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RATIOS OF INTERPOLATING BLASCHKE PRODUCTS

PETER W. JONES

Every unimodular function on the unit circle can be
uniformly approximated by ratios of interpolating Blaschke
products. As a consequence, we show that points of the
maximal ideal space of H°° can be separated by interpolat-
ing Blaschke products.

1* Introduction* Let A denote the open unit disc in C and let
H°°(Δ) be the Banach algebra of functions bounded and analytic on
Δ. A sequence of points {zό} in Δ is called an interpolating sequence
if for every bounded sequence {ad} of complex numbers there is a
function FeH°°(Δ) such that

F{zs) = aί9 j = 1, 2, .

Lennart Carleson [1] has shown that {Zj} is an interpolating sequence
if and only if

inf Π p(zh zk) > 0 .
3 fc .

kΦJ

Here p denotes the pseudo hyperbolic metric; p(w, z) — \ (w — z)/(l — wz) \
for w, zeΔ.

For an arc / on the unit circle T let | / | denote the length of
I and let S(I) denote the shadow region of /, S(I) — {zeA: (z/\z\) e I,
1 — 11\ < \z\ < 1}. A positive measure μ on Δ is called a Carleson
measure if

γ-μ(S(I))= \\μ\\c< - ,

where the above supremum is taken over all arcs I of T. There is
also a characterization of interpolating sequences in terms of Carleson
measures. A sequence {z5} is an interpolating sequence if and only
if

( i ) inf p{zh zk) > 0
βΦk
3,k

and

(ii) Σ (1 ~ \zj\)δzj is a Carleson measure ,

where δz denotes the Dirac δ measure at z.
A Blaschke product with simple zeros lying on an interpolating

sequence is called an interpolating Blaschke product. The purpose
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of this paper is to study ratios of interpolating Blaschke products
and then use the information gathered to prove a theorem about
the maximal ideal space of H°°. A complex valued function u on T
is called unimodular if \u{eίθ)\ = 1 for almost all θ. Our first result
asserts that every unimodular function on T can be uniformly ap-
proximated by ratios of interpolating Blaschke products. (Recall
that every Blaschke product has nontangential boundary values
satisfying |2?(β*')l = 1 almost everywhere.)

THEOREM 1. If u is a unimodular function on T and ε > 0,
there are interpolating Blaschke products Bx and B2 such that

\\n - ε .

Theorem 1 is a refined version of a theorem of Douglas and
Rudin [5]. They proved Theorem 1 with Bx and B2 (not necessarily
interpolating) Blaschke products. Theorem 1 will be proved in §2.

Our next result answers a question of John Garnett and Donald
Marshall.

THEOREM 2. Interpolating Blaschke products separate the points
of the maximal ideal space of H°°(J).

Theorem 2 follows rather easily from Theorem 1 and known
results. The strongest result previously known is Ziskind's theorem
[13]: If m1 and m2 are homomorphisms in the maximal ideal space
of H°°(J) with mx lying on the Silov boundary and m2 lying off the
Silov boundary, there is an interpolating Blaschke B such that
m^B) Φ m2{B). Theorem 2 will be proved in §3.

Section 4 will be devoted to some comments and open questions.

The author would like to thank John Garnett for extremely
valuable discussions on all aspects of this paper, and Donald Marshall
for useful correspondence.

2 Proof of Theorem 1* To prove Theorem 1 it is sufficient
to show that for any unimodular function u there are interpolating
Blaschke products Bt and B2 such that

on T. Here we define the function arg by

arg(β«tf+lri>) = θ , -π < θ <, π , keZ
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Our proof of Theorem 1 uses an approximation argument due
to A. M. Davie which appears in [4]. The idea of this approxima-
tion argument is quite simple. For the rest of this section ε > 0
will denote a small positive constant; ε ^ 1/10 will do. Suppose a
is a real number, ε/2 < a ^ π, and set β = 4ττε3/α. Let r = 1 — η,
where 0 < Ύ] < 1 is a small number, and let Ax be the Blaschke
product with simple zeros at the points

" : θd =

Also let A2 be the Blaschke product with simple zeros at the points

\reiOk: θk = kβη — εzη, 0 <£ k <; — — lj .

