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ON COMPACT METRIC SPACES WITH NONCOINCIDING
TRANSFINITE DIMENSIONS

LEONID A. LUXEMBURG

For every no more than countable ordinal number a we
shall define an ordinal number ¢(«) such that for every com-
pact metric space X with ind X<« we have Ind X<¢(a) and
there exists a compact metric spaces X, with ind X,=a,
Ind X,=¢(a), where ind X, and Ind X, mean small and large
transfinite inductive dimensions respectively. In particular we
now extend the author’s previous result on existence of com-
pact metric spaces with noncoinciding transfinite dimensions.

1. Introduction. In this paper we consider only metric spaces.
For instance, by a compact space we mean a compact metric space.
All mappings we consider are continuous and I* denotes the mu-
dimensional euclidean cube.

1. Definitions and statements of main results.

DEFINITION 1.1. (@) ind X = —1=X= @.

(b) We assume that for every ordinal number a < 8 the class
of spaces X with ind X < a is defined. Then, we say ind X < g if
for every point x€ X and a closed subset F, ¢ F C X, there exists
a neighborhood Ox of x such that:

Ox c X\F
ind FrOx < a < B!

We put ind X = min {5: ind X < g}.
(¢) We say that dimension ind, X of a space X in a point x¢
X < B if there exists such a base {O;: v € A} at this point, so that

ind F’I‘Oz < ﬁ .
We put ind, X = min {g: ind X < g}.

DEFINITION 1.2. (@) Ind X = —1=X=Q

(b) Let, for every ordinal number a < g, the class of spaces
X with Ind X < a be defined. Then, Ind X < B if for every pair
of disjoint closed subsets F and G there exists a partition C*

1 Fr A denotes the boundary of A.

2 By a partition in X between sets A and B we mean a closed set C in X such
that X\C=UUV, UnV =@, AcU, BcV for some open sets U and V in X.
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340 LEONID A. LUXEMBURG

between F and G such that IndC=a<pB3. We put Ind X =
min {g: Ind X < g}.

We note that we can also introduce the dimension ind using
partitions, because if xe Uc X\F, and U is open, then FrU is a
partition between « and F. Obviously, ind X < Ind X. For spaces
with a countable basis, in particular, for compact spaces dimension
ind X is no more than a countable ordinal (Hurewicz [4], p. 50),
and Ind X is no more than a countable ordinal even for all metric
spaces (Smirnov [16], p. 418). Dimensions ind X and Ind X are not
defined for every metric space. For example, the Hilbert cube I¢
does not have any transfinite dimension (Hurewicz [4], p. 51). Let

z=y1I"

be the discrete union of cubes I™. Then, obviously, ind Z = w,.
However, the dimension Ind X doesn’t exist. But if for a space X
the dimension Ind X exists, then ind X also exists. In this paper
we solve the following problem: to find a function +: 2 — 2 defined
on the set of all ordinal numbers a < w, and satisfying the follow-
ing conditions:

(1) for every compact space X, having dimension ind X, we
have

J(Ind X) £ind X < Ind X .

(ii) for every a < w,, there exists a compact space X = X(a)
satisfying the following equalities:

Ind X = q; ind X = ¥ (a) .

We shall also find such a funection ¢: 2 — 2, so that for every
compact space X with dimension ind X

(ili) ind X < Ind X < o(ind X).

(iv) for every a < w,, there exists a compact space X = X(a)
such that

ind X = a, Ind X = ¢(ax) .

The first examples of compacta with noncoinciding transfinite
dimensions were constructed by the author in [9]. Let us introduce
some notations. In §1 small greek letters denote ordinal numbers.
For every ordinal number B the equality 8 = a + » holds, where
« is a limit number or 0, and » = 0,1, 2, ---. Then we set K(B) =
n, J(B) = a. Further, for every 8= w, by z(8) we denote an
ordinal number, defined by the equality o, + (8 = 8. If g < w,
we set 7(8) = 0.
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DerFINITION 1.3. Put o8 = ®, + ®, X 7(8) for B = w, and
P(B) = B for g < .

Numbers 8 such that 8 = ®(B) shall be called invariant. It is
easy to prove that a number 8 > w, is invariant if and only if 8=
wyo X v* for some v; and, every a < ®, is invariant.

DEFINITION 1.4. Put (83) = min {a: @(a) = £}.

LEMMA 1.1. Functions @ and + have the following properties:
(a) Let a = w, + B8 + m where B is a limit number or 0, n =
Kla), and & is a number such that w, X ¢ = 3. Then

@, +Eé+1 ifn>0

VO =y 1 if m=0

(b) Y(n) =pn)=mn for n =0,1,2---.

(€ B+ @ = poy(B) = B.

(@) If a = w, then (a) is a limit number.

(e) If v> B then o(v) > P(3).

(f) Let v > w, then +(v)=(B) i J(B) =J(v) and the
numbers K(B), K(v) are either both equal to 0, or both different
from 0.

(8) If B is a monlimit number, then +(B) also is a monlimit
one.

(h) If v £ J(a) < a then (7)) < ().

(i) If a is a limit number, then (@) < 4(a + m) where m =
1,2---.

3 If a =z B, then y(a) = ¥(B)-
(k) If a=sup{rii=1,2 ---}, then o(a)=sup {p(v,): i =

1,2 .-}

0O If < aand a is tnvariant number, then @(B) < a.

(m) If a=sup{y:i=12,---}, then ~(a)=sup {y(7): 1=
1,2 -}

(m)  Yop(B) = B.

(0) @(a) =w, X a for a = @}, P(@, + p) = @, X (p + 1), P(®;X
Q+p):ng (q_‘l)'}‘woxi”fo"’ q:2,3y Tty p=0,1,2, ttt.

Proof. (a) Let m > 0. Since o(w, + £+ 1) = @, + @, X & + @,
we have w, + & +1 = y(a). Further, o(w, + &) = @, + @, X £ < a.

3 Weassume 0 X a=a xXx0=0,0+ a=a+ 0= qa for any a.

Let A, B be two well-ordered sets having types a, 8 respectively. In a product
A x B we introduce the following well ordering: (a,d) < (a’,b) if o' >b or if
» =b and @’ > a. Then the type of A X B is denoted by a X B. Generally speaking
aX BFBXa.

¢ By definition 0{® = sup{og:n =1,2, <<}
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Consequently @, + & + 1 = +(a). Now let » = 0. Then @(w, + &) =
a and P(@, + &) = w, + @, X & < a for & < & Hence, J(a)=w,+E¢.

(b) is evident.

(¢) follows from (a) and Definitions 1.3, 1.4.

(d), (e) are evident.

), (g), (h), 3) follow from (a).

(j) follows from (b) and Definition 1.4.

(k) If @ < w, then the assertion is evident. Let a = w, + 3,
then g =r7(a)=sup{z(7:;):1=1,2, ---}. Consequently, @(a)=
sup {@, + @, X z(v,) = p(v): 1 =1, 2-+-}.

(1) If a is invariant, then @ = @(a) and ¢(B) < p(a) = a by
property (e).

(m) If a £ w, or a is nonlimit number then the assertion is
evident. Let a be a limit number > ®,. Then a = @, + @, X & for
some &£ > 0. Then by virtue of (a), ¥(a) = @, + &. Obviously, for
some 7 > 0 each v,(k = n) has the representation:

(1) Ti = @y + @ X & + K(7)

and v, < @, for k < m. Let & be a limit number and & > sup,., {£;}-
Then sup {&}+1 <& and sup {7,} =< sup {®,+ 0, X &+ @} < W+ @, XE= ¢
which contradicts the condition. Therefore

(2) g=sup{&:i>mn}.
Consequently, by virtue of (a), (1) and (2)
(@) = @, + £ =sup{®, + £:1 > n} S sup {y(v):i=1,2---}.

The inequality +r(a) = sup {¥(7,): % > »} follows from (j). If & =&, +
1, then o = w, + @, X & + @, and there is a number 7, such that
Y= @y + @, X & + 1. By virtue of (@) v(v,) =, +& +1=w, +
& = y(a). Hence (m) is proved.

(n) follows from (1), (o) is evident. O

We shall use the addition theorem for inductive dimensions,
proved in [8], Levsenko, Theorem 1, p. 255 and Theorem 1, p. 257.
Let a, B8 be limit numbers and p, ¢ integers = 0. Then put:

a+p for p<

ka,p,8,9) = {8 + ¢ for a < g
a+p+qg+1 for a=p}.

ADDITION THEOREM (L). Let the hereditarily normal space R be
a union of two closed sets R, and R, having dimensions ind R, <
a + p (respectively Ind B, < a + p) and ind R, < 8 + q (respectively
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IndR, < B8+ q). Then R has dimension ind R (respectively Ind R)
and the following inequality holds:

ind R(Ind B) < k(a, p, 8, @) -

THEOREM® 1.1. Let X be a completely normal bicompactum (not
necessarily metrizable) having dimension ind X. Then X has
dimension Ind X and

Ind X £ o@ind X) .

Proof. If ind X < w, it is well known (Vedenisov [19] that
ind X = Ind X = @ (ind X). Suppose that ind X=p3=w, and for
all ¥y < 8 and for any completely normal bicompactum X having
ind X = v the theorem is proved. Let F and G be closed disjoint

subsets of X. Since X is a bicompactum, there exists a finite collec-
tion of open sets O,, ---, O, in X, such that:

0,.NG =@, indFrO,<v,< B, U{Ozi=1,---,8§DF,
t=1,---,9).

By the inductive assumption dimensions Ind F7rO, exist and
Ind F70, £ @ (ind F7O,) .

By property (e) from Lemma 1.1, ¢(ind Fr0,) < # (ind X). Since by
property (d) from Lemma 1.1 ¢(g) is a limit number,

(3) #(ind Fr0,) + @, = 9(8) .
From Theorem L and (3) it follows that
Ind (U{FrO:i=1, -+, 8}) < max{J(Ind Fr0,): i =1, ---, s}
+ 3\ K (Ind Fr0) + (s — 1)
< max {¢Eind FrO):i=1,---,8 + 0, < 9(B) .

Since the set U{FrO;:t =1, ---, s} obviously contains a partition
between F' and G, we have

Ind C < Ind U Fr0, < 9(8) . O

COROLLARY 1.1. For any completely normal bicompactum (not
necessarily metrizable) X having dimension ind X, we have Ind X=
ind X = 4 (Ind X).

5 In [8] Theorem 2, p. 260 an upper bound for dimension Ind was also obtained,
however it is less exact for completely normal bicompacta.
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Proof. Let us suppose that ind X < + (Ind X); then by defini-
tion of the function +r, ®@(ind X) < Ind X which contradicts Theorem

1.1. ]

COROLLARY 1.2. Let X be a completely normal bicompactum
(not mecessarily metrizable). Then

(a) if ind X is an invariant number we have ind X = Ind X.

Let a be an tnvariant number, then

() If Ind X = a + 1, then ind X = Ind X.

(¢) IfInd X = a, then ind X = Ind X.

Proof. (a) follows from Theorem 1.1.

(b) If ind X £ a, then ¢(ind X) < ¢(a) = «, by property (e) of
Lemma 1.1, and consequently, by Theorem 1.1 Ind X < a, which
contradicts our condition. Therefore, ind X = a + 1.

(¢) If ind X < a, then by virtue of property (e) of Lemma 1.1,
o(ind X) < . Then by Theorem 1.1 Ind X < a, which contradicts
the condition. Hence ind X = a. 1

THEOREM 1.2. For any countable ordinal number 3 < ®,, there
exists a weakly countable dimensional® compactum X, such that
Ind X; = 3, ind X; = 4(B).

THEOREM 1.2'. For any ordinal number 3 < w,, there exists a
weakly-countable dimensional compactum Y, such that Ind Y,=9o(B),
ind Yﬂ - B.

Theorem 1.2' follows {from Theorem 1.2, since +ro@(B) = B by
Lemma 1.1 (n). We can set in Theorem 1.2" Y, = X,,. Therefore,
we shall prove only Theorem 1.2.

