X\Ar) ^ 7 = J{β) .

Let xeX\Aτ{β), then by virtue of (e) there exists such δ0 < 7 that
xg Aδ, for δ' > δ0. Consequently,

x 6 Uδ0+1 = X\[J {Aδ,: δ'^δo + 1; δ' < 7} .

By virtue of Lemma 8.3 D(U§0+1) < 7. Consequently, by inductive
assumption ind UδQ+1 <£ D(Uδo+1) + 1 < 7. Inequality (14) now follows
from Lemma 8.1. Let xeX and FBX be a closed set in X. If
K(β) = n > 0 then there is a partition C between x and F such
that inequality (5) holds. By virtue of Lemma 8.2 and by inductive
assumption ind C ^ D(C) + 1. Consequently, inequality (4) holds.
If K(β) = 0 then by virtue of (d) dim Ar ^ 0 and we can find a
partition C between x and F such that C D ̂ lr = 0 Consequently,
C c X W By virtue of (14) ind C ^ ind (X\Ar) ^ J(β) ^ D(X). The
theorem is proved. •

Inequality in Theorem 8.1 cannot be improved. We give an
example of a space X such that

(15) ind X = D(X) + 1 .

(A) Construction. Let In n = 1, 2, be a collection of cubes.
We can consider that on each cube In is defined a metric pn such
that there exist two points xn, yn e In with pn(xn, yn) = 1. We
identify all points {xn} in disjoint sum [J{In: n = 1, 2, •} with the
point {p} = xlm We obtain the set X = U"=i /*, /* Π /%/ = {p} for
n Φ n\ In X we define the following metric:

, N (p»(x, y ) f o r x,yeΓ
p(x V) :== Ί

' [pΛx, P) + |t> (y, P) ΊtxeI*,yeI»,mΦn.

LEMMA 8.4. ind X = ωQ + 1.

Proof. Let us show that

(17) ind X ^ α>0 + 1 .

We p u t ί 7 ^ U^=i{l/J Then F is a closed set in X and p$F. Let
C be a partition between {p} and F. Then C n I Λ c C is a partition
between {p} and {yn} in cube I \ Consequently, for every n ind (C Π
I*)^(w —1) and inequality (17) holds. The inequality indX^α> 0 +l
follows from Theorem 8.1 and the following lemma.

LEMMA 8.5. For any n-dίmensional cube In n = 1, 2, we
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have

(18) D(Xx In) = D(X) + n

and D(X) — ω0.

Proof. The equality (18) holds if there is such a point x e X
that sup {D(Ox): Ox is a neighborhood of x} — D(X) (see [2]). For
a point peX and any neighborhood Op9p we obviously have
D(Op) ^ ωQ. Consequently, for proving our lemma we have only
to show D(X) ^ ωQ. Let us put An = In, Aωo = {p}. Then the
equality X = {Aa: a <; ω0} is clearly a α)0-D-representation X. •

Thus, condition (15) is satisfied. The space X has also some
interesting property.

PROPOSITION 8.2. For any n-dimensional space K

(19) ind X x K ^ ω0 + [{n + 3)/2] .

27ms, although ω0 — Ό{X) < ind X = ω0 + 1 Zm£ /or ^ ^ 4, 6τ/
Lemma 8.5

Z>(X x I") = ω0 + n > ω0 + [(n + 3)/2] ^ ind (X x J%) .

Proof. Let i7s be a (1/s) neighborhood of the point p. Since
X\ί7β is clearly a discrete union of finite dimensional sets, we have
ind(X\ί78) x f ^ o)0 for any s = 1, 2, . Consequently conditions
(3), (4), (5) of Proposition 6.2 are satisfied and the inequality (19)
holds. Π

THEOREM 8.2. Let X be a compactum and D(X) = a + n where
a ^ ω0 is a limit number and n = 0, 1, 2, , £&ew ind X <; α +

COROLLARY 8.2. If for a compactum space X, D(X) = β+4, β ^
α>0 tfcen i n d Z <

Proof. Let /s = α + k, a = J(β) then, by Theorem 8.2 ind X ^

a + [(fc + 7)/2] = α + [(A;

To prove Theorem 8.2 we need some preliminary lemmas.

LEMMA 8.6. Let X be a compactum and the equality (a) be a
β-D-representation of X. (β ̂  α>0), then for any neighborhood OAr

of the set Ar D(X\0Ar) < J(β) = 7.



