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THE AUTOMORPHISM GROUPS OF SPACES
AND FIBRATIONS

SARA HURVITZ

This paper deals with the automorphism group of fibra-
tions f: X—Y, where X and Y are simply connected CW-
complexes with either a finite number of homology groups
or homotopy groups. It is proved that the automorphism
groups of such fibrations are finitely presented, and that
in case X and Y are H,spaces the image of the obvious
map Aut(f) —> Aut(H*(f, Z)) has finite index in Aut(H*(f, Z)).
It is also proved that in case that Y belongs to the genus
of X, Ker(Aut X — Aut X,) is isomorphic to Ker(Aut Y —
Aut Y,)(( ),~localization of p).

Introduction. Let X, Y be spaces and let f: X—Y be a
fibration. This work concerns the group Aut X of homotopy classes
of self equivalences of X as well as the group Aut(f) of homotopy
classes of pairs (h, k) € Aut X x AutY which satisfy fh ~ kf. Through-
out this paper all spaces considered are of the homotopy type of
nilpotent CW-complexes of finite type, and all, except those which
appear in Chapter four, are of the homotopy type of simply connected
CW-complexes, which are either finite dimensional or with a finite
number of homotopy groups.

We use the notations of Wilkerson [8]. We recall that a space
X is called an Hy-space if H*(X, @) is an exterior algebra on odd di-
mensional generators, that the genus of X is the set G(X) of homotopy
types of spaces Y with Y, ~ X, for every prime p, and that the ele.
ments [f'] of the genus of a fibration f: X —Y are equivalence classes
of homotopy classes f’ which satisfy: For every prime p there exist
homotopy equivalences h,: X; — X,, k,:Y, — Y, satisfying f,h, ~ &, f>.

Concerning Aut X and Aut(f) we are interested in the following
questions:

(a) Is the group Aut(f) finitely presented? i.e., ecan Theorem
B in Wilkerson [8] be generalized to Aut(f)?

(b) What is the relation between:

(1) Aut X and Aut H*(X, Z) where X is an H,-space.

(2) Aut(f) and Aut H*(f, Z) where f is an H, fibration, i.e.,
f is a fibration between H,-spaces.

(8) Aut X and Aut X’ where X’ belongs to the genus of X.

(4) Aut(f) and Aut(f’) where f’ belongs to the genus of f.
The answer to question (a) is given by:

MAIN THEOREM. Let X, Y be simply connected CW-complexes
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and let F—» X —f—>Y be a fibration. Then:

(a) Aut(f) is commensurable with an arithmetic subgroup of
Aut(f,), where f,: X,—Y, is the rationalization of f.

(b) Aut(f) is finitely presented, and

(¢) Aut(f) has only a finite number of finite subgroup up to
conjugation.

One of the results of this theorem is:

COROLLARY 2.8. Let X be a simply connected finite CW-complex
and let G S Aut X be a finitely generated subgroup. If H (X, Z) is
torsion free then the centralizer of G is finitely presented.

Conecerning question (b) we obtain the following interesting
results:

PROPOSITION 3.2. Let X, Y be Hy-spaces and let f: X —Y be a
fibration. Then:

(a) The map [Y, X] - Hom(H (Y, Z), H. (X, Z) is finite to one.

(b) Im(Aut X — Aut H*(X, Z) is a subgroup of finite index.

(¢) The kernel of the obvious miap Aut(f) — Aut H*(f, Z) is
finite and its image is a subgroup of finite index in Aut H*(f, Z).

(d) For any pair (h, k) € Aut H*(f, Z) there exists a pair (h, k) e
Aut(f) and an integer m, so that H*(h, Z) = h™ and H*(k, Z) = k™.

PROPOSITION 4.6. Let X be an Hyspace either with a finite
number of homology groups or with a finite number of homotopy
groups. If H*(X, Z) is torsion free then Ker(AutX — Aut X,)ge P
(P — the set of primes) is a direct product of finite p-groups, p + q.

PROPOSITION 4.7. Let X, Y be nilpotent spaces with a finite
number of homology groups and let f: X —Y be a fibration. Then
for every prime p and for every fibration f': X' —Y', which belongs
to the genus of f, Ker(Aut(f)— Aut(f,)) ts tsomorphic to Ker(Aut(f’) —
Aut(f7))-

As a consequence of Propositions 8.6 and 4.7 we obtain:

ProprOSITION 3.7. Let X, tt, be an Hyspace. Suppose H*(tt, Q)
18 primitively gemerated, then the number of equivalence classes of
H-structure on X for which H*(#, Q) is equivalent to H™*(tt, Q) 1s
finite.

COROLLARY 4.9. Let X,Y be Hy-spaces either with a finite number
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of homology groups or with a finite number of homotopy groups and
let f: X —Y be a fibration. Then for every fibration f' which belongs
to the genus of f, Ker(Aut(f)— Aut H.(f, Z)) s <isomorphic to
Ker(Aut(f") — Aut H.(f', Z)).