Theorem 1.2 and Corollary 1.1 show that the function 4 posses-
ses properties (i) and (ii). Theorem 1.2" and Theorem 1.1 show that
the function @ possesses properties (iii), (iv). We restrict our
investigation to the field of compact spaces because every separable
space X is contained in a compactum K such that ind K = ind X;
Ind K = Ind X (see [10], Luxemburg).

Problem. Let a, 3 be two ordinal numbers. Under what con-
ditions does there exist a compactum X such that

(4) indX=a, IndX=pg?

6 A space is called weakly countable dimensional if it is a union of a countable
number of its closed finite dimensional subsets. In this work by finite dimensional
space we mean a space with finite dimension dim.
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From Theorem 1.1 it follows that the condition
(5) asp=p@)<w,.

is necessary. Is this condition sufficient? For this it is necessary
and sufficient to prove that for any a < w, there exists a com-
pactum Y, such that

(6) IndY,=indY,=«.
Indeed, by Theorem 1.2 there exists a compact Z such that
(7) IndZ=p4, indZ = ().

Let a satisfy the condition (5), then by properties (n), (j) of Lemma
1.1

(8) P(B) < Ppop(a) = a .

Put X=Y,UZ Y,NZ= @. Then, by virtue of (6), (7) and (8),
the condition (4) holds.
We begin now to prove preliminary results for Theorem 1.2.

2. Systems of general position.

DEFINITION 2.1. A system of finite dimensional sets A = {A,:
pre #} is in general position (g.p.) if for any finite number of
indexes ), - -, tty, of - we have either

dimﬂ {A#(Z):i: 1, ct k} é maX{dimA#(,)l’iZ 1, ety k} - (k - 1)

or
m{A/‘“‘(i):?::ly “"k}: g .

We shall write 4 is (g. p.) if A is in general position.

In this section we consider A = {A,: e _#} to be a locally
countable system of closed sets in a finite dimensional space X, such
that X e A.

LEMMA 2.1. Let F={F,:ve_4"} be a locally countable system
of closed sets in X, such that for every ve .4  the system AP)=AU
{F,} is g. p. Then, for the set @ = U {F,:ve. 4"} the system B =
AU {9} is g.p.

Proof. Let Ap, ---, Atty, be a finite subsystem of A. Since
A(v) is g.p., for every ve._4" we have

dim (N {Ap:1=1, -+, k} N F,) < max {dim Ay, dim F,:
=1k} —k
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if F,nn{Agg:1=1, ---,k} # @. Since
N{Aga:i =1, -, kfne = U{N{Apu:i=1,---, kN F,ive +7}
and the closed sets
G, =F,NN{Apy:1=1, ---,k}, ve st

form a locally countable system, then by virtue of the sum-theorem
for dim we have:

dim {n{Age: i =1, .-+, k}ne} < sup {dim {N{Apn: i =1, ---, k}

NFE}.ve 17}
=< sup {max {dim Ay, dim F,:ve _+", N{Ap¢,:1=1, ---, k}
NF,+# o} — k}
< max {dim Ay, dime:i =1, ---, k} — k
if O N{ARyi=1, -, k) = 2. O

LEMMA 2.2. Let FC UcC X, where F is closed and U is open
in X, and let A be a locally countable system of sets such that A
is g.p. If U intersects no more than a countable number of elements
of the system A, then there exists an open set W, such that

(1) FcWcWcU
and
(2) the system AU {FrW} is g.p.

Proof. Let C be a subsystem of the system A, consisting of
all sets intersecting U, and let D be a system consisting of all
intersections of finite collection sets in C. Since, by hypothesis, the
system C is no more than countable, the system D is also no more
than countable. Then, see [14] Morita, there exists an open set W
such that condition (1) holds and

(3) dim (FrWNL)<dimL —1 for LeD.

Let Ay, -+, Aty be a finite collection of elements of A such that
L=n{Ap,:i=1, ---, k}. Then, from property (3), it follows that
dimF’l'Wﬂ n {A#(Z): 7: - 1, tt k} é dim n {A/"(i): i - 1, Tty k} —_ 1

< max {dim FrW, dim Ap,:i=1, ---, k} — k . Il

LEMMA 2.3. The assertion of Lemma 2.2 1is true without the
assumption that U intersects mo more than a countable number of
elements of the system A.
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Proof. Let Z = {U,;: B€ B} be a locally finite open covering
of X, such that every element U,ec U intersects no more than a
countable number of elements of A and

(4) ifU,NF+ @ then U,c U, geB.

Let F = {F,;: 3€ B} be a combinatorial refinement’ of the covering
7, and let F; be closed for every g€ B. Then, by Lemma 2.2 for
any B € B there exists a set W; such that

(5) FpCWpCWﬁCUﬁ
and the system
(6) AB) = AU {FrW} is g.p.

We set W= U{W,; W,NF + @;3eB}. From properties (5), (6) it
follows that Fc Wc Wc U. Since % is locally finite and (5) is
true it follows that

FrwWcH= U{FrW, geB}.

From Lemma 2.1 and (6) it follows that the system A U {H} is g.p.
Consequently, A U{FrW} is g.p.

PROPOSITION 2.1. Let U be an open covering of a space X.
Then there exists a locally finite oven covering W = {W,.ve N} of
X, which is a refinement of U, and such that

(7) The system B= AU {FrW,:ve _+"} is g.p.

(8) dim FrW, < dim X.

Proof. Let V ={V,.ve._#"} be a locally finite open refinement
of U, and FF={F,.ve_#"} be a combinatorial closed refinement of
V. We can suppose that the set of indexes .7~ is well ordered.
We shall construet by induction open sets W, such that properties
(7), (8) hold and

(9) FcW,cW,cV, for ve_s" .

Let vy =0. Then by Lemma 2.3 there exists an open set W, satisfy-
ing condition (2) for W = W, and condition (9) for v = 0. Suppose
that for all ¥y < vy, we have constructed sets W, satisfying condition
(9) and such that the system A(Y) = AU {FrW,:v <y} is g.p. Then,
obviously, the system

C=AU{FrW,v <y} is g.p.

" i.e. FpcUp for every BEB.
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Since A is locally countable and W is a locally finite system, C is
locally countable. By Lemma 2.3 (we now set A = C) there exists
an open set W, such that the system AU {FrW,v <y} is g.p.
Hence, sets W, satisfying condition (7) have been constructed. Since
X e A, condition (8) follows from (7). O

COROLLARY 2.1. Let Z;, t=1,2, ---, be a countable collection
of open coverings of X. Then there exist locally finite open cover-
ings 7; ={Vi:pe #Z} such that:

(i) 77 is a refinement of Z,

(ii) The system AU{FrVii1=1,2 ---, ne #} is g.p.

Proof. We can construct the coverings 7; by induction, using
Proposition 2.1. [

COROLLARY 2.2. Ewvery finite dimensional épace X has a o-
locally finite open basis with boundaries in gemeral position and
having dimension < dim X.

Proof. Let %/, be a covering of meshZ/* < 1/i. Then we obtain
our assertion using Corollary 2.1. |

We denote by d,(X) the greatest lower bound of all numbers
¢ such that there exists an open covering U(e) of X with order
U(e) < k& and mesh U(e) < . The number d,(X) is called the kth-
coefficient of Urysohn of X.

COROLLARY 2.3. Let {Z;:i=1,2, ---} be a countable collection
of coverings of X and let {&} be a sequence of positive numbers.
Then there exist closed sets C,C X such that

(i) the system AU{C:1=1,2, ---} is g.p.

(ii) the set X\C; is a wunion of disjoint open sets with dia-
meter < &, such that each of them is contained in some set U, e Z.

(ili) dimC,; £ dim X — 1.

(iv) d(X\C)) < ¢,

Proof. Let 977, be an open refinement of %7, and let mesh

¥, < ¢/2, then by Corollary 2.1 there exist locally finite open
coverings of X 7; = {V/:ve_#7} such that:

‘718 a refinement of », and Z,, mesh 7; < ¢,/2,

1 .
(10) system B=AU{FrV/ive ¢, i=12,---}

is g.p. Put

8 j.e., diameter U < 1/i for any Ue#;
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(11) C,=U{FrVive +7}.

Consequently applying Lemma 2.1 we obtain that the system AU
{C:i<Fk} is g.p. for each £k =1,2, .... Therefore, property (i)
also holds. Property (ii) follows from (10), (11). Then, property
(iii) follows from (i), because Xe A4, and XNC,=C,. Property
(iv) follows from (ii). ]

LEMMA 2.4. Let F={F,:pre #Z} be a locally finite collection
of closed sets in space X and let Zx = {Us pre #} be a collection
of open sets, such that

(i) U,2F, for any pe #.

Then there exists a collection 77 = {W.: pte #} of open sets such
that

(ii) F.cW.C W, Uupte #).

(i) Ifn{Fpu:i=1,--,k} =0 then N{Wup:t=1,---, k=
ok=12--.).

Proof. Since a collection F' is locally finite, we can select for
every point x€ X an open set O,3x such that:

(12) If ¢ Fy, then Ox N F = & .

Since X is a metric space and, consequently, paracompact, we can
find an open covering 7° of a space X such that 7 is a star
refinement of the covering {Ox:xe€ X}. We consider a system of
sets: {V, = St(F,, 7"): te #). We shall prove that
(13) If N{Fupw:i=1,---, k=@ then N{Vup:1=1, ---, k},
(k=1,2, ')

Suppose that N{Vuy:t=1, -, k}#= @ and x€ N{V,uy:i=1, ---, k}.
Then the set st(xz, V) is contained in the open set Oy for some point
yeY. Since xe N{Vyuy:t =1, ---, k} then

St(x,%)ﬂFy(i);ﬁ@ forizl,"',k.
Consequently, Oy N F,,, # @ and by virtue of (12)

UAS n{FF(i):Ii:]'y sk} .

This proves property (13). Let us take for every pre . # a set W,

such that W,c V. and such that property (ii) holds. Then property
(iii) follows from (13). O

LEMMA 2.5. Let F={F.pre _#} be a locally finite collection

9 By st(A, B), where AcX, and B is a system of sets in X, we denote a star of a
set A with respect to a system B.
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of closed sets of order r in a space X and Z = {Ux: € . #} be a
collection of open sets such that F.C U, for pe._#. Then there
exist closed sets Cg =1, ---, r such that

(i) Ewvery set Ci=1, ---,r is a union of closed sets {C}:ve
A} forming a discrete system in X, and every set C! is contained
in some set U.e 7.

(ii) Ui Ci= U{F:pe 2}

Proof. We shall prove the lemma by induction on . Let @ =
U{Fuppe #}. For r =1 the lemma is true because we can con-
sider C, = @. Assume that the lemma has been proved for (» — 1)
and W= {W. re._#} be a collection of open sets, satisfying the
hypothesis of Lemma 2.4. Obviously,

(14) The system W(1) = {W.: e _#} has order < r.

Moreover, the system W(2) = {FrW. p#te._#} has an order<r —1
on @. Indeed, let xe®@ N N{FrWyuy:i =1, ---, r} then there exists
such index g, that x€ W,,N®. Therefore xe& N{Wyy: =0, ---, 7}
which contradiets the condition (14). By Lemma 2.4 we can con-
struct a locally finite open collection of sets @ = {Q.: e . #} such
that

(15) Q@ has an order < —1 on @ and

FrW.cQuc UJpte #). For any p¢ we consider an open set P,
such that

(16) Frw.cP,cP.cQ.cU,.
Set

%)) C,=0\U{P:pe A}

(18) D, = (W,NO\U{Puxtte #}.
Then from conditions (17), (18) it follows that
(19) C,=U{Dyspe x#}.
Assume that the set _# is well ordered and put
(20) C.=D\U{D,:v < ¢} .

By condition (16) we have W,U P, = W, U P,, then, by virtue of
(18), (20)

(21) C.=D\NU{W,:» < 3 U{P,: pe #}) = D,
\U{W,UP,:v < B} U (P, pte M} .