384 LEONID A. LUXEMBURG

Proof. By v i r t u e of (e) t h e collection of sets Uδ, δ < J(β) = y
defined by equality (9) is an open covering of (X\Ar). Since X\OAr

is a compactum, t h e r e exist such numbers δlf "-fδkf (^ < T ) such
t h a t X\OAr = {J{Uδ.:i = l, , k}. Let μ = m a x {δt: i = 1, •••,}.
Since U^ c Uδ for <? > δ', we have X\OAr c Z/̂  and by virtue of
Lemma 8.3 we have D(X\Or) ^ D(Uμ) < y = J(/3). •

Let (a) be a /^-^-representation of a compactum X, then we
define a mapping

(20) π:X > X#

by identifying all points of a set Ar. We put π(Ar) = |O.

LEMMA 8.7. Tfeβ equality

(22) X# = {J5r = τr(Af): f ^ J(β)}

is a J{β) D-representation of the compactum X% and BJίβ) = {p}.
Moreover, π is a homeomorphism on the set X\AJ{β) and π(X\AJ(β)) =

x*\{p}

Lemma 8.7 is evidently follows from Definition 8.1 and the
construction of mapping π.

LEMMA 8.8. Let U be an open set in a space X, A = X\U.
If f:X->K, g:X—>T are mappings such that dim (/"̂ (flc))
Π U <; 0, dim (g~\y) Π A) ^ 0, (y e T, x e K) then the mapping F:
X—>KxT defined by the equality F(x) = (/(#), g(x)) is zero dimen-
sional.

Proof. Let a = (x, y) be a point in K x Γ, a? 6 K, y e T. Then
F~\a) = /^(OJ) (Ί ίΓ 1^). Therefore

i^-Xα) = /^(α) n g~\y) n(AUC/) = ((/^(a?) Π U)f)g-\y))

u ((ff-̂ tf) n A) n /-xα?)) c (f-\x) n c/) u ί^-1^) n A).

The set Ϊ7 is open, and consequently is Fσ set. Further, sets f~\x),
g~\x), A are closed, consequently by the sum theorem for dimension
dim we have dim (f~\x) Π 17) U (g~\y) Π A) ^ 0. Our Lemma now
follows from (21). •

LEMMA 8.9. Let X be a compactum and (a) (Definition 8.1) be
its β-D-representation. Then there exists a zero-dimensional map-
ping F: X-> X# x In where n = K{β).
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Proof. By virtue of (d) (Definition 8.1) dim AJiβ) 5j n. Con-
sequently, by Hurewicz's theorem [5] there exists a zero-dimensional
mapping <p: Aj{β)—>I*. Let ψ:X-+In be any extension of mapping
φ. We define the mapping F: X-> X# x In by the equality: F(x) =
π(x), ψ(x). Since by Lemma 8.7 π is a homeomorphism on the set
X\AJ{β), then by virtue of Lemma 8.8 F is zero-dimensional mapp-
ing. •

Proof of Theorem 8.2. By virtue of Lemma 8.9 there exists a
zero-dimensional mapping F: X-+ X$ x I*. Since X and X# x J* are
compacta, zero-dimensional mapping F does not lower dimension
ind(see [20]) (Zarelua) and

(23) ind X ^ ind X# x In .

By Lemma 8.7 the equality (22) is a J(/3)-D-representation of X and
BJ{β) is a point p. Let {?7S: s = 1, 2, •••,} be a collection of open in
X# sets such that

(24) USZDU8+U U, = X

(25) lim diam U. = 0 , ή *7S = {p} .
s—>oo s = l

Then by Lemma 8.6

D(U8\US+1) £ D(X*\US+1) £ 7 l < 7 = J(/8)

for some ordinal number Ti < 7. In [2] Henderson, Theorem 5 it
was proved that D(Z x T) ^ D(Z)@D(T) where " 0 " denotes the
natural sum of ordinal numbers. In particular D((U8\U8+1) x In) <;
D(U8\U8+1) © D(In) = D(U8\U8+1) + n = y1 + n< J(β). The last ine-
quality is true, because J(β) is a limit number. Consequently, by
Theorem 8.1

(26) ind(U8\US+1) x Γ^Ύ. + n + KJiβ).

By virtue of (24), (25), (26) and Proposition 6.2 ind (X, x In)^J(β) +
[(w + 3)/2] = a + [(n + 3)/2]. Our theorem now follows from in-
equality (23). •
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