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SUMS OF SQUARES IN PLANAR NASH RINGS

GUSTAVE A. EFROYMSON

In a previous paper, the author developed the ideal
theory of Nash rings on planar domains. Here that theory
is applied to show that a Nash function on a planar domain
D which takes on only non-negative values on D is a sum
of two squares of Nash functions on D. Examples are given
which clarify the situation for higher dimensions.

O Introduction* In the paper, "Nash Rings on Planar Domains"
[2], the ideal structure of planar Nash rings was discussed. Using
the results of this paper, it is possible to show that for D a planar
semi-algebraic domain, that if / e ND, the Nash ring on D, then
/ ^ O o n f l implies that there exist flf f2 in ND with / = f* + /2

2.
Recall that for polynomials, i.e. for R[x, y], it is known that there
exist polynomials p(x, y) for which there is no representation as a
sum of any number of squares of polynomials (e.g. Motzkin's example
[3]) and that if we use elements in R(x9 y) four squares may be
necessary [1]. As can be seen, the situation for Nash rings is merely
shifted by one dimension since by "homogenizing" Motzkin's example,
one obtains a Nash function which can't be represented as a sum of
squares of any number of Nash functions, and if quotients of Nash
functions are allowed, at least four are necessary to get this func-
tion as a sum of squares.

l The Main Theorem* We first recall some definitions.

DEFINITION 1. A semi-algebraic planar domain is a semi-algebraic
domain D £ R2. In addition to D being open, and connected, we
require that D can be defined by a finite number of polynomial in-
equalities.

DEFINITION 2. A Nash function on D is a real valued function
f(x, y) such that / is analytic on D, and there exists a polynomial
Pffaf V, z) such that pf(x, y, f(x, y)) = 0 identically on D. This is
just to say / is algebraic and analytic on D.

DEFINITION 3. For D as above, ND = the ring of Nash functions
on D.

The main result of this paper can now be stated.

THEOREM 1. Let ND be as above and suppose f is an element of
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ND such that f ^ 0 on D. Then there exist fx and f2 in ND so that

Recall that for analytic functions, one has the exact sequence
of sheaves of germs of analytic functions:

0 ><rx£*> <?* >Z2 > 0 .

Here έ?x is the sheaf of germs of analytic functions on X, and &*
is the sheaf of non-zero germs under multiplication. From the long
exact sequence for cohomology, one finds:

H\X, <ί?z) > H\X, <?}) > H\X, Z2) > H\X, <<?z)

but since H\X, έ?z) = H2(X, έ?z) = 0, we obtain H\X, <?$) = H\X, Z2).
We also have the exact sequence of sheaves:

X

where ^£* is the sheaf of germs of meromorphic functions and D
is the sheaf of divisors. Again the long exact sequence can be taken

H\X, &ί) > H°(X, ^£*) > H%X, &) > H\Xf

K

0

so H\X, Z2) = H\X, έ?}) = Γ(&)/K = class group of
If D is a simply connected region in R2, we find H\D9 Z2) = 0.

This implies by the above result that the class group is trivial. In
[2] we showed that if H\D, Z2) = 0, then the class group for ND,
the ring of Nash functions on D, is also trivial even though one no
longer has H\X, ND) — 0. This means that to give a Nash divisor
(locally) on R2 is to define up to a unit a Nash function which will
generate the principal ideal so defined. Also, since every Nash func-
tion only vanishes on parts of algebraic sets which therefore must
be unions of analytic components of algebraic sets, we see that the
support of a Nash divisor on ND will be a union of analytically con-
nected components of an algebraic set. A minimal such set will be
either a curve C or a real point P. We call the associated prime
&c or &P. In the case of a point there is some ambiguity since
the same point may be the support of different primes; for example,
(x2 + y2) and (x2 + 2y2) are different primes with support at the ori-
gin. Of course, the complex support is much larger.
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For general semi-algebraic regions D c R2

f there will be analy-
tically connected arcs of algebraic curves which run from one hole
of D to another. So we have 3 possibilities for irreducible primes
in ND. First we have those primes &c which have support a curve
C which passes through no hole of D. For such a prime, there exists
a global Nash function / on R2 with (/) = &*c. Then there are the
primes associated with a curve running from one hole of P to an-
other, and the third possibility is a prime with real support on one
point.