PROPOSITION 4.10. Let f and f' be as in Corollary 4.9. If Aut(f)
is finite, then Aut(f) is isomorphic to Aut(f’).

The paper is organized as follows:

In section one the relation between automorphism groups and
rational equivalence is studied. The main result is proved in section
two. In section three, the special properties of H,-spaces and the
results of section one are used to draw conclusions on the automor-
phism groups of H,-spaces and fibrations. In the last section, section
four, the relation between automorphism groups and genus is studied.

I am indebted to E. Dror and A. Zabordsky for encouragement
and for several fruitful conversations.

1. Automorphism groups and rational equivalence.

LemMma 1.1. Let X, Y, X', Y' be simply connected finite type
CW-complexes, f: X —Y, f': X’ Y’ be fibrations and F and F’ be
simple CW-complexes with w, F and 7w, F' finite dimensional and
finite. Define S to be the set of homotopy classes of pairs (@, +)
satisfying:

(@) P: X—>X and :Y —>Y' are maps with homotopy theoretic
fibers F and F’, respectively.

(b) flp ~ yf.

Then Aut(f) acts on S and S/Aut(f) is a finite set.

Proof. Let M be the set of triples (@, v, f), where F — X 4 x
and F' >V 5 Y’ are fibrations, f: X -V a map and v f ~ f .
Dgﬁnf, an equivalence relation on M by: (@, v, f) ~ @, ¥, )
(f’: X’:—>Y’)~ if and only if there exist homotopy equivalences a: X —
X', B:Y—Y" so that the following diagram homotopy commutes.
For any pair (@, ) €S there is a factorization of ® and  as X 5
X, f»X’, Yi—Y, >Y’, where 7 and j are homotopy equivalences, &
and ¢ are fibrations and $i ~ @, i ~ . Obviously f'P ~ J(5fi™%)
(7' = the homotopy inverse of ¢)and therefore the triple (@, ¥, jfi™*) e
M. Changing (@, 4) within a homotopy class does not vary the
equivalence class of the triple (@, 4, jfi™). Hence S— M is well
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defined.

Suppose (@, ), (@', ¥) € S and there exists a pair (a, B) € Aut(f)
so that pa ~ @’ and @ ~ ', then the triples (&, ¥, jfi™") and
(P, ¥, §fi'"”") are equivalent in M. Conversely, if the triples
(P, ¥, 3f17Y) and (&', J', 5'f7'"Y) are equivalent in M i.e., if there are
homotopy equivalences a: X, — X,, 8: Yy —Yy,, so that (7' fi"NHa ~
B f1™), then p(i~'a™') ~ @' and 4 (57°8j5) ~ 4'. Thus S/Aut (f) —
M|~ is well defined and monic. Therefore it is enough to prove
that M/~ is finite. But by a standard Moore-Postnikov argument
any element of M can be obtained as a sequence of principal fibrations
(Pos ¥rn) With fibers K(z,X, n) and K(z,Y, n), so that f,_,@, ~ R
Hence it suffices to show that for each # there is a finite number
of equivalence classes of such fibrations, where the equivalence
relation is defined as in M.

Suppose for the pair of k-invariants (k, kYe H"'(X, ,, 7, X) X
H*(Y,_,, @, Y) there exists f,: X, —» Y, so that JosPur~nf,. Assume
also that ¢): X, — X, , and +/:Y, —Y, , are fibers of %k and k', re-
spectively, and there exists f,: X, — Y, satisfying . f! ~ £,

Consider the following diagram

fa
F
Lo s
‘;'; Cn
fn*l
Xn:“—_.v} Yn-—l

There exist homotopy equivalences a: X, — X, B:Y,—Y, so ¢.a ~
?. and 4,8 ~ 4. The map Bfja is a lift of f,_,, hence the finiteness
of the group =, (fiber 4) and the number of stages implies the
finiteness of M/~.
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LEMMA 1.2. Let f: X —Y and f: X' —Y' be as in Lemma 1.1,
and let M and M' be simple connected CW-complexes with H, (M, Z)
and H,(M', Z) finite dimensional and finite. Define S to be the
set of homotopy classes of pairs (@, ) satisfying:

(@) ¢ X—=X"and ¢:Y —Y’ are maps satisfying X' U ConeU(p)
18 homotopy equivalent to M and Y’ U Cone (/) s homotopy equivalent
to M'.

(©)  flp ~ f.

Then Aut(f’) acts on S and S/Aut(f’) is a finite set.

Proof. Dual to the proof of 1.1.

THEOREM 1.3. Let X, Y, X', Y' be simply connected finite type
CW-spaces which are either H,-finite dimensional or w, finite
dimensional, and let f: X —>Y and f': X' —Y' be fibrations.

Suppose @: X — X' and : Y —Y’' are rational equivalences
satisfying f'@ ~ 4f. Then Aut(f) and Aut(f’) are commensurable
groups.