Then one can check by hand that

• A}\x^ <r — r 9 T

if Ax and A2 are first multiplied by suitable unimodular constants.
Suppose now that J is a subarc of T and η is very small with
respect to |/ | . Let Bx and B2 be the Blaschke products having
s i m p l e z e r o s a t {z: At(z) = 0, z/\z\ e 1} a n d {z: A2(z) = 0,z/\z\e 1}

respectively. Then arg B1{x)IB2{x) & a for most x which lie in I
and arg B1(x)/B2(x) ̂  0 for most x which lie off /. More precisely,
the following lemma holds.

LEMMA 2.1. Suppose I is a subarc of T and a is a real
number, \a\ ^ π. Then if ε, δ, Ύ] > 0 are three positive numbers,
there are finite Blaschke products Ax and A2 with simple zeros such
that

(2.1)

(2.2)

(2.3)

(2.4)

xel:

x<£l:

a — arg
A2(x) ~ 2)

arg AM
A2(x)

2 <v

-— el if z is a zero of A1 or A2

\z\

p(zl9 z2) ^ ε3 if zλ and z2 are two zeros Ax (A2).

Furthermore, there is a positive constant y0 = Ύ0(ε, δ, η, I) > 0
such that whenever 0 < 7 < 70 we can choose Aλ and A2 as above
so that 1 — \z\ = 7 for all zeros z of Aλ and A2.
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Proof. This is essentially proved in Lemma 12.3 of [4]. Only
(2.2) requires verification. Let d and C2 be the two Blaschke factors
given by Cx{z) = cί (z- z\/(l - z\z, C2(z) = c2 (z - z)2/(l - z)2z,

where

where \cλ\ = \c2\ = 1 are chosen so t h a t C1(ei{θ»+*)) = C2(ei{θ«+7t)). Then

(2.5) arg
C2(x)

C2(x) +

Since the ratio AJA2 given by the construction in Lemma 12.3 of
[6] is a product of factors like CJC2 or C2jCu inequality (2.2) follows
from (2.3), (2.4), and (2.5), if all zeros z of Ax and A2 have modulus
I z I = 1 — 7 where 7 is sufficiently small.

Repeating the argument of Lemma 2.1 N times, we obtain the
following lemma.

LEMMA 2.2. Suppose Iu I2, , IN are a finite number of disjoint
subarcs of T and alf , aN are N real numbers, \ α, | 5j π, 1 ^ j <; N.
Then if ε, δ, Ύ] > 0 are three positive numbers, there are Blaschke
products A1 and A2 with simple zeros such that

(2.6)
A2(x)

(2.7)
N

3=1
arg 4 '

(2.8) -^- 6 U /ί if z is a zero of A1 or A2 .

(2.9) ^(^i, z2) ^ ε3 ΐ/ x̂ and z2 are two zeros of AX{A2).

Furthermore, there is a positive constant 70 = 70(ε, δ, Ύ], Ilf , IN) > 0
such that whenever 0 < 7 < 70 we can choose Ax [and A2 as above
so that 1 — I z I — 7 for all zeros z of Ax and A2.

We now construct the Blaschke products Bx and B2 of Theorem
1. Let u be the unimodular function in the statement of the
theorem and at stage one put ^ ^ a r g u . Then Halloo <; TΓ. Let
η_x = 2π, η0 = 1, and let JEΊ = {#: 1 (̂̂ )1 ^ ε}. Find δx > 0 such that
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Find also a finite collection of disjoint subarcs of T, I}91}, , i>,
and Nt real numbers al9 a2, , aNί, | aά | <Z π, 1 ^ j ^ Nlf such that

Σ

Applying Lemma 2.2 with δ = δj. and 37 = 5?0 = 1, we can find finite
Blaschke products Altl and il 2 | 1 with simple zeros such that

\\x: ^(αO-argA^T ^ el I < % = 1 .
I I A2)1(x) ) I

If 2; is a zero of Altl or Λ2>1 t h e n z/\z\e (Jfii ί ί . If ^1 and z2 a re two

zeros of Aλ (A2) t h e n

Furthermore we may choose Altl and A2Λ so that 1 — | z | = ^ when-
ever z is a zero of Altl or A2>1, and we may choose τj1 <; rjo/i = 1/4.
The Blaschke product A1;1, satisfies