METRIC SPACES WITH NONCOINCIDING TRANSFINITE DIMENSIONS 351

From conditions (20), (21) it follows that sets C, are closed and
disjoint. Since C.c D,c W, the system {C.: e _#} is locally finite
and, consequently, diserete. Since by virtue of (19), (20)

U{C:pte #Z}= U{Ds:pre #}=C,

the set C, satisfies the condition (i) for ¢ = 1. From (15), (16) it
follows that the system P = {P..pec._#) has order<» —1 on 0.
Applying inductive assumption to locally finite closed system P
and open system @ = {Q,: # € _#} we can find closed sets C, ---, C,
satisfying conditions (i) (since @, < U,.) and the following condition:

U{Cri=2,---,1}= U{P,ND:pre 2} .
By property (17) we obtain the equality U{C:i =1, ---, 7} = 0. []

COROLLARY 2.4. Let U be an open covering of a space X, and
ord U < r. Then there exists a closed refinement of the covering
U, consisting of r discrete systems.

Proof. Using paracompactness of a space X we can get closed
locally finite combinatorial refinement F of the covering U with
order ' < r. Then, our corollary follows from Lemma 2.5. O

COROLLARY 2.5. For a space X the following conditions are
equivalent:

(@) du(X) <e.

(b) X is a union of k closed sets C,(1 < 1 = k) such that every
set C; is a union of closed sets {C}: e _#'} forming a discrete collec-
tion in X, and diameter C} < e for each pair t, .

(e) X isaunion of k closed sets C(L = 1 = k) such that d,(C,)<
€ for every 1 =< k.

(d) X is a union of k open sets U, (1 < 1 £ k) such that d,(U,)<
€ for each 1 =< k.

Proof. (a) = (b). Let d,(X) < e, then there exists an open
covering U with mesh U < ¢ and order U < k. Then, using Corol-
lary 2.4 we obtain assertion (b).

(b) = (¢). For proving it is sufficient to note that sets C} are
open in C,.

() = (d). By virtue of (¢) for each ¢ < k there exists a cover-
ing 7; = {Ci: pe #} where sets C! are open in C, and disjoint, and
have the diameter < e. Therefore the collection ¥7; is discrete in
X. Sinee X is paracompact, we can find open sets Ui pe.# such
that
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Cic Ui, diam Ui <e, Uin Ui =¢ for p+4" .

Put U, = U{U}: pe_»#}. Then, the assertion (d) clearly holds.
Since a union of %k system of order <1 has an order < k, we
obtain the implication (d) = (a). O

3. The Main Lemma.

LEMMA 3.1 (The Main Lemma). Let S={S;:t1=1,2, ---} be a
countable locally finite system of closed sets in n-dimensional space
X and let S be g.p, and Z = {Us: € #Z} be an arbitrary open
covering of X. Let alsodimS;,<=n —1,9=1,2 ---,k=n—1,n=
2,8,4,---, D(n, k)=[n/(k+1)], €>0 and let {F,, G} (r=1,.--, D(n,
k)) be a system of pairs of disjoint closed sets im X such that for
any v and for r < D(n, k)

(1) either S;NF, =0 or S;NG, = Q.

Then there exist sets D, 1 < » < D(n, k) such that

(2) D, is a partition between F, and G,.

(3) For the set R = N{D,:1=r=D(n, k)} we have d (RNS,)<
v =12 ---).

(4) dim R < dim X — D(n, k).

(5) The set RN S, is a union of k closed sets Li, ---, Lj such
that every set Li is a union of closed sets forming a discrete system,
and every element of this system is contained in some set U, € 7.

Proof. By virtue of Corollary 2.3 we can find closed sets C/j, 1=
1,2, ---, such that for any pair (¢, j)

(6) the system S"=SU{Ci:7,7=1,2,---} is g.p.

(7) dimC/{ < n — 1.

(8) d(X\C)) <e.

(9) The set X\C/ is a union of collection B = {Uj: a € A,;} of
disjoint open sets and each U/, is contained in some element U, e % .
Let us consider a system of closed sets
(10) P ={P:P,=8S,nNnnN{Ci:5=1,2,--- k}}.

Since

(11)  S\P,=U{S\Ci:j=1, .- k}cU{X\Ci{:j=1,---,k}
by virtue of (8) and Corollary 2.5

(12) di(S)\P,) < ¢ .

By virtue of (6), (7), (10) we have
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dim N {P;m:0 < m £ D(n, k)}
=dim N {S;m NN{Cim:5 =1, -+, k}: 0 < m < D(n, k)}
< max {dim S,,,, dim C},,,: 0 < m < D(n, k)}
— (D, k) + 1)k +1) +1
=(mn—-1)—Dnk)+1)E+1)+1<mn
—(n/(k + D]+ 1Dk +1)<0.

Consequently,
(138) The order of &P < Z(n, k) .

Since the system S is locally finite and P, S, the system & is
also locally finite. By virtue of (1) there exist such open sets O,>
P, that

(14) either O,NF, =@ or O,NG, =@ 1=<r<Dn,k).

By Lemma 2.5 there exist D(n, k) closed sets C,, ---, Cp,.» such
that

(15) U{Cir=1,---,Dn,k)} =P= U{P:1=12,---}.

(16) Every set C, is a union of a discrete collection of closed sets
{Cr: e _#) and each set C/ is contained in some set O,.
From (14) and (16) it follows that

amn Bither C¥NF, =@ or C/NG,= @ for r < D(n, k) .

Put F/ =F,U{C/:C!NF,# @, re #}, G. =G U{C!:CINF, = 2,
re #). Obviously, F/ and G, are disjoint closed sets and

(18) F!UG/oC,
19) F!DF, G.OG,.

Therefore, we can find sets D, » < D(n, k) such that D, is a partition
between F, and G, and

(20) dim N{D,:r =1, ---, D(n, k)} < dim X — D(n, k) .
Put
(21) R=n{D,:r=1, ---, D(n, k)} .

Then condition (4) follows from (21) and (20). The condition (2)
follows from (19). From (18) it follows that D,NC, = @. Con-
sequently, by virtue of (15), (21)
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ERnP= ﬂ{D,:’r=1,---,D('n,k)}
NW{C,:r=1,---,Dn, k)}) = .

Hence
(22) RnS,cS\PcS\P,

and by virtue of (12) the condition (38) is satisfied. By virtue of
9), (11), (22)

RNS,cU{ULNRNS,: UieBij=1,---, k}

and collection " = {U4ZNRNS;: UieBij =1, ---,k} has an order
<k and any element of 7 is contained in some U,€ % . By virtue
of Corollary 2.4 we now obtain property (5). ]

LEmMMA 3.2. Let VcZ and V=KUU{R;:t1=1,2, ---}, where
the sets R, are open-closed in V, K is a closed set im Z and

(i) RRNR;=R.NK=0Q fori+].
If

(ii) lim,,.d(R,) =0
then for any point x < K there 1s an arbitrary small neighborhood
Ox in Z such that

(iii) FrOxcZ\U{R;:1=1,2, ---}.

Proof. Let &> 0. By virtue of (i) and (ii) there exist such
disjoint open in V sets R,;t=1,2, ---,ac A, so that B, = U{R.:
ac A}, diam R,, < ¢;, lim,..¢, = 0. Let N be an integer such that
for 7 > Ne, < ¢/4. Then there exists a number 6(0 < 6 < ¢/4) such
that the neighborhood O;(x)° doesn’t intersect R, for ¢ < N. Put

24) Oz =0,x) UU{R,: R, NO(x) # @, 1=1,2, ---,x€ A} .

Obviously the diameter Oz < diam O, + 2sup {diam R,,: ¢ = 1,2, - - -,
acA)<eg2 +¢/2=¢. Since sets R,, are disjoint property (iii)
follows from equality (24). |

LEMMA 3.3. Let a space Z have the representation:

(i) Z=KUU{Li:j=1, -,k 1=1,2,---} where K 1is a
finite dimensional closed set and

(ii) Sets Li(i1=1,2, ---) are open-closed in K/ = KU U{Li:1 =
1,2, ---}, are open-closed in K= KUU{Li:1=1,2,---}, KNL{ =
LinLi=Q for i+17.

(iii) lim,.. d(L{) = 0.
Then, if

10 For any set .# CX by O;(.#) we denote a §-neighborhood of the _# in a space X.
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iv) ndZ\K) < a, a = o,
we have
vy mdZ=a+ (k—1).

Proof. By virtue of (iv) it is sufficient to prove that
(25) ind,” Zza+ (k—1)if xreK.

We shall prove this inequality by induction on k. Suppose that
k =1, then by Lemma 3.2 there is an arbitrary small neighborhood
of x with boundary in K. Therefore, by virtue of finite dimen-
sionality of K we obtain (25). Suppose now k > 1, and € > 0. Then
by Lemma 3.2 for every zc K there exists a neighborhood Ox>x
of the diameter < ¢ such that FrOxcCcZ\U{L:i=1,2, ---} = Z.
(We consider that in Lemma 8.2 L* = R,.) Since Z,c KU U {Li: j=
1, ...,k—1,7=1,2, ---}, by inductive assumption we obtain
indZ, £ a + (k—2). Consequently, ind FrOx < a + (k — 2). Hence,
the inequality (25) and Lemma 3.3 are proved. 0

LeMMA 3.4. Let a space Z have the representation
Z:KUU{@z:’L:1’27 ”'}

where K is a finite dimensional set, and sets O, are open-closed in
Z and disjoint. If lim,. . d.0,)=0, K=2Z\U{0;:1i=1,2, ---} then
indZ=<a+ (k—1) where a Zsup{ind@;:72=1,2, ---}.

Proof. Let d,0,) <e, and lim,..¢;, = 0 then by Corollary 2.5
there exist closed sets Lij =1, ---, k, such that d,(Li) <e; U{Li:
j=1,---,k}=06,i=1,2,---). Therefore Z=KU U{Li:i=1,2---,
j=1, ---, k}. Obviously, all conditions of Lemma 3.3 are satisfied.
Consequently Lemma 3.4 follows from Lemma 3.3. M

4., Compacta R,.

DEFINITION 4.1. Let {Y.: #te_#} be a collection of spaces and
{p} be some point. Then by w(p, Y.: e _#) we denote a space
PUU{Yupte #Z}, YoNYw=Y.N{p}= @ for pp= ¢

where in set U {Y.: pte._#} the topology is defined as in a discrete
union of spaces Y, and in the point {p} it is defined by the open
basis:

(O(p, Yﬂ:#e%)\u {Y#(i): t=12, -, k}, p(ye A, k=1,2, --- .
We note, that if the set . 1is countable, and Y, are compact
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metric spaces, then w(p, Y,.: e ) is also a compact metric space.

LEMMA 4.0. If the set .# 1is countable, then for any metric on
the set (Y pe #) and any € >0 the inequality diam Y, <e
holds for all but only finitely many pe _# .

The lemma is evident.

DEFINITION 4.2. (See [14] Luxemburg). Let (A,:i, Butd), -,
(A,+1, B.+1) be a fixed collection of pairs of opposite faces in Eucli-
dean cube I*+*, If C,,, is a partition between A4,:; and B,:; i =
1, .---, k and

dim N{C,+s:2 =1, ---, k} =mn

then the set @ =N{C,+:t=1,---,k} is called n-dimensional
pseudocube. (We note that @ is always of dimension = n, Hurewicz
([4], p. 40).) The rest = pairs A, B; of opposite faces in cube I"+*
are called improper faces of pseudocube. The intersections F'; =
A, NQ, G =B,NQAL=1=mn) are called opposite faces of the
pseudocube Q.

LEMMA 4.1. The product of m-dimensional and k-dimensional
pseudocubes is (n + k) dimensional pseudocube.

The lemma is evident.

LEMMA 4.2. Let Q" be an n-dimensional pseudocube and (F',
G)yt=1---,1,l =n are l-pairs of its opposite faces. Then for any
collection of partitions C; between these pairs

(i) dimn{C:i=1,---,l}=n — L.

(ii) If dim N{C:2=1, .--,l} <n —1 then the set R = N {C;:
=1, ---,1} is an (n — 1) dimensional pseudocube.