Proof. Let 4(p, 4) S Aut(f) x Aut(f’) be the set of pairs ((h, k),
(R, k")) € Aut(f) x Aut(f’) for which the diagram

h

x Lox Myt

X
)
) I 4]
Y —Y—Y' Y

S

commutes, and let Stab(p, 4, Aut(f’)) be the image in Aut(f’) of the
second projection map on 4(®, ). We shall show that Aut(f) and
Aut(f’) are commensurable with 4(ep, ).

Let S’ be the set of homotopy classes of pairs of the form
(W'¢h, k'yk) where (b, k) € Aut(f) and (&, k') € Aut(f’). Then S’ is a
subset of S of Lemma 1.1, and hence S’/Aut(f) is a finite set. But
Aut(f’) acts on S’/Aut(f), i.e., there is a map

7t Aut(f’) — Aut(S'/Aut(f)) .

Then the group Stab(e, 4, Aut(f’)) contains the kernel of 7, and
therefore the fact that Aut(S'/Aut(f)) is a finite set implies that
Stab(e, v, Aut(f")) has finite index in Aut(f’).
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On the other hand, the fact that @ and + are rational equivalences
implies that the kernel of the map 4(®, 4) — Aut(f’) is finite. Hence
A(p, 4) and Aut(f’) are commensurable groups. The proof that 4(p, )
and Aut(f) are commensurable is dual.

NoTATION. For a fibration f: X —Y denote by Aut,(f) the group
of homotopy classes of self homotopy equivalences k: Y — Y satisfying
kf ~ f, and by Aut,(f) the group of homotopy classes of self homotopy
equivalences h; X — X which satisfy fh ~ f.

COROLLARY 1.4. Let f, f', ® and + be as in Theorem 1.3. Then
Aut,(f) s commensurable with Aut; (') and Aut,(f) is commensurable
with Auty.(f").

THEOREM 1.5. Let X, Y, X', Y’ be simply connected finite type
CW-spaces and let f: X —Y and f': X' —Y"' be fibrations. Suppose
fo is homotopy equivalent to f,. Then Aut(f) and Aut(f') are com-

mensurable groups.

Proof. Since f, is homotopy equivalent to f, there exists a
commutative diagram.

XLXO‘_?’_X'
lf ‘fo lf'
Y LY()(—, Y'

where the horizontal maps are rationalizations.

Let Y be a simply connected CW-complex which satisfies: There
exist rational equivalences a:Y” —7Y, a"Y" —-Y' and ":Y"” —Y, so
that the following diagram commutes:

Y<_ay"~“i_> Y’
¢ ¢” ¢l
Y,

(By Wilkerson [8] such a space exists.)
Consider the following diagram:
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XII

X

N oLk

N
X,

¢ i ¢

Y,

where X" is the pullback of Y”f»Y’ﬂX’ and ¢": X' > X, is a

rationalization, which satisfies f,@” ~ " f”. (The existence of such

a rational equivalence follows from the above three diagrams.)
Since @ and @” aae rationalizations there exists a bouquet of

spheres VS* and maps xLvs I x7 so that 7.7 X Qand 7.7 QQ
are epimorphisms and @”y” ~ @v. Therefore the commutativity of
the two parallelograms and the triangle, in the last diagram, implies
that af”y"” ~ +fv. Consequently there exists a map §: VS™ — VS
so that af"v"6 ~ fvo.

Consider the cofibration V.S*: j»VS“i < ¢, where Im T AR Q) =
Ker(z,(v6) ® Q) = Ker(zw,(v"0) ® Q). There exist maps &: C; — X,
¢’': C;— X" so that ¢j ~ 74, " ~ ¥ and @"¢”" ~ ps. Consequently
the considerations of the previous paragraph imply the existence of
a map p: VS* —VS™ and rational equivalences ¢: C;. — X, ¢'": Cpp — X"
(Ci — the cofibre of \g), so that af”¢"” ~ f¢. Hence Theorem 1.3
implies that Aut(f) and Aut(f’) are both commensurable with

Aut(f"¢") and therefore they are commensurable.

2. Proof of the main theorem. By Wilkerson [8] there are
finitely generated free simplicial N°Z groups M. an N. and a map
f.oM.— N. so that Aut(f) can be identified with the group of loop
homotopy equivalence classes of self-equivalences of f., and Aut(f,)
can be identified with the group of loop homotopy equivalence classes
of self-equivalences of f,.: M, — N,. Theretore we study here these
groups. We denote them by H Aut(f) and H Aut(f,.), respectively.

Let M, and N, be finitely generated N°Q groups. Denote by
Aut(M,), Aut(N,.),) the group of simplicial automorphisms of M,.(N,.)
and by Aut(M,),(Aut(N,), the set of automorphisms of M, & 4(1)
(N, ® 4(1)) lying over the identity on 4(1). The face maps d,, d,:
Aut(M,.), — Aut(M,.), and d;, di: Aut(N,.), — Aut(N,.),.

Let SimpAut(f,) denote the set of simplicial automorphisms of
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fo- Two pair (h, k), (', k') € SimpAut(f,) are homotopic if and only
if h'ed,d;'(h) and k' edd;~*(k). Hence

H Aut(f,) = Simp Aut(f,)/(dd'(id) x did}(id)) N Simp Aut(f,) .