Σ (1 - M) ^ ^ ε - 3 = 2ττε-3 .
A1,ί{z)=0

A2}1 satisfies a similar inequality.
At stage two set

= arg

and let ^ = {x: \v2(x)\ ^ s}. Find d2 > 0 such that

Find also a finite collection of disjoint subarcs of T, II, IZ, , i£2,
and N2 real numbers α l t α2, , aNί, \a3 \ <^ π, 1 ^ j ^ N2, such that

I {x: \vt(x)Xφ) - Σ«i^(*)| 25 f } I < f •

Since | {cc: | v2(x) | ^ ε} | < % = 1, we can pick our intervals so that

Applying Lemma 2.2 with δ = δ2 and ^ = ^ l f we can find Blaschke
products Alt2 and A2)2 with simple zeros such that

x: v2(x) - a r g
Ali2(x)

A2i2(x)
<
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If £ is a z e r o of Alf2 o r A2i2 t h e n z/\z\e U f J i I j If z1 a n d z2 a r e
t w o zeros of A1>2 (A2y2) t h e n

p(zlf z2) ^ ε3 .

Therefore A1>2 satisfies

Σ (l - I ^ I) ^ 7̂oβ-3 = s-3,
Aίf2(z)=0

and A2f2 satisfies a similar inequality. We may choose A1>2 and A2tl

so that 1 — I z I = Ύ]2 whenever z is a zero of A1>2 or A2>2, and we may
choose Ύ)2 ̂  ηJ4.

Suppose by induction that we have found Blaschke products
with simple zeros Altl, AU2y , Altn_j_ and A2>1, A2f2, , A2yn_x having
the following properties. If z is a zero of A1>k or A2ik then

(2.10) 1 - \z\ = Ύ]k ̂  2Z*=L , 1 ^ Jfc ̂  n - 1 .
4

If «! and 2;2 are two zeros of Altk (A2)k) then

(2.11) p{zu z2) ^ ε3 .

The zeros of Altk satisfy

(2.12) Σ (l-\z\XVk-*£-*> l ^ k ^ n - 1 ,
A1>k{z)=0

and A2tk satisfies a similar inequality. If B1}k = Πy=i &uv ^.k =
Πy=i Λ,i and ι;A+1 = arg {u (B2>JB1)k)} then

(2.13) |{α?: |v*+1(ίc)| ^ e}| < V*-i, 1 ^ fc ^ n - 1 .

At stage w let j&n = {x: \vn(x)\ ^ ε}. Find dn > 0 such that

Find also a finite collection of disjoint subarcs of T, /?, I2f , J^Λ,
and Nn real numbers α l f a2, , α^Λ, | α y | <ί π, 1 ^ i ^ iVw, such that

v.(x)XMJp) - Σ αΛ?(»)| ^ ± } I < ^ L .

Since | Ĵ » | < ί?Λ-2 by the induction hypothesis, we can pick our
intervals so that

Applying Lemma 2.2 with d = δn and ^ = r)n_u we can find Blaschke
products Altn and A2,Λ with simple zeros such that
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vn(x)-arg4i4^ ^ ε < Vn-l

If x is a zero of i4ltH or A2>n then s/| z | e Uί=i •#• If Si and #2 are
two zeros of AlfΛ (A2fJ then

p[zu z2) ^ ε3 .

Therefore A1>n satisfies

Σ ( 1 - \z\)^ηn_2e~\

and A2>n satisfies a similar inequality. We may choose Ahn

so that 1 — I z I = rjn whenever z is a zero of Altn or ^42)Λ

may choose ηn <, r}%_λ\k.

Working formally for a
Π?=i Λ,fc Let {zlti} = {̂ : -A1>fc(«
{2: -Aa.jfeOδ) = 0 for some k ̂  1}.

and A2>n

and we

moment, put Bx = Π?=i Ά
) = 0 for some A; ̂  1} and let {z2j =

Notice that by (2.10) every point in
{zlti} or {z2tj} appears with multiplicity one. Suppose we know that
{zlfj} and {z2tj} are interpolating sequences. Then {zlti} and {z2tj} are
Blaschke sequences and the partial products in the definition of Bx

and B2 converge to interpolating Blaschke products. Inequality (2.13)
then shows that

arg u — arg —1
B ε .