Proof. Let the pseudocube Q" has a representation

an n{Dﬂ.-(-j:j:l, ,k}

where sets D,.; are partitions between opposite spaces of some
cube I™t*, Let

A«;mQ”"—'Fm BinQ”=Gi7 1;=1,--',’)’l/

where A,, B, are proper faces of the pseudocube Q". Let D, be a
partition between A, and B, in the cube I*t* such that D,NQ"*=C,.
Then
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n{Ci:/i—_—l, -..,l}-: n{Dj+n:j:1, ...,k}
NA{Dgi=1---, ) =R.

The set R is an intersection of (k + I) partitions between opposite
faces in cube I"**. Consequently dmR=n+k—(k+1)=mn —1
(see Hurewicz [4] p. 40) and if also dimR <n —1 then R is a
pseudocube. O

In this and in the next section by @ we mean a limit ordinal
number or 0, and » =0,1,2, ---.

DEFINITION 4.3. We shall define for every ordinal number g<w,
a class p; consisting of compacta. Suppose that B is a finite
number, then p; consists of all g-dimensional pseudocubes. If A3 is
a limit number, then p; consists of all compacta R; having the
following representation

Ry = o(pg; Rirvely)

where p, is an extra point, R,€p, and I'; some cofinal subset in
s ={v:v< gl If g=J(B)+K(B), K(8)>0, then class p, consists
of all compacta R, such that

R; = R;p X Rgyyy Ry €058y Brs €0 -

In what follows R; will denote an element of class p;,. Let us
introduce some notations. In this and following sections we consider
a to be a limit number or 0 and » =0,1,2, ---. If 3 =¢ + 1 then
put 8 —1=¢. For every compactum R,., we have by definition:
R,, = R, X R, for some R,cp, R,cp, Obviously, R,:, has the
representation:

(1) Rytw=R,UU{R, X R,:veTl,}

where I', is some cofinal subset in ¢, = {v: v < a}, and R, = {p.} X
R, and p, is an extra point in R,. Representation (1) we shall call
a standard representation of a compactum R,.,.

DEFINITION 4.4. (See Smirnov [17].) For any g8 < ®,, we define
a class of compacta [],. If B < w, then JI; consists of all 3-
dimensional compacta. If g is a limit number, then JJ, consists
of all compacta X such that X = w(p; Y,: Y, eIl,;: v < B where p
is an extra point. Moreover, if g =J(B) + K(B), Xell:a,
Yellgs then X X YeIl,. Thus, for any 8 < w,, we have defined
the class [I,. '
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In [17], (Smirnov) it was proved, that for any 8 < w,
(2) IndX=<pif XeIl,.

LEMMA 4.3. Ewvery compactum R; is contained in some com-
pactum X € T1,.

Proof. Let Ye[]l; then from Definitions 4.3 and 4.4 it follows
that a discrete sum X = Y@ R, is an element of TJ,. |:l

COROLLARY 4.1. indR, =IndR; < 3.

Proof. It is directly derived from (2) and Lemma 4.3. O

LEMMA 4.4. For any q-dimensional compactum K the following
inequality holds:

IndR;, X K<IndR;, +¢=p8+¢q.
Proof. Let Bs=a+n, then R =R,;, = R, X R,, B; X K=
R, x (R, X K). Let XD R, and X €], then by Definition 4.4 X X
R, XK)eTlpts s=dimR, XK <mn-+q. From property (2) it follows

that Ind(X X R, X K)<a+s=a+mn+¢q=p8+¢q. Since, obvi-
ously R, x KC XX R, X K, ndR, x K= g3 +4q. O

Let (1) be a standard representation of a compactum R,.,, then
by ¢ we denote the natural homeomorphism i: R, — R,.

LeEMMA 4.5. Let (1) be a standard representation of a com-
pactum R,., and F be a closed subset in R,., such that F S R, U U
{R; X C:vel,}

(3) where C;CR,dimC, <k, k= —1,0,1, ---.

Then for any pair of closed disjoint sets (A, A"), AU A'C R, there
exists a partition D in compactum R,i, between A and A’ such that

(4) DNR, x C,CRy x C

where C/C R, dimC; =k —1 for k=1 and DNR, X Cr= @ for
kE=<0.

Proof. Let D, be an arbitrary partition in R, between i(4)
and 4(A’), then there exist open in R, sets U and V such that

(5) R\D,=UUYV, AcU, A'cCV.
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Consequently, there exists a sequence of pairs of open sets U,, V,
such that

AcU,cU,y, AV, C Vs, UU:in=12 ---}=U,

(8) U{Vain=12---}=V.

Let 7: N— I', be a bijective mapping of the set of all integ_ers N
onto I',. Then there exists a partition D, in R, between 4(U,) and
#(V,) such that:

dim (D, NC.,) <k —1for k=1 and dimD, N C.,, = —1

(7) for k<0.
We put
(8) D:DOUU{RT(MXD’nzn:l?z’.'.}'

Then by virtue of (7)
DN Ry x C =Ry X (D;~1y N Cy) = Ry X Cf

where C/ = D.-1n N C; and dimC/ <k —1 for k=1 and C/ = @
for £k < 0. By virtue of (5), (6), (8) D is a partition between A and
A’ in Ra+,,,. D

LEMMA 4.6. If conditions of the Lemma 4.5 are satisfied, then
for the set F IndF < a+ k for k=0 and Ind F < n for k < 0.

Proof. We shall prove the lemma by induction on k. Suppose
k= —1 or a =0 then the assertion is evident. Let £ =0, a = o,
and (4, A") be an arbitrary pair of disjoint closed sets in F. By
virtue of Lemma 4.5 there exists a partition D between ANR,
and A’ N R, such that property (4) holds. Consequently, FnDcC
R,UU{R, x Cl:vel'}, dimC/<k—1 for k=1 and DNFCR,
for & = 0. Therefore, by inductive assumption

(9) IndDNF=Za+k—1, or IndDNF < n.

Since F' is a compactum, there exists a finite collection of ordinal
numbers v(1), ---, ¥(s),s =1, 2, --- such that for the set X = F\U
{Riyy X Crp:i=1, -+, s} we have

(10) The set DN X is a partition in X between AN X and
ANX Let Y=F\X= URy,; X Cy, then from condition (3) and
Lemma 4.4 it follows that

Ind Yé max {Ind Ry(i) X CT(i): 'l: = 1’ ey, S}
Smax{v@) + k:i=1 ---, 8 < .
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Therefore, an arbitrary partition D’ in Y between YNA and YN A’
has the dimension IndD’' < @. Since XNY = @, XU Y = F, then
(FND)UD'is a partition in F between A and A’, and

IndDNF)UD' £max(Ind(DNF), IndD)sa+k—1

for k=1,

IndDNF)UD' <« for k=0.
In any case Ind(DNF)UD' < a + k. O
LEmMMA 4.7. Let (F,,G)i=1,---, n be a fixed system of pairs

of closed sets im a space X, F;,NG,= @. If for any partition C,
between these pairs we have

(11) IndnN{C:i=1,---,n} =R

then for any k= n

(12) Ind[ﬁ@-iﬁ%—n——k
and
(13) IndX=pg+n.

Proof. Let inequality (12) be false. Then there exist partitions
Ci+y - -+, C, such that C, separates F, and G, k+1<1 < and IndN
{Cii=1, ..., k} < pB. This contradicts inequality (11). From pro-
perty (12) it follows that

IndC, = 8+ (»n — 1) for every partition between F, and G,.
Hence, inequality (138) holds. O

LEMMA 4.8. Let R, be a pseudocube, and (A;, B)(t=1, ---, k)
k=<mn be any system of its opposite faces. Consider a system of
pairs of closed subsets (A; X Rz, B; X R;) in the compactum Rg., € Optn»
Rsin = Ry X R, B < w,. Then for any collection of partitions between
these pairs we have:

Ind N{Cai=1 -, k}=p+n—Fk.

We shall prove the lemma by induction on 8. For g < w, our
assertion follows from Lemmas 4.1, 4.2. Suppose 8 =a + q = @,
¢g=20,1, --- and for all v < 8 our lemma is proved. We can suppose
R; =R, X R,. Let A be a system of all opposite faces of pseudo-
cube R,, = R,XR,. Then the following system & = {4, XR,, B;x
Ri:i=1,---, k} is a subsystem of A. By virtue of Lemma 4.7 it
is sufficient to prove that for any collection {D;:i =1, ---, n + q} of
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partitions in R;;, between distinet pairs of the system (X x R,,
Y X R,), (X, Y)e A we have

(14) Indn{Di:i:l,"',”ﬁ-Q}ﬁd.

Let R,.,UU{R; X R,+;2vel,} be a standard representation of a
compactum R;,, = R,i,+,. Let vyeI', then

Br X Rytg = Rransg CRpiny N{Dzi=1, -+, %+ @} N Bospsg CN
{Di:1=1,---,n + q}. Since for every 1 =< n + ¢ the set D, N Rrin+q
is a partition between a pair (X X R;, YXR)), (X, Y)eA by
inductive assumption we obtain Ind N {D; N Ryip+ =1, - -+, n + ¢}=
v. Since sup {v:vel,} = a we obtain inequality (14). O

The following lemma is evident.

LEMMA 4.9. Let Y=0(p; Y:1=12, ---) then

Ind Y=sup{Ind Y:¢=1,2, ---}
indY =sup{indY;:2=1,2---}.

COROLLARY 4.2. For any B < w, we have Ind R; = §.

- We shall prove the corollary by induction of 8. Suppose 3 is
nonlimit ordinal number, then R; = R, X R, (v = 1,2, ---). Let (4,
B) be a pair of opposite faces of pseudocube R,. Then by Lemma
4.8 for any partition C between A X R, and BX R, in R; IndC =
a + n — 1. Consequently, Ind B, = 8. The inequality Ind R, = g3
follows from Corollary 4.1. Let B8 be a limit number, then by
definition R; = @(p;: B€ ;) and our assertion follows from the in-
ductive assumption and Lemma 4.9. ]

LEMMA 4.10. Ewery compactum Esecp; is weakly countable di-
mensional.

We shall prove this lemma by induction on 5. If 8 < w, then
our lemma is evident. Suppose all compacta R, are countable
dimensional for v < 8. If B is the limit number, then R; = w(p,:
Ry:vely). Since 8 < w,, I, is a countable set. Consequently, R,
is a union of countable number of its weakly-countable dimensional
closed subsets. Therefore, R; is also countable dimensional. If =
o+ n, then R, = R, X R, and R, is weakly countable dimensional
by inductive assumption. Consequently, R, is also weakly countable
dimensional. ]

5. The proof of Theorem 1.2. First we introduce some
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notations. For £ =0,1,2, ---, put m(k) =k — [k/2]. Let R, be a
pseudocube. Let us number all pairs of its opposite faces. Then
by A(s,t, R,) we denote a subsystem of a system of all pairs of
opposite faces such that A(s, ¢, R,) contains all pairs with numbers
s, ---,t(s = t). By definition the system A(s, ¢, R,) X R, consists of
all pairs (F' X R,, G X R,) where (F,G)c A(s, t, R,)". Let A be a
system of pairs of sets, then for the set X, A A X denotes the
system of pairs (FNX,GNX) where (F, G eA. In this section
we consider I, = {v: v < a}.

ProposiTION 5.1. Let Ry, = R, X R,,n=2. Then for any
system AQ, m, R,), m = m(n), there exists a compactum L,i, C Ry,
such that

(i) Ind L,in < a + m.

(ii) For any collection of partitions Dt =1, ---, m) between
the pairs of the system A(l, m, R,) X R, we have:

(iii) ind L.+, = Y(a@ + m).

Indn{Dz:z__—l’ "',m}nLa+mga

We note, that from Lemma 4.7 and conditions (i), (ii) it follows
that Ind L, = @ + m. We shall prove the proposition by induction
on «. Suppose @ =0 and D,+, -+, D, is a collection of partitions
between the pairs of the system A(m + 1, n, R,) such that for the
set L,= N{Dp+2t=1,---,n —m} we have dim L,, = m. Then by
Lemma 4.2 L, is m-dimensional pseudocube and A(l, m, R,) N L,, is
a system of pairs of its opposite faces. Thus property (ii) follows
from Lemma 4.2, and properties (i), (iii) are evident.