ProroSITION 2.1. Let fi: M, — N,. be a simplicial map between
finitely generated free simplicial N°Q groups. There exists an
affine group scheme G over @, so that Simp Aut(f,) can be identified
with the Q-valued points of G.

Proof. Similar to the proof of Proposition 9.2 in Wilkerson
[8].

PROPOSITION 2.2. There is a normal closed subgroup scheme over
Q, H of G, such that (d,d;'(1d) % did;"*(1d)) N SimpAut(f,) = H(Q).

Proof. Since linear algebraic groups are closed under finite
cartezian products and finite intersections, the result follows from
Proposition 9.3 in Wilkerson [8].

PrROPOSITION 2.3. Let G and H be as defined above. There exists
an affine group scheme G/H over Q, such that HAut(f,) = (G/H)(Q) =
G(Q)/H(@Q).

Proof. Proposition 9.4. in Wilkerson [8], the discussion above
and thefact that a subgroup of a unipotent group is unipotent,
implies that H is unipotent and that H Aut(f,)=G(Q)/H(Q). By Borel
[1, 6.8], the quotient of an affine group scheme over @ by a closed
normal subgroup scheme over @ is again an affine group scheme over
Q. That is G/H exists. The Galois cohomology sequence [Serre] 1 —
HQ) — GQ) — G/H(Q) — HY(Gal(Q, @), H) --- is an exact sequence of
groups and pointed sets. Hence the fact that H is unipotent implies
that HYGal(Q, Q), H) = 0 and the result follows.

ProrosiTiION 2.3'. Let X, Y be simply connected finite CW-
complexes and let f: X —Y be a fibration. Then Aut(f,) is the set
of Q-valued points of a linear algebraic group over Q.

PrROPOSITION 2.4. Let M. and N. be finttely generated free
simplicial nilpotent groups of class ¢ and let f.:M.— N. be a
simplicial map. Define M, & M(N, & N,) to be the intersection of
all lattice subgroups of M,.(N,.) that contain M.(N.).

Then f. induces a map fr: M, — N, and Simp Aut(f.) has finite
index in Simp Aut(f.).
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Proof. The existence of f, and the fact that G £f(Simp Aut(M.) x

SimpAut(N.)) € SimpAut(M,;) x Simp Aut(N;) is a subgroup of finite
index, follows from Wilkerson [8, 8.1 and 8.3]. Hence

G N SimpAut(f;) S SimpAut(f.)

is a subgroup of finite index and it suffices to prove that SimpAut(f,)=
G N SimAut (f;). But this is clear, since (h, k)€ G N SimpAut(f,)
implies that A|M.: M. - M., k|N.: N. — N. and kf,h~* = f, and
therefore (h| M., k| N.) € Simp Aut(f.).

PROPOSITION 2.5. Let X, Y be simply connected finite CW-
complexes and let f: X —Y be a fibration. There exist finite CW-
complexes X' and Y' so that H (X', Z) and H,(Y', Z) are torsion
free and a fibration f':X'—>Y' so that Aut(f") and Aut(f) are
commensurable groups.

Proof. By Theorem 1.3 it suffices to prove that there exist
rational equivalences h: X' — X and k:Y' —Y so that the diagram

commutes.
Since f is homotopic to a cellular map we can assume that f is
cellular. Suppose there exists a commutative diagram

x,— .y
o ks
x—L .y

where f, is cellular, h,, k, are rational equivalences and the groups
H.X,, Z) and H,(Y,, Z) are torsion free for m < n.

Let X, Y™ be the n-skeletons of X, and Y,. Since f, is
cellular f, induces a map f,: X,/ X™ —Y,/Y™. Therefore the fact
that H,..(X, Z) = 7,.(X,/X”) and H,.(Y, Z) = 7,,(¥,/Y”) implies
the existence of a commutative diagram (*( ) denotes the torsion
subgroup of ( ).)
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Ja

Xn Y'n
f’
X,/ X = Y,/ Y™
(fo)«
KH, X, n+1)————KH,.Y,n +1)

K(CH, X, 0+ 1)—J2

Let X,., and Y., be the fibers of the maps
X,— X,/ X" — KH, X, Z)—> K(CH,,X, Z)

K(H,..Y,n +1)

and
Y,— Y Y)Y — KH, Y, Z)— K(t,.,.Y, Z)

and let f,,,: X,;; —» Y, be the iduced map. Obviously X,., is rational
equivalent to X, Y,., is rational equivalent to Y and there exists a
commutative diagram

fn+1
Xym— Y
hn+1 kn+1

X Y

where h,,, and k,., are rational equivalences and f,,, is cellular. By
the Serre spectral sequence H,(X,., Z) and H,(Y,., Z) are torsion
free for m < n + 1, and the result follows.