We now verify that {zltί} is an interpolating sequence. The
proof for {z2)d} is exactly the same. If k Φ j , inequalities (2.10)
and (2.11) show

To show that j " = Σ ( l — \zui\)b9lti is a Garleson measure, it is only
necessary to verify the Carleson condition for arcs I of length Zη%9

n ^ l . So suppose \I\ == 2η%. Then by (2.11),

and

If k ̂  2, then by (2.10) and (2.12),

Σ (1 - K,l)
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Summing on k ^ 2 we obtain

so Σ (1 ~ l̂ i.iD î,y ιB a Carleson measure. The proof of Theorem 1
is complete.

3* Proof of Theorem 2* The maximal ideal space of H°°,
is divided into three disjoint parts, which we denote by UJ, Gf and
H. UJ is the Silov boundary of H™. See [5] for properties of UJ.
G is the set of all homomorphisms which lie in the closure (in the
topology of ^ f̂oo) of an interpolating sequence in the disk. H is
the set of homomorphisms which lie in neither UJ nor G. To study
H we will have need of L. Carleson's corona theorem [2]:

If m e ^ o o then there is a net {za} of points lying in the unit
disk which converge to m in the topology of ^&oo.

Let mx Φ m2 be two homomorphisms in .^^oo. To separate mx

and m2 by an interpolating Blaschke product there are four cases
we must treat.

Case I. Either m^G or m2 e G. Let us suppose mί e G. Then
there is an interpolating sequence {zά} such that m1 is in the closure
of the points {z5}> but m2 is not. If B is the interpolating Blaschke
product with simple zeros at the points {z3}, then mJJB) — 0 and
m2(B) Φ 0.

Case II. mx e UJ and m2 g UJ . This case has been treated previ-
ously by Ziskind [13]. Theorem 1 can also be used to treat this
case. There is a Blaschke product B such that m^B) = 1 and
m2(J5) = 0. (See e.g., [7].) Let Bx and B2 be two interpolating
Blaschke products such that

Then I m2(J?x) | = | mt(Bι - BB2) \ < 1/2. On the other hand, | mJJBύ \ = 1
because m16 UJ .

Case III. mlf m2 6 H. By theorem of Hoffman [7], every point
of G is a one-point Gleason part. Thus for every ε > 0 we can find
fεeH~, ||/,||00 = l, such that mtf.) = 0 and |m2(/δ)| > 1 - ε. The
unit ball of H°° is the norm closed convex hull of the Blaschke
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products [10], so we can find an inner function uε such that
wiiiUe) = 0 and |m2(u)| > 1 — ε. We now invoke a theorem of
Ziskind [13].

THEOREM. (Ziskind) Let u be an inner function. There are
universal constants 0 < ε0 < 1, c19 and c2, and there is an interpolat-
ing Blaschke product B such that

(3.1) if \u(z)\ ^ λ then \B(z)\ ^ ± .

(3.2) if B(z) = 0 then \ u{z) | ^ 1 - ε0.

(3.3) p(zu z2) ^ cx whenever zλ and z2 are two zeros of B .

(3.4) Σ (1 - \zj\) £c2\I\ for all subarcs I of T.

For each ε > 0 find Bε as in Ziskind's theorem, corresponding to
the inner function uε. For a set EcΔ define Έ* c T by

E* = {eiθ: τeiθ°eE for some r and θOf \θ - θo\ ^ 1 - r}. E* is
the nontangential projection of E onto T.

Now fix ε > 0. There are nets {wa} and {zβ} of points of Δ such
that

wa >m1

and

zβ > m2 .