Suppose a = a, = ®, and for any a < a, our proposition holds.
Let I',cTI', be a subset of I', consisting of all ordinal numbers v
with

(1) K(v)>m.

Let f: N— ", be a bijection of the set of all integers n > 0 onto
I’,. Further, since o-locally finite open base in a compact space is
obviously countable, by virtue of Corollary 2.2 we obtain an open
basis 7 ={V,:k=1,2, ---} in compactum R, such that

(2) dimFrV,=n — 1.

(8) the system {FrV,.:k=1,2 ---} is g.p.

Obviously we can also require the following condition: either V, N
F,=9 or V,NnG;,= @ for (F,G)cA(l,n, R,), k=1,2 --.). If
we apply Lemma 3.1 to the system S, = {Vi:k=<p}, k=1,¢=1/p,
we obtain for any pe N a closed set C, C R, such that

(4) C, is an intersection of [n/2] partitions between pairs of

11 For a = 0 we consider that A(1, m, R,) X R, = A(1, m, R,).
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the system A(m + 1, n, R,) in R,.

(5) d(C,NFrVy)<llp A=k=Dp).

(6) dimC, < m =n — [n/2].
From conditions (4), (6) and Lemma 4.2 it follows that C, is an m-
dimensional pseudocube. Let R,+, = R,UU{R; X R,:veTl,} be a
standard representation of compactum R,.,. Put

(7) S,,+n = R,,,, uu {Rf(p) X Cp: p = 1, 2, .. '}CRa-l-”.
V\f’e set J(f(p)) = &, K(f(p)) = s(p), m + s(p) = n(p). Then by virtue
of (1)

(8) m = [n(p)2], m = n(p) — [n(p)/2] = m(n(p))
and Rf(p) X Cp € Psiprtm = Peptnip)e Let Rs(p) = R, X Rs(p)' By virtue
of Lemma 4.1 the set R,,, X C, is n(p)-dimensional pseudocube. If
A(ly 8(p), Rs(p)) = {Aii B:i: j _S— s(p)r A(ly m, Cp) = {Fu Gi: i g m}, then
obviously

A(ly n(p): Rs(p) X Cp) = {A.v X pr B:i X Cp, Rs(p)
X Fi! Rs(p)XGi: 1 é m, j é S(p)} .

Let us number elements of the system A(1, n(p), R,, X C,) by such
a way that a pair R,, X F,, R,,» X G; gets a number i(¢ < m).
Let us apply inductive assumption to the system of .pairs A(1, m(p),
R,, X C,) and to the compactum R;, X C,€ Q¢ +n» Where m(p) =
n(p) — [n(p)/2] = m(n(p)). Then there exists a compactum L, imiC
R, X C,C Rg+, such that:

( ip ) Ind L€p+m(11) = Sp + m(p)

(ii,) For any collection of partitions D?(1 =1, ---, m(p)) in a
compactum R i, = B X C, = R;, X (R,,y X C,) between pairs
of the system A(l, m(p), R, X C,) X R;, we have:

Ind (Liptmn N N{DZ 6 =1, -, m®)}) Z &, .

(i) ind L jimop = ¥(& + m(p))
and L;,imp C Brpy X Cp = Re iy C Ryvn. We put

(9) La+m = Rn uu {L€p+m(p): p = 1, 2, ° '} CSa+nCRa+n .

By virtue of (6), (7) and Lemma 4.6 Ind L., < Ind S+, < a + m.
Hence, the condition (i) holds. Let us prove property (ii). Let
D,(i < m) be a collection of partitions between the pairs of a system
A(l, m, R,) X R, and p be an arbitrary integer > 0. By virtue of
chosen numeration of elements of the system A1, m, R,, X C,) we
have

(10) AQ, m, R, % C,) X R, = (A1, m, R,) X R,) A\ (RsinXC,) -
Put
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(11) .D,;p = Di n Rf(p) X CP CLcH-m .

Then D? is a partition in compactum R, X C, between a pair
A(i, 1, R,y X C,) X Re,. By virtue of (8) m < m(p) = n(p)— [n(p)/2].
Therefore, by Lemma 4.7 and condition (ii,)

(12)  Ind(N{Dri=1, -+, m} N Leimim) = & + (m(p) — m) .

Since &, + (m(p) — m) = J(v) + (K(¥) + m) — [(K(7) + m)/2] —m =
J() + K(v) + [(K(7) + m)/2] for v = f(p) we have sup {&, + (m(p) —
m): p € N} = sup {J(v) + K(7) + [(E(V) + m)/2): 7 < a, K(v) > m} = a.
Therefore by virtue of conditions (11), (12), property (ii) holds. We
have noted above that from properties (i), (ii) follows the equality
Ind L,i, = @ + m. Then, by virtue of Corollary 1.1

(13) ind Lysm = 9@ + m) .

Therefore, we have only to prove inequality:

(14) indm Lu+m é "zb‘(a + m)

for any @€ Lyim. If #€L¢,imp C Lorn then inequality (14) follows
from the inductive assumption. Indeed, by virtue of Lemma 1.1
() (&, + m(p)) = ¥(a + m) and since L;,inp is obviously open in
L., inequality (14) follows from (iii,). Therefore, by virtue of (9)

it is sufficient to prove inequality (14) for xc R,. Let us consider
an open in L., set U = Uk, q), where

(15) U=V, X R\U{Rsp:p =1, -+, q}) N Losm, Vi €7 .

Since the system‘ of open sets {U(k, ¢):k,1=1,2, ---} forms a basis
in any point z € R, it is sufficient to prove that

(16) ind (FrU N Losy) < v(a + m) .

By virtue of (9), (7) and (15) we have

FrUN Lysn C(FrV, x R)N Lypin R, U

17
{4 U{FrV, X R.NCy X Rppy) N L pimim: = 1,2, -+ -}

Further, we obviously can consider that metric p in a space R,:,=
R, X R, is defined by the equality
o((@, ), @, ¥)) = pux, &) + 0y, ¥), x, 2’ €R,, ¥,y €R,,

where p, and p, are metrics in R, and R, respectively. Therefore,
by virtue of the equality FrV, X R,NC, X Rs,, = (FrV,NC,) X
R, we have
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dl((F’rVk X Ra n Cp X Rf(p)) ﬂ Lep+m(p)) § dl(F/rVk X RanCpXRﬂp))
= dl(F'rVk n Cp) + diam Rf(p) .

Since R,=w@(p., Ry:vel',), we have by Lemma 4.0 lim,_., diam R, =
0, therefore by virtue of (5)

(18) lim d(FrVs X RBa Cy X Ryn) N Lieyinim) = 0.
Put

(19) 0, = FrV, X R,NCp X Rpp) N L psmiy -

By inductive assumption we have

(20) ind 6, < ind L. 4 nny = (& + m(p)) .
Moreover, by Lemma 1.1 (j)

1) sup {y(&, + m(p)):p =1, 2, ---} = y(a) .

Since the sets ©, are open-closed and disjoint in

(22) M=R,UU{0,:p=12 -},

by virtue of (18), (19), (20), (21) and Lemma 3.4 we obtain
(23) ind M < () .

By virtue of Lemma 1.1 (j) y(a) < 4(a + m). Therefore, by virtue
of (17), (23) FrUN Ly, M and inequality (16) holds. Thus, in-
equality (14) is proved. The proposition is completely proved. Il

Proof of Theorem 1.2. For any nonlimit number g there
exists such a number a + n(n = 2) so that 8 = a + m(n). We can
merely put @ +n = g8 + K(B). Therefore, by virtue of Proposition
5.1 there exists a compactum X; = L 15 C Rsrx such that

(24) Ind X,e = B, ind Xp = QII‘(B) .

Since by Lemma 4.10 R, is weakly countable dimensional, X, is
also weakly countable dimensional. Let 3, be a limit number. Then
we put

(25) Xp, = (0, Xp: 8 < By K(B) > 1) .

Since X, are weakly countable dimensional, Xgo is also weakly
countable dimensional. By virtue of Lemma 4.9 and (24) Ind X, =
sup {Ind X; = 8: 8 < By, K(B) > 1} = 3,

(26) ind X, = sup {ind X, = ¥(8): 8 < B K(B) > 1} .
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By virtue of Lemma 1.1 (m) and (26) ind X, = 4(8,). Theorem 1.2 is
completely proved. As it was mentioned in £1 Theorem 1.2" follows
from Theorem 1.2. Therefore, Theorem 1.2’ is also proved. O

From Proposition 5.1 and an equality (25) it follows that com-
pactum X, imbeds in some compact Rpig € Op+xe for nonlimit g,
and X; imbeds in R, for limit 8. Therefore the following assertion
holds:

COROLLARY 5.1. For any 8 < @, there exists a compactum X,
satisfying condition (24) and having an imbedding in some compact
R5+K(ﬁ)'

6. On small inductive dimension of product of spaces. This
section is auxiliary. We shall prove here some results available for
estimation of the small inductive dimension.

DEFINITION 6.1. (See [6] Katetov). A mapping f: X— Y is
called uniformly zero-dimensional if for any ¢ > 0 there exists 6 > 0
such that if the diameter of a set McC Y is less than 4, then
FY(M) is a union of a discrete collection of sets of the diameter <
e. We need the following assertions:

(K1) If f: X— Y is uniformly zero-dimensional mapping, then
ind Y =ind X. (See [20], Zarelua.)

(K2) (See [6], Katetov.) dim X < » if and only if there exists
a uniformly zero-dimensional mapping f: X — I" of the space X in-
to n-dimensional cube.

We also need the following theorem (see [18], Toulmin).

(T1) If a space X has a dimension ind X then ind X x I <

ind X + I where I = [0, 1] is a segment.

LEMMA 6.1.%2 Let f: X— Y be a uniformly zero-dimensional
mapping and g: XX Z— Y XZ be a mapping defined by the equality
9, 2) = f(x), (@ X,2€Z). Then g is also uniformly zero-dimen-
stonal.

The lemma is evident.

PROPOSITION 6.1. For any finite dimensional space X and for

a space Y having the dimension ind Y the following inequality
holds:

12 In what follows, we consider that on product X x Y of spaces X, ¥ the metric
is given by the following equality: p((x, ¥), (x’, 3")) = p,(x, x’') + py(3, ¥"), (x, '€ X, 3,
y'eY), p,, py are metrics in X and Y respectively.
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(1) nd(XX ¥Y)<indY + dim X .

Proof. By Theorem (K2) there exists a uniformly zero-dimen-
sional mapping f: X — I", where dim X = n. By Theorem (T1)
(2) ind(YXI)=<indY+n=ind ¥ 4+ dim X .
Let g: X X Y—I" X Y be a mapping defined by the equality

g, y) = fx),y xeX, ye¥.

Then, by virtue of Lemma 6.1 g is uniformly zero-dimensional
mapping. From Theorem (K1) and inequality (2) follows (1). O

PROPOSITION 6.2. Let {U:s=1,2, ---} be a collection of open
sets in a space X such that
(3) UoUu, U=X
lim,,diam U, =0 and N{U,:s=1,2, ---} = {p},

4
(4) where p 15 a point in X .
(5) ind(Us\ﬁs+1) X In é a
Jor some n=1,2 ---, 0 = w, and for any s=1,2, ---. Then for

any space K with dim K <n the following inequality holds:
ind(X x K) < a + [(n + 3)/2].

At first we need some preliminary lemmas. Let (» + 1) dimen-
sional cube I"** be a product of segments [0,1] = I. Then I"*' =
Ix I*. We denote by I™ the set {0} x I"cI™*'. We suppose that
there is a collection of open sets 7" ={V,s=12, ---} in cube
I such that

The collection 7= {V,N{I*\["):s=1,2, ---}

6 -
(6) is loecally finite in (I*+1\I®).