PROPOSITION 2.6. Let M. and N. be finitely generatad connected
minimal simplicial N°Z groups and let f.: M. — N. be a simplicial
map. Then H Aut(f.) is an arithmetic subgroup of H Aut(f,.).

Proof. Since Simp Aut(f) < SimpAut(f,) is a subgroup of finite
index, the theorem follows from Theorem 9.8 in [8] by replacing N.
by f., N, by f. and d,d;'(id) by (d.d:*(id) X did;~*(id) N Simp Aut(f,-).

Proof of the main theorem. By Proposition 2.5 we can assume
that H.(X, Z) and H,(Y, Z) are torsion free. Hence by Wilkerson
[8] Aut(f) can be calculated as H Aut(f.) for some f.: M. — N., where
M. and N. are connected minimal free simplicial N°Z groups. There-
fore Aut(f) is an arithmetic subgroup of a linear algebraic group,
and the result follows from Proposition 10.3 in [8].
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COROLLARY 2.7. Let X, Y be simply connected finite CW-
complexes and let f: X —Y be a fibration. Then Aut,(f) is finitely
presented.

Proof. Similar to the proof of the main theorém.

COROLLARY 2.8. Let X be a simply connected finite CW-complex
and let G S Aux X be a finitely generated subgroup. If H, (X, Z)
is torsion free then the centralizer of G s finitely presented.

Proof. Suppose G is generated by g, ¢, ---, g,. Since the
centralizer of G is equal to the centralizer of the set {g, g,, - - -, 9.},
the proof is similar to the proof of the main theorem.

3. Commensurability and Hyspaces and fibrations. Let X, ¥
be H,-spaces and let f: X —Y be a fibration. In this section we deal
with the relation between Aut X and Aux H*(X, Y) and between
Aut(f) and Aut H*(f, Z). In case X is an H-space we draw conclu-
sions on the relation between the H-structures on X and the Hopf-
algebra structures on H*(X, Q).

NoTATION. For any H,-space X we denote K(QH *(X, Z)/torsion)
by K(X).

PROPOSITION 3.1. Let f, fo: X — Y be fibrations. If rank(H*(f,,Q))

18 equal to rank(H*(f,, Q)) then Aut(f,) and Aut(f,) are commensurable
gTroups.

Proof. Since rank (H*(f,, Q)) = rank (H*(f,, Q)) there exist
Eilenberg-Maclane spaces K,, K, and rational equivalences ¢,: X —
K(X), 4: Y — K(Y)(¢ =1, 2) so that K(X) = K X K,, K(Y) = K X K,
and the following diagram commutes

X L Y

‘Pi & (i=1,2)
KX)=KxX Kl——p——*K CT+K>< K,=K(Y) .

Hence Aut(f) and Aut(g) are both commensurable with Aut(ip) and
therefore they are commensurable groups.

PrROPOSITION 3.2. Let X, Y be H,-spaces and let f: X —Y be a
fibration. Then:
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(@) The map [Y, X]—> Hom(H, (Y, Z), H (X, Z)) is finite to one.
(b) Im(Aut X — Aut H*(X, Z)) 1s a subgroup of finite index.
(¢) The kernel of the obvious map 7: Aut(f) — Aut H*(f, Z) 1s
finite and its image is a subgroup of finite index in Aut H*(f, Z).
(d) For any pair (b, k) € Aut H*(f, Z) there exists a pair (h, k) €
Aut(f) and an integer m, so that H*(h, Z) = h™ and H*(k, Z) = k™.

Proof. (a) Let @: X — K(X) be a rational equivalence which
represents generators of H*(X, Z)/torsion. Since H*(f, Z)=H*(g9,Z)
(f, 9:Y — X) implies that ¢f ~ @g, the result follows from the fach
that any map h: Y — K(X) has only a finite number of lifts to a
map #: Y — X, which satisfies @k ~ h. .

(b) Let @: X—K(X)beasin (a). By Wilkerson [8] Im(Aut(p) 225
Aut(K(X)) —» Aut(H*(K(X), Z)/torsion) — Aut(H *(X, Z)/torsion) is a
subgroup of finite index in Aut(H*(X, Z)/torsion). Hence the result
follows from the fact that Im(Aut X — Aut(H*(X, Z)/torsion)) contains
the image of the above map.

(¢) The fact that Kern is a finite group follows from part (a).

Let G = Im(Aut X x AutY — Aut H*(X, Z) x Aut H*(Y, Z)). By
part (b) G is a subgroup of finite index in Aut H*(X, Z) x Aut H*(Y, Z),
hence GNAut H*(f, Z)S Aut H*(f, Z) is a subgroup of finite index and
it suffices to prove that Im» & G N Aut H*(f, Z) is a subgroup of
finite index.

Let (b, k) € G N Aut H*(f, Z). There exists a pair (&, k) € Aut X x
AutY satisfying H*(h, Z) = h, H*k, Z) = k and H*(k-‘fh, Z) =
H*(f, Z)(k— — the homotopy inverse of %). Therefore the fact that
there is only a finite number of maps f, f;, -+, f. Which satisfy
H*(f,, Z) = H*(f, Z) implies that Im 7 S G N Aut H*(f, Z) is a sub-
group of finite index, and the proof of part (c¢) is complete.