Inequality (3.1) shows Im^-B,)! ^ 1/10. By taking a subnet we can
assume that \uε(zβ)\ > 1 — ε for all β. Let τβ be a Mobius trans-
formation which sends 0 to zβ, and let vε>β = uεoτβ. Then [vβ,/0)I >
1 — ε. Let j&βtP = {2;: |vβfii(2)| ^ 1 — ε0}, where ε0 is the constant in
Ziskind's theorem. Then

where

This is essentially proved in §4 of [11]. Thus by (3.2)-(3.4),

where

c4(e) — 0 .
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Picking ε so small that c4(ε) ^ 1/2 we see that | m2{B) | ^ 1/2.

Case IV. mu m2 e ω. Let u be an inner function such that
m^u) = 1, m2(t&) = — 1. By Theorem 1 there are interpolating
Blaschke products Bt and B2 so that \\u — BJB2\\oo ^ 1/4. Then

and

m2{Bx)\ ^ 1- .
4

If m^Bj) = m2{B^) the above inequalities show m^B^ Φ τn2(B2). (Since
mlf m2e UJ, Im^v)! = \m2(v)\ — 1 for all inner functions v.)

REMARKS 4. We conclude with some remarks and questions. It
is possible that Theorem 1 could be derived from the Douglas-Rudin
theorem but out attempts at this have been unsuccessful. In
particular, a positive answer to the following question would suffice.

Question 1. If BQ is a Blaschke product and ε > 0, is there an
interpolating Blaschke product Bλ with ||JS0 — -Bill* < e? One might
hope that for a given BQ there is a complex number a, \ a \ < $,
such that BQ + a/1 + άB0 is an interpolating Blaschke product.
Unfortunately, this is not the case. Kahane [9] and Piranian [12]
have shown that there is a Blaschke product B such that

\B'(z)\ = o(l-\z\),

while B has infinitely many zeros. On the other hand, if B is an
interpolating Blaschke product with infinitely many zeros,

Theorem 2 shows that the uniform algebra generated by inter-
polating Blaschke products (call it J) is large in some sense. A
natural question is just how large is J?

Question 2. Does J = iϊ00?
We do not even know if / and H°° have the same maximal ideal

space. Note that by Marshall's theorem [10], an affirmative answer
to Question 1 would give an affirmative answer to Question 2. By
using Theorem 1 and the machinery in [10] one can reduce Question
2 to a problem concerning interpolation of bounded sequences by
interpolating Blaschke products. An indication that J might be
equal to H°° comes from the Chang-Marshall theorem [3], [11].
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Finally, we note that BMO can be related to ratios of inter-
polating Blaschke products through the results of [8], Perhaps
arguments using BMO could be used to answer Questions 1 and 2.

REFERENCES

1. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J.
Math., 8O (1958), 921-930.
2. , Interpolation by bounded analytic functions and the corona problem,
Ann. Math., 76 (1962), 547-559.
3. S. Y. Chang, A Characterization of Douglas subalgebras, Acta Math., 137 (1976),
81-89.
4. A. M. Davie, T. W. Gamelin and J. Garnett, Distance estimates and pointwise
bounded density, Trans. Amer. Math. Soc, 175 (1973), 37-68.
5. R. G. Douglas and W. Rudin, Approximation by inner functions, Pacific J. Math.,
31 (1969), 313-320.
6. 0. Frostman, Potentiel d'equilibre et capacite des ensembles, Lund. Univ. Math.
Sem., 3 (1935).
7. K. Hoffman, Bounded analytic functions and Gleason parts, Ann. Math., 86 (1967),
74-111.
8. P. W. Jones, Carleson measures and the Fefferman-Stein decomposition of BMO (R),
to appear in Ann. Math.
9. J. P. Kahane, Trois notes sur les ensembles parfaits lineaires, Enseign. Math., 15
(1969), 185-192.
10. D. E. Marshall, Blaschke products generate H°°, Bull. Amer. Math. Soc, 82 (1976),
494-496.
11. 1 Subalgebras of L™ containing H°°, Acta Math., 137 (1976), 91-98.
12. G. Piranian, Two monotonic, singular, uniformly almost smooth functions, Duke
Math. J., 33 (1966), 255-262.
13. S. Ziskind, Interpolating sequences and the Shilov boundary of H°°(Δ), J. Func-
tional Analysis, 2 1 (1976), 380-388.

Received September 13, 1979.

THE UNIVERSITY OF CHICAGO

CHICAGO, IL 60637