(1) The collection 7, = {FrV:s=1,2, ---}
is g.p. and dim F»V, < n .
(8) The system 7" forms a basis in all points z e I™.
Then the following lemma holds:
LEMMA 6.2. Let (F,G@) be a pair of disjoint closed sets in
cube I™*' and

(8) o(F, G) > sup {diam V:s=1,2, ---}
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where o(F, G) = inf {o(x, y): v F, ye G}, p is a metric in I**. If
% ={Uspte #} is a locally finite in U = (I"\I™) open covering
of the set U and k = [(n + 1)/2], then there exists a partition C in
cube I™** between F and G such that for any s=1,2, ---,

(9) The set CNFrU,N U is a union of k closed sets L*, - --, L*
such that every set Li(j =< k) is a union of a discrete in U countable
collection L’ of closed sets Li(i=1,2, ---) and every set LI is con-
tained in some set U, € 7.

Proof. By virtue of (8) there exist open (in cube I"*') neighbor-
hoods OF and OG of sets F' and G respectively such that

(10) OFNO0G =g¢.

11 Either V,NOF =¢ or V,NOG = ¢ for any V,e7" .
Then, obviously

(12) I*\OF)NF =9, I*\0NG=4¢.

We note that by virtue of (6), (7) the collection 7; = {FrV,N U:
s=12, ---} is locally finite, and is g.p., and dim F»V,N U < n.
Therefore, by virtue of (10), (11) the conditions of Lemma 3.1 are
satisfied for :

(13) F,=0FnU, G =0GnU
Din +1,k) =[(n+1/[(n+ D21+ 1D]=1, k=[(n+1)2], X=T.

By Lemma 3.1 we obtain a partition C’ in U between F, and G, such
that the condition (9) holds for C = C’. (We note, that collection
<#i is countable, because U is separable.) For proving our lemma
it is sufficient to show the existence of partition C between F and
G such that

14) C'=CnU.

Since C’ is a partition between F and G in U there exist disjoint
open sets H, and H, such that: H, O F, H,OG, H,UH,= U\C',
H,NH,=g¢. Then by virtue of (13) H,c U\G,c U\OG c I**'0G.
Similarly, H,c I*"\OF. Therefore by virtue of (12) A, N G=¢, H,N
F = ¢. Since I*+' is hereditarily normal space, there exist open in
I+ gsets H,, and H, such that

ﬁlDH1UF, ﬁzDH2UF, ﬁlnﬁ2:¢

therefore the set C = I**\(H, U H,) is a partition between F and G
and condition (14) holds.
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LEMMA 6.3. Let f: X— Y be a mapping and Y = KU U {Li:
1=1,2 +--,5=1,--- k}. If the set f~(K) is closed and finite
dimensional, sets Li(i = 1,2, ---) are open-closed in K’ = KU U {Li:
1=12+- and LinLi=g¢ for 1+, LinNnK=¢ for any 1.
lim,_. diam f~*(L{) = 0, ind (X\f(K)) < a, a = w, then ind f'(y) <
a+ (k—1).

Proof. Put Z = f-(X), then obviously all conditions of Lemma
3.8 are satisfied. We have only to change notations. Consequently,
our lemma follows from Lemma 3.3. |

In this section we shall consider that a space X, satisfies the
conditions of Proposition 6.2.

LEMMA 6.4. There is a mapping f: X X I*— IX I* = I*** such
that:

(A) If for a sequence of sets M, M;eI"+'lim,,,  diam M, =0,
lim,_,, o(I*, M) = 0, where po(I", M,) = inf {o(z, y): xcI*, ye M, p is
a metric in I*, I» = 0 x I"}, then lim,.. diam f(M,) = 0.

(B) For any point xe{p} X I"C X X I" and a closed set F,
xe¢ Fc X X I™ we have:

FF)? f(@) .

ﬁC) The restriction of f to f~*(I") is a homeomorphism and
A" = {p} x I".

Proof. (A) Let us put E={p}UU{FrU,:s=1,2, ---}. Then
E is a closed subset of space X. We define a continuous funection
g: E— I by the equalities: g(p) =0, g(FrU, = 1/s. By Urysohn’s
theorem there is a continuous function h: X — I = [0, 1] such that
the restriction of & to E coincides with g and if x¢ U\U,,, then
1/(s + 1) =< h(x) = 1/s. We shall consider a continuous mapping f:
X X I"— I" = I defined by the equality: f(z, ¥) = h(x), y; € X,
yel*, Let ;) X X I*"> X, o X X I*"—1I* w:I X I"—I* w:1IX
I"— I be projections. As it was mentioned above, we can consider
d(@, v), @, 9)=px(x, @)+ 0.4, ¥, 2,2 €X, y,y eI, where d,
Ox, O;» are metries in X x I® X, I" respectively. Therefore, for
proving (A) it is sufficient to show that

(15) lim diam z,(f~*(M,)) = 0
(16) lim diam 7,(f (M) = 0 .

It is evident that if o(I*, M;) < 1/s then w0 f~(M;) = h~om(M,)C U..
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Consequently, by virtue of (4), equality (15) holds. Moreover, we
obviously have n,(f'(M,)) = my(M;). Since lim,...diam M, =0 we
obtain lim,..diam 7,(M,) = 0. Therefore, equality (16) holds, and
property (A) is proved.

(B) If xep x I*, x¢ F then there is such a set U, and an
open in I" set V such that xe U, X Vc X x I"\F, then obviously
f@)el0,1/s +1] X VcI x I"\f(F) and since [0, 1/(s + 1)] X V con-
tains an open neighborhood of a point f(x) in I™*', property (B)
holds. Property (C) is evident. O

DEFINITION 6.2. (See [1] Borsuk). A covering % of an open
set UcCY is called canonical if for any point xe€ Y\U and its any
neighborhood V there is a neighborhood Was2 in Y such that if
Gez and GN W # ¢ then GC V.

In [1] (Borsuk) it was proved that for any open set UC Y there
is an open canonical covering of U.

LeMMA 6.5. Let f: X X I"— I"" be a mapping satisfying the
condition of Lemma 6.4 and let in Lemma 6.2 a covering U be
canonical. Then, for the set C satisfying the condition (9) we have
ind f(C) = a + [(n + 1)/2].

Proof. By virtue of property (C) in Lemma 6.4 and by virtue
of (4)

FHO) = (fFT TN FHC) U ULfO)
N(UNT2 X I"):8=1,2, ---} .

Since the sets f~(C) N ((U\U,+;) X I") are open in f~(C), then by
virtue of (5) we have only to prove

(18) ind, f*(C) = a+ [(n + 1)/2] for xe fXC)Nn fI") .

17

From Lemma 6.4 and condition (8') it follows that the collection
{f(V,):s=1,2, ---} forms a basis in each point z € f~(C)Nf(I").
Since Fr(f~4(V,)C f(FrV,) it is sufficient to prove that for any
8 = 1, 2, e

(19) ind f(FrV,nC) < a + [(n + 1)/2] .

If the condition (9) is satisfied and U is canonical covering, then
obviously lim,.. diam L = 0, lim, ... o(I", L{) = 0 for j < k=[(n + 1)/
2]. From Lemma 6.4 it follows that

(20) lim diam f~*(L{) =0 .
Put
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21 K=(CnFrv,nI".

Then, obviously, CN FrV,= KU (CNFrV,NnU). From condition
(9) it follows that

(22) CNFrV,=KUU{L{:1=1,2,---,5=1, -+, k}.

(23) Sets L! are open-closed in K = KUU, Li and LinLi =
for ¢ # 4 and KN L{ = ¢ for any 1.

From Lemma 6.4 (C) it follows that dim f(K) <n. Moreover,
since

FCNFrvV,NnU)=f(CNFrV)\f(K)cX x I"\{p} x I"
we obtain by conditions (4), (5)
(24) nd(fCNFrV)Af(K)=a.

We put X = f(CNnFrV,), Y=CnN FrV,, then f(Y) = X and by
virtue of conditions (20)-(24) and by Lemma 6.3 we have ind f~(C N
FrVv)s=a+ (k —1)<a+ k. Therefore, the inequality holds. The
lemma is proved. []

LEMMA 6.6. There exists a collection of open sets 7" = {V,:s=
1,2 --:} in cube It such that conditions (6), (7), (8") hold, and
diam V, < ¢ for given ¢ > 0.

Proof. By virtue of Corollary 2.2 there exists an open basis
A ={U,; ac .} with boundaries of dimension dim F»U,<n and a
collection {FrU,: ¢ c A} is g.p. We can select for any 1=1,2, ---
a finite covering A, of the set I*, consisting of elements of collec-
tion A and satisfying the condition: diam T < ¢/¢ for Te A4,. Put
7 =U{4;:1=12, ---}. Then 7 obviously satisfies conditions (6),
(M), 8.

LEMMA 6.7. ind (X X I") = a + [(n + 3)/2].

Proof. From conditions (4), (5) it follows that ind, (X X IS«
for any xe€ X X I"\{p} x I*. Therefore we have only to prove that

(25) ind, (X x I") < a + [(n + 8)/2] for ze{p} x I".

Let f: X x I*— I"* be a mapping, satisfying conditions A, B, C of
Lemma 6.4 and let xe{p} X I" be any point. If F' is a closed set
in X x Iz ¢ F, then by virtue of (B) y=s)¢ f(F)=G. By virtue
of one theorem in [1] Borsuk, there exists an open canonicla covering
2% of a set U= I""\I". By virtue of Lemma 6.6 there exists an
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open collection {V,:s=1,2, --.} satisfying the conditions (6), (7),
(8") and diam V, < e = p(f (%), 7‘(177) = o(y, G). Hence, the conditions
of Lemma 6.2 hold and there is a partition C in I*** between y and
G, satisfying the condition (9). Then f~'(C) is obviously a partition
between # and F in X X I” and by Lemma 6.5

ind fFAC)=a+[n+ D2 <a+[(n+ 3)2].
Consequently, inequality (25) holds.

Proof of proposition 6.2. By virtue of Theorem K2 there exists
a uniformly zero-dimensional mapping ¢: K— I”. Let X X K—
X X I" be a mapping defined by the equality »(x, y) = z, g(y) 2z € X,
ye K. Then by Lemma 6.1 + is uniformly zero dimensional. Con-
sequently, by Theorem K1 and Lemma 6.7 ind (K X X) < ind (X X
I < a+ [(n + 3)/2]. N

7. On dimensions of Smirnov’s compacta. It is easy to
show for a space X = R,, where « is a limit ordinal number, that
all conditions of Proposition 6.2 are satisfied and, consequently,
ind B+, < @+ [(n + 3)/2]. However, we can obtain more accurate
estimation for ind R,.,.

PROPOSITION 7.1. For a compact space R,., we have
(1) ind R4, = a + [(n + 2)/2]
where a is & limit number, n =0,1,2, - --.

Proof. Since for n < 2 inequality (1) follows from Corollary 4.1,
we can assume 7 = 3. We consider a standard representation of

the compactum R,:, R, = B,UU{R; X R,:vel,}. It follows from
Corollary 4.1 that

(2) indRyy, =indR, X R, <v+n<a (vell,).

Since the set R, X R, is open in R,., for any v€I, we have only

to prove that
(3) ind, Ryrn = a + [(n + 2)/2] for xeR, .

Let f: N— I', be a bijection of the set of all integers N onto I,
We put ‘

(4) X, =R\U{R;:t1=1,2 --} (peN).
Let 6 > 0 then we put
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(5) F, = 0,x)%, F,= R\0,®), G = 0,(x)\0,x)

By Corollary 2.2 there is an open basis 7" = {V,:s=1,2, ---} in R,
such that 7" is a o-locally finite collection (and since R, is a com-
pactum, the collection 7” is countable) and

(6) collection 77 ={FrV,: V,e?7,s=1,2, ---}
is g.p., dmFrV,=n —1.

We can obviously consider that

(7) either V,NF,=¢ or V,NF,=¢ (seN).

Let k= [n/2], e =1/p, D(n, k)= [n/([n/2] +1)]=1 and S, ={V,
s < p} be a subcollection of a collection 7. Then by virtue of (6),
(7), the conditions of Lemma 8.1 are satisfied and by this lemma
there exists a partition C, in B, between F, and F, such that

(8) dC,NFrV)y<l/p 1=1,---,p.
Let g€ N, then we set
(9) D=D@,q,2)=GUU(Rs» xCpip=¢0+1, -} CR,,

where C} is an image of C, under the homeomorphism: i: R, — R,.
Then D is obviously a compactum. Let us show that

10) ind D £ a+ [n/2].
By virtue of (2) it is sufficient to prove that
(11) ind, D =a+[n/2] for xeG.