(d) Suppose (h,k)e Aut H*(f, Z). We have to show that there
exists an integer m so that (h™, k™) € Im (Aut (f) — Aut H*(f, Z)).
Since h and k are automorphisms, this follows immediately from the
fact that Im(Aut(f) — Aut H*(f, Z)) is a subgroup of finite index in
Aut H*(f, Z).

COROLLARY 3.3. Let X be an Hjyspace. Suppose h, ke Aut X
satisfy H*(h, Z) = H*(k, Z). Then there exists an integer m so that
h™ ~ k™. Consequently heAut X is of finite order if and only if
H*(h, Z) is.

Proof. The pair (H*(h, Z), H*(k, Z)) € Aut(H*(1y, Z)), hence the
result follows from part (d) in Proposition 3.2.

COROLLARY 3.4. Suppose X, Y are Hy-spaces, f: X —Y a fibration
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and (h, k) € Aut(f). Then:

(a) H*(f, Z) is monic and the order of h is finite implies that
the order of k is finite.

(b) H*(f, Z) is epic and the order of k is finite implies that
the order of h 1is finite.

Proof. (a) Obviously, the order of & is finite implies that the
order of H*(k, Z) is finite. Hence the result follows from Corollary
3.3.

(b) Similar to (a).

COROLLARY 3.5. Let X, Y and f be as in Corollary 3.4. Then:

(a) H*(f, Z) is monic and Aut X is finite implies that Aut (f)
18 finite.

(b) H*(f, Z) is epic and AutY is finite implies that Aut(f) is
finite.

Proof. (a) (h, k), (b, k,) € Aut(f) and H*(f, Z) is monic implies
that H*(k,, Z)= H*(k,, Z). Therefore the fact that the kernel of the
map AutY — Aut H*(f, Z) is finite implies that for each heAut X
there exist, at most, a finite number of k< AutY, so that the pair
(h, k) € Aut(f). Hence Aut(f) is a finite group.

(b) Similar to (a).

In order to draw conclusions from Proposition 3.2 to the case
that X is an H-space we need the following definitions:

DEFINITION. Let X be an H-space and let g, ¢, be two H-
structures on X.

(a) We say that g, is equivalent to g, if there exists a homotopy
equivalence h: X — X, so that ht, ~ p(h X h).

(b) We say that H*(y,, Z)/torsion is equivalent to H*(t,, Z)/tor-
sion if there exists a map h € Aut(H*(X, Z)/torsion) so that

(e @ h)H* (11, Q) = H* (s, Q)b

(¢) We say that H*(y¢, Q) is equivalent to H*(#, @) if there
exists a map he H*(X, Q) so that (h Q h)H*(tt, Q) = H*(th, Q).

PROPOSITION 3.6. Let X, tt, be an H-space. Then the number
of equivalence classes of H-structures tt on X, for which H*(¢, Z)[tor-
ston s equivalent to H*(u,, Z)[torsion is finite.

Proof. Let 1: Aut X — Aut H*(X, Z)/torsion be the obvious map.
By Proposition 3.2(b) Imn & Aut H*(X, Z)/torsion is a subgroup of
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finite index. Assume that the index is » and that A, h, ---, h, , €
Aut(H*(H, Z)/torsion) satisfy

Aut(H*(X, Z)[torsion) =Imn U h,ImnpU - Uh,_, Im7 .

Let p, ¢, be H-structures on X and let &, b’ € Aut(H*(X, Z))/torsion
satisfy:

H*(tto, @)(hik)y = ((hih)y @ (h:h),)H* (4, Q) ,
and

H*(tt, Q)(h:1) = (heh) s ® (h:h"))H™ (2 Q)
where h = H*(h, Z)/torsion and h’' = H*(k', Z)/torsion. Then:
H*(tty, Z)[torsion = H*(W'h='p,(h"h=" x h'h~Y))/torsion i.e., t4

is equivalent to an H-structure g’ which satisfies H*(¢/, Z)/torsion =
H*(p,, Z)/torsion. Consequently the results follows from the fact that
for any H-structure g on X, the number of H-structures f which
satisfy H* (¢, Z)/torsion = H*(y, Z)/torsion is finite (this follows
from Proposition 3.2(a)).

ProrosiTION 3.7. Let X, tt, be an H-space. Suppose H™*(t4, Q)
18 primitively gemerated, then the mumber of equivalence classes
of H-structures pt on X for which H*(p, Q) is equivalent to H*(tt, Q)
18 finite.

Proof. By Proposition 3.6 the number of equivalence classes of
H-structures ¢ on X, for which H*(x, Z)/torsion is equivalent to
H*(t4, Z)/torsion is finite. Hence it suffices to prove that the number
of equivalence classes of comultiplications H*(y, Z)/torsion (¢£: X X X —
X an H-structure) for which H*(g, Q) is equivalent to H*(y, Q) is
finite.