We consider a collection of open sets A={X, x V;:p=12, ---}
(V, = 4(V,)) where X, is defined by (4). Then, obviously, A forms
a base in points of the compactum R, and, consequently, in points
G c R,. Therefore we have only to prove that

(12) ind(Fr(X;, x V/))ND)=a+ ([n/2] - 1).

It follows from (8), (9) that

(13) (FrX, x V/)NDCR,UU{Rs, X (FrV/NCy):p=q, q+1, ---}
(14) d(FrVixC)=llp I=p.

Moreover, from Definition 4.3 and Lemma 4.0 it follows that

(15) lim diam R;,, = 0.

p—roo

13 Here by Oj;(x) we mean a d-neighborhood of x in R, (¢ = 4, 20).
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Consequently, from (14), (15) it follows that

(16) lim d,(Rs,, X (FrV/NC;)=0.
p—rc0

Since Ry, X (FrV/NC,;)<Rs, X R,, from condition (2) it follows
that

@) sup {ind Rs,y X (FrV/ NC:p=¢,¢+1, ---} S .

From condition (13), (16), (17) and Lemma 3.4 it follows that

ind (Fr(X, x V) N D < ind R, U U {Rs» X (FrV{NCL:p
=qq+1l, - }sa+E—-D=a+[n2]-1.

Thus, inequality (12) holds; consequently inequalities (11), (10) also
hold. From construction of the set D = D(, q, x) it follows that

for any closed set F' and a point z € R, there exists a 6 >0
(18) and ¢=1,2, .-+, such that the set D(, q, x) is a partition
between F' and z.

From conditions (10), (18) follows (3) and, consequently (1). D

DEFINITION 7.1. (See [17] Smirnov). For any ordinal number
B8 < w,, we shall define a compactum K;. For g8 < w,K; is a g-
dimensional cube. If g is a limit number we put K; = w(p;; K;:
v<RB). fp=a+na=JB),n=KB) >0 we put K, = K, xI".

It is evident that K;<cp; (see Definition 4.3). In what follows
K, will denote a compactum defined above. In [17] (Smirnov) it
was proved that

(19) Ind K; =g

however, the equality

(20) ind K; = Ind K, .

From Proposition 7.1 it follows that for K(B) = 3, 8 = w, equality

is not true (20) is false. However, for some g it is true.
THEOREM 7.1. If n=3,4, ---a 18 a limit number < ®,, then

for compactum K,.,, we have

(21) indK,,,<a+[=n+2)/2<a+mn=1IndK,, .

If a is an invariant ordinal number then for i =0, 1, 2,

(22) ind Ka+i = Ind Ka-(-,; =a+1



METRIC SPACES WITH NONCOINCIDING TRANSFINITE DIMENSIONS 3875

and besides that
(23) mdK,;s=a+2.

Inequality (21) follows from inclusion K;ep, and Proposition 7.1.
If ¢ =0,1 then equality (22) follows from (19) and Corollary 1.2
(B), (C). Let us suppose that

(24) mdK,.,=Za+2.

Since obviously K,., is topologically contained in K,,, we have
ind K,., = o + 2. The opposite inequality follows from -condition
(21). Since by virtue of (19) ind K,4, < Ind K4, = a + 2, we have
only to prove (24). To prove this inequality we need some pre-
liminary results.

DEFINITION 7.2. Let X be a set in a product E* X Y of a plane
E* and an arbitrary space Y, and p: E*— E*® be a reflection with
respect to a straight line # € E*. Let us consider a mapping »(x):
E*xX Y— E*x Y, defined by the equality

p(m)(x, y) = p(x),y weE:,yeY.

The mapping p(x) is called a reflection in E* X Y with respect to

#. The mapping p(r) is obviously a homeomorphism, and p(z)(¢)=c
for cexw X Y.

DEFINITION 7.83. Let XCE?X Y be an arbitrary set. We
define O(X, Y) as a minimal collection of sets in E* X Y such that

(a) XeOX, Y).

(b) If ZeO(X, Y) then for any reflection ¢: E* X Y—-E* X Y
we have ¢(Z)U ZeO(X, Y).

LEMMA 7.1. Let A, B be a pair of parallel straight lines in
E?, «a be a limit number and p, be an extra point in a compactum
K, = oD;: K;: 3< ). Let M be a set in E* X K, satisfying the
condition

(25) MNBx K,=¢.

If the set M contains a set @ X V, where Q is a square in E* such
that one of its faces is contained in A4, and V C K,, then for any
compactum K C A there exists a set XeO(M, K,) such that

(26) XNBxK,=¢, XDKX V.

Proof. Let R be a rectangle in E* such that one of its faces
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is contained in A, and g, v be a pair of two parallel straight lines
containing two faces of R which are perpendicular to A. Let
r(tn): E*— E*, p,(pp): E* X K,— E* X K, be reflections in E? and in
E* x K, with respect to v (respectively ). We put

TR) = 7((ri(R) UR)) U (r(R) UR),
L'=RXV)=p®R X V)UR X V)U@RXVIURXTV)).

Then obviously LR X V) = T'(R) X V and the set T'(R) is also a
rectangle such that one of its faces is contained in A. Therefore,
sets L'(L'R x V)), T(T*R)) are defined. We put

L"tY(R x V) = L(L"R x V)),
T+(R) = T(T*R)) .

Therefore, the following condition holds
AcCcU{T"*(R),n=0,1, ---}, T"*"(R)yX V=L"""(RX V).

Consequently A X Vc U L*'(R). Therefore, for any compactum
K cC A, there exists a number » such that

@7 Kx VCLR X V).

Now let R=0. Let O,(M, K,) be a minimal collection of sets,
satisfying the following conditions:

MeO,(M, K,) .

If XeO,(M, K,), 1L A, then (p(z)(X)U X)eO,(M, K,), where p(z)
is a reflection with respect to . Then, obviously O,(M, K,) c O(M,
K,) and for any » =1, 2, --. there exists a set XeO,(M, K,) such
that L*(Q X V)c X. By virtue of (27) we have only to prove that

(28) If XeO,(M, K,) then XNB X K,=¢ .
By virtue of (25) it is sufficient to prove that
29) If XNBX K,=¢, 1A, then P)(X)UXNBX K,=¢.

Since ¢ L A, Al|B and P(#) is a homeomorphism, we have P(¢)(B X
K,) = B X K,,

¢ = P()(X) N P(#)(B X K,) = P()(X)N B X K, .

Therefore B x K,N P(H(X)UX)=P)(X)U XN B x K,=¢. Thus
property (29) and Lemma 7.1 are proved. 0

LEMMA 7.2. Let U be a subset in E*Xx Y. If WeO(U,Y)
-then there exists a set L€ OWFrU, Y) such that FrW C L.
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Proof. Let R:E* X Y— E* X Y be a reflection, and ZcC E* X
Y. Then since R is homeomorphism, we have

Fr(ZURZ) S FrZU FrR(Z) = FrZ U R(FrZ) .
Therefore, if FrZc LeO(FrU, Y) then Fr(ZU R(Z))c (L U R(L)) e
OFrU, Y). Our lemma now follows from Definition 7.3. O

COROLLARY 7.1. Let the conditions of Lemma 7.1 be satisfied,
and M be an open set. Then there exists an open set X such that

(30) FrX is a partition between B X K, and K X V.
31) There exists a set CcO(FrM, K,) containing FrX.

Proof. Since the set M is open, the collection O(M, K,) consists
of open sets. By Lemma 7.1 there is a set X e O(M, K,) satisfying
the condition (26). Since X is open, the condition (30) holds. The
property (31) follows from Lemma 7.2. J

We shall use the following proposition proved in [18], (Toulmin).

(T2) Let A, B be a pair of closed sets in a space S, AU B = S.
If there is a homeomorphism f:B— A such that f(c) =c for any
c€ AN B and dimension ind S is defined, then ind S = ind A.

LEMMA 7.3. Let Z be an arbitrary set in a space E* X Y,
then for any XeO(Z, Y) we have: ind X = ind Z.

Proof. Since any reflection R: E*X Y — E*X Y is a homeo-
morphism and R(¢) = ¢ for any point ce R(A)N A and any set AC
E*x Y, Lemma 7.3 follows from Theorem T2 and Definition 7.3. []

LEMMA 7.4. Let (F, G) be a pair of opposite faces of a square
I*. Then there is a partition C in compactum I* X K, = K,;,
between F' X K, and G X K, such that

(32) ind C < ind K,4, .

Proof. Since spaces E* X K, and K, X I* have imbeddings into
each other

(33) indK,,,=ind K, x I*=ind £* X K, .

Let ¢: I* — E* be a linear imbedding and A, B be a pair of straight
lines in E* such that ADF, BOG. We consider imbedding q:
I* x K,—E* x K, defined by the equality
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vz, ¥) =P®),y (@el,yeck,).

Now we can consider that I®*x K, is imbedded in E? x K, by
means of . For any point pe F = F X p, (where p,c K, is an
extra point) there exists a neighborhood M3p in E* X K, such
that

(34) indFrM<indE*X K, MNBX K,=¢.

Then there exist sets V and @ such that: V is open in K,, @ is a
square in E?, such that one of its faces is contained in A4, QX VC
M and

(35) V=K\Uim K, =12 ---,7.<a).

By virtue of Corollary 7.1 there exists a set C' such that

(86) C' is a partition in E* X K, between B X K, and Fx V.
37 C! is contained in some set Re O(FrM, K,) .

By virtue of Lemma 7.3 and conditions (34), (37) we have:

(38) indC'<indR=ind FrM <ind E* X K, .

Let T = U:.. K;, = K,\V. Since obviously sets E* X T and I* X T
have imbeddings into each other and K,; X I* = K;,4,, by virtue of
(21), (85) we have ind E* X T < a@. Therefore for any partition C*
in E* X T between BX KNE*X Tand F X T

(39) indC*<a=<indE*x K, .

We put C* = C*U C® Then by virtue of (36) the set C*® contains a
partition C* in E* X K, between B X K, and F' X K,. Moreover,

(40) c'nC*=4.
Consequently, by virtue of (38), (39), (40):
(41) indC*<ind C* < max (ind C%, ind C*) < ind E? X K, .

We put C = C* N I? X K,, then C is a partition in I* X K, between
FxK,and GX K,=B X K,NI* X K,, and by virtue of (41), (83)
indC £ind C* < ind E* X K, = ind K,.,. 0

LEMMA 7.5. For any partition C in K,., between F X K, and
G X K, (where (F, G) are opposite faces of I*) we have ind C=a+1.

Proof. Since K,i;€ 0h+:, by Lemma 4.8 IndC=a + 1. Let
ind C < a. Since « is invariant number and by virtue of Theorem
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1.1, Ind C £ ¢(ind C) < ¢(a) = a. Consequently, indC=a +1. [

As we mentioned above, for proving Theorem 7.1 it is sufficient
to prove inequality (24). However, this inequality directly follows
from Lemmas 7.4, 7.5. Thus Theorem 7.1 is proved. I

COROLLARY 7.2. The equality ind X X I =ind X + 1, where I =
[0, 1] s false even for a compact space X.

Proof. We put X =K, . Since w, is an invariant number
and K, = K,+,XI then by Theorem 7.1 ind K, +,x I<ind K, :,+1.

O

THEOREM 7.2. There exists a compactum X such that for any
finite dimensional separable space Y with dimension ind Y > 0 we
have ind X X Y < ind X + ind Y.

Proof. We put again X = K, +,. Since Y is separable space,
ind Y =dim Y and by Theorem K2 (§6) there exists a uniformly
zero-dimensional mapping f: Y — I* where n=ind Y. Let g: K+, X
Y— K, X I" = K, 1,1, be a mapping, defined by the equality g(z,
y) ==, f(y). Then by virtue of Lemma 6.1 g is a uniformly zero-
dimensional mapping. Consequently, by Theorem K1 §6 and by
Theorem 7.1

ind X X Y =ind Kw0+2 XY = ind Kw0+n+2 = @,
+ [(n + 2)2] < @, + n .

The last inequality holds because n > 0. ™

8. On D-dimension. In [2] Henderson defined a transfinite
D-dimension in the class of all metric spaces* For any space X,
D(X) is either ordinal number or abstract symbol 4.

DEFINITION 8.1. We put D(g) = —1. If X =#¢ then D(X) is
the smallest ordinal number B such that there exists a collection of
sets {A:: 0 < £ < v} satisfying the following conditions:

(a) X=U{4:0=&s=n7}

(b) Every set A, is closed and finite dimensional.

(¢) For any 6 =< v the set U{4,:0 =< a =< v} is closed in X.

@ JB) =, dim 4, < K(g).

(e) For any point x € X there exists the greatest number 6=~

4 Some results on D-dimension see also in [11], (Luxemburg).
%5 Tt is considered for every ordinal number B8 that f <4, 4 + 8 = 4.
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such that xcA4,. If there is no such number 8 we put D(X) = 4.
If the conditions (a)-(e) hold then equality (a) is called a B-D-repre-
sentation of a space X.

In [2] Henderson proved that for any compact space X having
the dimension Ind X we have

(1) ind X<Ind X < D(X).

(2) |D(X)| < weight X, where |D(X)| is a cardinality of
D(X).

(8) If X is a finite dimensional space then dim X = D(X) =
Ind X.

PropPOSITION 8.1. (see also [12] (Luxemburg)). For any com-
pactum Y such that Ind Y = w,, D(Y) < 4 and for any ordinal
number v, D(Y) < v < w, there exists a compactum Y, containing
Y and satisfying the following condition

DY)=v, IndY,=IndY, indY,=ind Y.

Proof. In [2] D.W. Henderson constructed for any v < @, a
compactum X, such that ind X; = Ind X; = w,, D(X;) =~v. Let us
put Y;=X,UY,YNX,=¢. Then, obviously Y, satisfies the
conditions of Proposition 8.1. O

COROLLARY 8.1. There exist compacta X such that ind X <
Ind X < D(X).

Proof. By virtue of Theorem 1.2 there exists a weakly-coun-
table dimensional compactum X such that Ind X > ind X. In [3]
(Henderson) proved that every countable dimensional separable space
X has dimension D(X) < 4. From (2) it follows that D(X) < w,.
Consequently, Corollary 8.1 follows from Proposition 8.1. 0

THEOREM 8.1. If for a space X, D(X) < 4 then X has dimen-
ston ind X and
(4) indX=<DX) + 1.

LEMMA 8.1. If for any point y € Y there exists a neighborhood
0,2y such that ind O, < a, then ind Y < a.

The lemma is evident.

16 There is a mistake in [7] Kozlovsky, Proposition 11, where the author asserts the
inequality ind X < D(X) in equivalent statement.
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LEMMA 8.2. Let (a) be a B-D-representation of a space X, K(3)=
n >0 and CC X be a closed set such that

(5) dimCnNA, =<n—1.
Then D(C) < J(B) + (n — 1).

Proof. We put

(6) B.=CnA4. £¢=~.

Then by virtue of (5)

(1) dim B, < (n — 1)

and

(8) C=U{B:¢e=1}.

Since a) is a g-D-representation of X, from (6), (8), (7) it follows
that (8) is a (8 — 1)-D-representation of C. ]

LEMMA 8.3. Let (a) be a 3-D-representation of a space X and
v = w, We put

(9) U= X\U{d:e=6:0<n7}.
Then the set U; is open and D(U,) <6 + s <7 for some s=1,2---.

Proof. Since (¢) holds, U; is open. Let 6 = T(5) + K(). We
put

(10) By = UfAuwsn NUz 5 =0, -+, K(3)}
(11) B.=A4,nU, (¢r<J©)

(12) s = dim By, .

Then

(13) U, = U{Bu: 1t < J©O) = J( + s)} .

Since (a) is a gB-D-representation of X and by virtue of (10), (11),
(12), the equality (13) is a (0 + s)-D-representation of U,. |

Proof of Theorem 8.1. We shall prove the theorem by induc-
tion on g = D(X). If D(X) < w, then by virtue of (3)
IndX=DX)=dimX=ind X.

Let D(X) =83 = w, and (a) be a B-D-representation of X. Let us
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show that
(14) ind (X\4,) =v=J(@Q) .

Let xe X\A,;, then by virtue of (e) there exists such §, < v that
x¢ A;, for 6’ > 6,. Consequently,

ve Uy = X\U{4;:0" = 0, + 1,0 <} .

By virtue of Lemma 8.3 D(U,,) < v. Consequently, by inductive
assumption ind U;+, < D(U,+) + 1 < 7. Inequality (14) now follows
from Lemma 8.1. Let x€X and F'ax be a closed set in X. If
K(B) =n >0 then there is a partition C between z and F such
that inequality (5) holds. By virtue of Lemma 8.2 and by inductive
assumption ind C < D(C) + 1. Consequently, inequality (4) holds.
If K(B) =0 then by virtue of (d) dim A; <0 and we can find a
partition C between 2 and F such that CN A4, = @. Consequently,
Cc X\A4;. By virtue of (14) ind C < ind (X\4,) < J(B) £ D(X). The
theorem is proved. |

Inequality in Theorem 8.1 cannot be improved. We give an
example of a space X such that

(15) ind X = D(X) + 1.

(A) Comnstruction. Let I™ n =1,2, --- be a collection of cubes.
We can consider that on each cube I™ is defined a metric p, such
that there exist two points «,, y,cI” with p,(z,, ¥, =1. We
identify all points {x,} in disjoint sum U{I*n =1,2, ---} with the
point {p} = x,. We obtain the set X = Uz, I*, I*NI" = {p} for
n#n'. In X we define the following metriec:

_ (oulw, ) for x, yel®

o ¥) = 0., P) + ou(y, ») if wel”, yelI™, m+n.

LEMMA 8.4. ind X = w, + 1.

Proof. Let us show that
amn indX=w,+1.

We put F = U-: {y,}. Then F'is a closed set in X and p¢ F. Let
C be a partition between {p} and F. Then CN I*CC is a partition
between {p} and {y,} in cube I". Consequently, for every » ind (CN
I"Y=(n—1) and inequality (17) holds. The inequality ind X< w,+1
follows from Theorem 8.1 and the following lemma.

LEMMA 8.5. For any mn-dimensional cube I™ n =1, 2, <o we
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have
18) DX xI")y=DX)+n
and D(X) = w,.

Proof. The equality (18) holds if there is such a point xe X
that sup {D(Ox): Ox is a neighborhood of x} = D(X) (see [2]). For
a point peX and any neighborhood Opsp we obviously have
D(Op) = w,. Consequently, for proving our lemma we have only

to show D(X)=w, Let us put A,=1I" A, = {p}. Then the
equality X = {4,: @ < w,} is clearly a ®,D-representation X. ]

Thus, condition (15) is satisfied. The space X has also some
interesting property.

PROPOSITION 8.2. For any n-dimensional space K
19) ind X X K=< w,+ [(n + 3)/2].

Thus, although @, = D(X)<ind X =aw,+ 1 but for n=4, by
Lemma 8.5

DX X I*)y =, +n>w,+ [(n +3)/2] = ind (X X I").

Proof. Let U, be a (1/s) neighborhood of the point p. Sinece
X\U, is clearly a discrete union of finite dimensional sets, we have

ind (X\U,) X I" < w, for any s=1,2, ---. Consequently conditions
3), (4), (6) of Proposition 6.2 are satisfied and the inequality (19)
holds. O

THEOREM 8.2. Let X be a compactum and D(X) = a + n where
a=w, 18 a limit number and n=0,1,2, ---, then ind X < a +
[(n + 8)/2].

COROLLARY 8.2. If for a compactum space X, D(X)=p8+4, 8=
w, then ind X < D(X).

Proof. Let 8= a + k, a = J(B) then, by Theorem 8.2 ind X <
a+[k+D2]l=a+[k+D2]1+3<a+k+4=p+4=DX).

To prove Theorem 8.2 we need some preliminary lemmas.
LEMMA 8.6. Let X be a compactum and the equality (a) be a

B-D-representation of X. (8 = w,), then for any neighborhood OA;
of the set A, D(X\OA;) < J(B) = .
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Proof. By virtue of (e) the collection of sets U,, 6 < J(B) = v
defined by equality (9) is an open covering of (X\A4;). Since X\OA,
is a compactum, there exist such numbers 6, ---, d;, (6; < ) such
that X\04, = U{U,;:i=1,---,k}. Let pg=max{d:i=1,- -}
Since U, c U, for 6 > ', we have X\OA,C U, and by virtue of
Lemma 8.3 we have D(X\0,) < D(U,) < v = J(B). O

Let (a) be a @B-D-representation of a compactum X, then we
define a mapping

(20) 7 X — X,
by identifying all points of a set 4,. We put n(4,) = p.

LEMMA 8.7. The equality
(22) X, = {B; = n(Ay): £ = J(B)}

s a J(B) D-representation of the compactum X, and Bj;, = {p}.
Moreover, @ is a homeomorphism on the set X\A;; and w(X\A;p)=
X\(p}.

Lemma 8.7 is evidently follows from Definition 8.1 and the
construction of mapping «.

LEMMA 8.8. Let U be an open set in a space X, A= X\U.
If f1X—>K, ¢9g:X—T are mappings such that dim (f'(z))
NUZ0, dim(g(w)NA)Z0, (yeT,xcK) then the mapping F:
X — K X T defined by the equality F(x) = (f(x), g(x)) is zero dimen-
stonal.

Proof. Let a = (x,y) be a point in K X T, x€ K, yeT. Then
F~a)= f(x) N g7(y). Therefore

F7a) = f@Nng" @ NAUT) = (N T)Ng™ )
U@ nAnfr@Enc(f@nl)u@wnAa).

The set U is open, and consequently is F', set. Further, sets f~'(x),
g~ '(x), A are closed, consequently by the sum theorem for dimension
dim we have dim (f(x)NU)U (g(y) N A) £ 0. Our Lemma now
follows from (21). O

(21)

LEMMA 8.9. Let X be a compactum and (a) (Definition 8.1) be
its B-D-representation. Then there exists a zero-dimensional map-
ping F: X — X, X I" where n = K(B).
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Proof. By virtue of (d) (Definition 8.1) dim A,; < n. Con-
sequently, by Hurewicz’s theorem [5] there exists a zero-dimensional
mapping @: A, — I[*. Let 4: X — I™ be any extension of mapping
@. We define the mapping F: X — X, X I" by the equality: F(x) =
w(x), ¥(x). Since by Lemma 8.7 = is a homeomorphism on the set
X\A,;, then by virtue of Lemma 8.8 F' is zero-dimensional mapp-
ing. |

Proof of Theorem 8.2. By virtue of Lemma 8.9 there exists a
zero-dimensional mapping F: X — X, x I*. Since X and X, X I" are
compacta, zero-dimensional mapping F does not lower dimension
ind (see [20]) (Zarelua) and

(23) ind X <ind X, x I".

By Lemma 8.7 the equality (22) is a J(B)-D-representation of X and
B4 is a point p. Let {U:s=1,2, ---,} be a collection of open in
X, sets such that

(24) Us ) ﬁs+19 Ul =X

(25) limdiam U, =0, AU, = {p}.

8—00

Then by Lemma 8.6
D(U\U,.,) = D(X\U,1,) = v, < v =J(B)

for some ordinal number v, <. In [2] Henderson, Theorem 5 it
was proved that D(Z X T) < D(Z) @ D(T) where “@” denotes the
natural sum of ordinal numbers. In particular D(U\U,.,) X I") <
DU\NU,.)@® DI = D(U\NT,s,) + =7, +n < J(B). The last ine-
quality is true, because J(B) is a limit number. Consequently, by
Theorem 8.1

(26) ind(U\U,s) X I"S v, + 0+ 1< J(B) .

By virtue of (24), (25), (26) and Proposition 6.2 ind (X, x I")<J(B) +
[(n + 3)/2] = @ + [(n + 3)/2]. Our theorem now follows from in-
equality (23). ]
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