Let A be the set of the comultiplications v: H*(X, Z)/torsion —
H*(X, Z)/torsion ® H*(X, Z)/torsion which satisfy: There exists a
multiplication ¢#: X x X — X so that y = H*(¢, Z)/torsion and H*(v, Q)
is equivalent to H*(y,, @). Denote by ¢: A—Hom(H*(X,Q), H*(X,Q)Q
H*(X, @) and by 7: Aut(H*(X, Z)/torsion) — Aut H*(X, Q) the obvious
maps. Since the kernels of ¢ and 7 are finite it suffices to prove
[2, Proof of Theorem I] that the number of equivalence classes of
Im @ relative to the equivalence relation: o(¢,) ~ @(t,) if and only
if there exists h € Im 7 so that o(¢,)h = (b Q h)P(#)(t4, . € A) is finite.

By Curjel [2, 5.2] the fact that the groups Hom(H *(X, Z)/torsion,
H*(X, Z)/torsion) and Hom (H*(X, Z)/torsion, H*(X, Z)/torsion ®
H*(X, Z)/torsion) are finitely generated implies the existence of a
basis X = {x,;}, of PH*(X, tt, Q), so that the matrix of every map
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f eHom (H*(X, Z)/torsion, H*(X, Z)/torsion), with respect to this
basis, is integral, and the matrix of every map

g € Hom(H*(X, Z)/torsion, H*(X, Z)/torsion Q H*(X, Z)/torsion

with respect to the basis {x,; ®1,1R® z,;} of PH*(X X X, t4, Q) 1is,
also, integral. In particular the matrix of every map which belongs
either to Im 4 or to Im 7, with respect to the above bases, is integral.
Hence the result follows from the following theorem of Samelson-
Leray:

THEOREM OF SAMELSON-LERAY [3, 3 Exp 2]. Let A be an algebra
over the integers. Suppose that A has no generators in even dimen-
sions. Then all the associative comultiplications on A are equivalent.

4. Genus and automorphism. Let X and Y be nilpotent CW-
complexes of finite type and let f: X —Y be a fibration. Denote by
G(X) the genus of X and by G(f) the genus of f.

In this section we investigate the relations between Aut X and
Aut X' where X'eG(X) and between Aut(f) and Aut(f’) where

J e G.

NoTATION. Let X be a nilpotent CW-complex and let ¢: X — X,
be a rationalization. For every prime p and for every heAut X
denote by (h,), the localization of % at p with respect to .

PROPOSITION 4.1. Let X be a nilpotent CW-complex with a finite
number of homology groups and let p € P(P — the set of primes). If
X'e G(X) then Ker(Aut X — Aut X,) is isomorphic to Ker(Aut X' —
Aut X)).

Proof. Let ¢: X — X, and +: X' — X, be rationalizations and let
heKer(Aut X — Aut X,). Since for every prime p and for every
localization ¢,: X, — X, ¢,(h,), ~ 15 ¢,, there exists a unique map h'€e
Aut X’ so that (h,)y = (h,)y for every prime p [5, II 5.6]. Obviously
h' e Ker(Aut X' — Aut X;). Hence the map 7: Ker(Aut X — Aut X,) —
Ker(Aut X' — Aux X,) defined by (k) = h'iff (h})y = (h,), for every
prime p, is a well defined homomorphism. The same considerations
imply the existence of a homomorphism 7': Ker(Aut X’ — Aut X,) —
Ker(Aut X — Aut X,) defined by: 7'(k) = k' iff (k;), = (k,)y for every
prime p. Since 77 and %7’ are identities Ker(Aut X — Aut X)) is
isomorphic to Ker(Aut X’ — Aut X;).

COROLLARY 4.2. Let X be an Hy-space with either a finite number
of homology groups or a finite number of homotopy groups. Then
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Jor every X'eG(X) Ker(Aut X — Aut H*(X, Q) is isomorphic to
Ker(Aut X' — Aut H*(X’, Q)).

Proof. Since X, = [IK(Q, n;) the result follows from Proposition
4.1.

COROLLARY 4.3. If X and X' are as in Corollary 4.2 then
Ker(Aut X — Aut H.(X, Z)) is isomorphic to

Ker(Aut X' — Aut H (X', Z)) .

Proof. Let 7 and 7’ be as in the proof of Proposition 4.1. We
have to show that 7n(Ker(Aut X — Aut H,(X, Z)) < Ker(Aut X' —
Aut H (X', Z)) and that 7’(Ker(Aut X’ — Aut H (X', Z))SKer(AutX —
Auwt H. X, 7)).

Suppose &k € Ker(Aut X — Aut H,(X, Z)) and (k) = k’. The defini-
tion of 7 and the fact that for every prime » H.(h, Z) R Z, =
1(Z,, — thelocalization of Z at p) imply for every prime p H, (b, Z) Q
Z,, = 1. Hence it follows from Hilton-Mislin and Roitberg [5, I. 3.13]
that 4’ € Ker(Aut X’ — Aut H*(X’, Z)). The proof that 7'(Ker(Aut X' —
Aut H (X', Z))) < Ker(Aut X — Aut H,(X, Z)) is similar.

PROPOSITION 4.4. Let X and X' be as in 4.2. If Aut X s finite
then Aut X is isomorphic to Aut X'.

Proof. Let heAutX and let ¢: X — X, be a rationalization.
Since X is an H,space and Aut X is finite imply that Aut X, is
abelian. For every prime p and for every localization ¢,: X, — X,
Bp(hp)e ~ (Bo)op,. Hence the proof is similar to the proof of Prop-
osition 4.1.

NoTATIONS. Let X be an H,-space with either a finite number
of homology groups or a finite number of homotopy groups, and let
o: X — K(X) (K(X))=K(QH*(X, Z)/torsion) be a rational equivalence.
Denote by:

(a) X(p, @) the space which satisfies: There exists a factorization

of @ X P(r) — X (p, cp)‘P ) K(X), where ¢’ is a mod — p equivalence

and @” is a mod P — p equivalence. (Such a space exists by [9, 4.3.1]).
(b) N(X) — the least integer which satisfies: For every n >
N(Z) either 7,X =0 or H,X =0 (x, — if X has a finite number of
homotopy groups, H, — if X is finite dimensional).
(e) t — the least integer divisible by
II |torsion(H*(X, Z))| - |torsion(x,(fiber )| .

=N (X)
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LEMMA 4.5. Let X and @ be as in the notations. Then the map
Aut X(p, p) — Aut X, is monic.

Proof. Let heKer(Aut X(p, p)—Aut X,). Since Ker(Aut X(p, p)—
Aut X,) contains Ker(Aut X(p, ¢)— Aut X,) and X(p, @) is an H,-space,
@"(p)h ~ ¢"(p), i.e., for every prime p h is mod-p homotopic to the
identity, hence & is homotopic to the identity [5, II 5.8].

PROPOSITION 4.6. Let X be an Hjyspace either with a finite
number of homology groups or with a finite number of homotopy
groups. If H*(X, Z) is torsion free, then Ker(Aut X — Aut X,)(¢ € P)
18 a direct product of finite p-groups, » + q, v/t.

Proof. Let ¢: X — K(X) be a rational equivalence which repre-
sents generators of H*(X, Z). By Lemma 4.5 Ker(Aut X — Aut X))
is isomorphic to Ker(Aut X — Aut X(gc/), ®)). Hence the fact that X

is the pullback of the maps X(p, #) -8 K(X)(p/t) [9, 4.7.2] and that
Ker(Aut X(», ¢) — Aut K(X)) is a finite p-group [10, 2.9] implies the
result.

PROPOSITION 4.7. Let X, Y be nilpotent spaces with finite number
of homology groups and let f: X —Y be a fibration. Then for every
feGAS: X' >Y") and for every prime p, Ker(Aut(f) — Aut(f,))
is isomorphic to Ker(Aut(f) — Aut(f,)) is isomorphic to Ker(Aut(f")—
Aut(fy)).

Proof. Let ¢: X — X, 4: Y —Y, ¢': X' - X, and 4":Y' =Y, be
rationalizations. Assume that f, is the localization of f with respect
to @ and 4 and that f; is the localization of f’ with respect to ¢’
and «’. Since f, is homotopy equivalent to f, one can choose decom-
positions of @’ and '

XX, VY, Y,
| |
o v’

so that f,p, ~ 4,f" [6, 2.1.2]. Consequently, the considerations of
the proof of Proposition 4.1 imply that for every pair (h, k) € Aut f
there exists a unique pair (k', k') € Aut f’, which satisfies ((h}),, (k,)p) =
((hy)g, (Fp)y) for every prime p and therefore Ker(Aut(f) — Aut(f,)) is
isomorphic to Ker(Aut(f’) — Aut(f})).

COROLLARY 4.8. Let X,Y be as in Proposition 4.2 and f: X ->Y
be a fibration. Then for every f'eG(f)Ker(Aut(f) — Aut H*(f, Q))
18 1somorphic to Ker(Aut(f') — Aut H*(f", Q)).
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COROLLARY 4.9. Let f and f' be as in Corollary 4.8. Then
Ker(Auf(f) — Aut H.(f, Z)) is isomorphic to

Ker(Aut(f') — Aut H.(f', Z)) .
Proof. Similar to the proof of Corollary 4.3.

PrOPOSITION 4.10. Let f and f' be as in Corollary 4.8. If Aut(f)
s finite, them Aut(f) is isomorphic to Aut(f’).

Proof. Let ¢: X — X, and +:Y —Y, be rationalizations. Since
f, is homotopy equivalent to f; one can choose rationalization ¢’: X’ —
X, and ":Y' —Y, so that fi@' ~ «'f’. Hence the result follows from
the fact that Aut X, and AutY, are abelian groups. (The proof is
similar to the proof of Proposition 4.7).
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