Now take a function / 6 ND. Then (/) = J\itj ^cβ*pΓ We claim
that each 0f

Ci must occur to an even power if / >̂ 0 on D. For,
let ί be a local parameter for &Ci at a non-singular point P of C<
where no other divisor of / has support. Then if / = ht2m+1 locally,
where h is a unit at P, we would find that / changes sign near P
and so we would get a contradiction.

So if Ct is of the first type, &Ci is principal and = (/<), and so
fim divides / for some integer m. And if C, is of the second type,
&*ct again divides (/), but ̂ J 4 is principal since the class group is
H\D, Z2) as shown in [2], and so ^l. = (gt) and gf will divide / for
some integer m. We now have reduced the proof of Theorem 1 to
the following cases, using the fact that if fλ and f2 are sums of two
squares, then so is f1f2.

Case 1. The support of / is one point and / is irreducible in
ND. There exists an irreducible polynomial p(x, y) such that / divides
p in ND. We can assume that the support of / is the point (0, 0),
using translation. It was shown in [2] that, by a change of vari-
ables, one can get p so that it factors p = JJj (y — a^x)) and each
a3 {x) is analytic except possibly at x — 0. The factors which divide
/ at (0, 0) are thus only those for which α/0) = 0. By multiplying
the factors which divide / in a complex neighborhood of (0, 0), we
get / back, up to a factor which is a unit at (0, 0). Note also that
since / is real, if y — a$(x) is a factor of / so is y — aά the complex
conjugate.

Now expand aά{x) in Puiseux series and get X, akx
k, keQ, with

bounded denominators. Suppose all these are in C{(xιjn)). Then, since
the Galois group of C((x1/n))/C((x)) is generated by the substitution

χun _^ ωΛχV»f for ωn a primitive nth root of unity, we see that the
conjugates of y1 = Σ ak%k are just y5 = Σ akωl3'xk, (over C((cc)), j =
1, , n). As long as no two of the yd are complex conjugates, we
are done since after multiplying together all the (y — y3), we will
get a function h(x, y) in ND[ί]. So hh will be a sum of two squares
in ND.

So now suppose two of the yό are complex conjugates. We can
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suppose one is yx and reparameterizing by letting x = tn

9 we obtain
Vi = ΣΠ=i «i** So suppose 2/* = & = Σ αy*i = Σ djθΰjktj, αy = JBye*̂
and ω = eία. Then αy = Λyβ*̂  = R &*'&"*. From this it follows that
ja + 0y Ξ —θs mod2π and so θs = ~j(a/2) modπ. Let u = e~{ίa/2)t
and Σ <*>$ = Σ a,3 e

i{ai/2)u>' = Σ M ^ W where εy = ± 1 and then a = ±w\
Now we have a real parameterization of the curve and so don't have
an isolated point.

Case 2. The support of / is an arc C which runs from one hole
of D to another. Next, we send one end of C to infinity and the
other end to (0, 0). Then find half lines Llf L2 going from (0, 0) to
infinity so that Lt Φ L2 and neither Lx nor L2 passes through any
singular point of C in D. Let Vt = Lt U C. Now I(Lt U C) = I(L%)I(C).
By the Corollary on p. 444 of [2], we find that if the Ct are arcs
which run from one hole of D to another, then Πt I(Ct) is principal
iff the number of ends of the d at each hole is even. This is, of
course, just another way of saying that the class group of ND is
isomorphic to H\D9 Z2). So since both Lt and C have one end at
(0, 0) and the other at infinity, the above result implies that I(Lt U C)
is principal. So there exists /< in ND with I(Vt) — (/«). Now /claim
that fl(fx

n + /2

2) is a unit in ND. Just look locally at each P of D.
We only have to worry about P on C and then have two subcases.
First, when P lies on C but not on Lx or L2, then the fact that /
vanishes on C implies that / is a multiple (locally) of fif i = 1, 2.
But / = ufif for u a local unit, is impossible since / doesn't change
sign near P. So / = gtf} for some gi9 again locally at P. Now,
since P is not on Lx or L2, each ft locally generates J(C), so fx — uf2

for u unit at P. So f,2 + /2

2 = (1 + u2)fi and so divides / at P.
Now assume that P is at an intersection of Lx and C (not the origin
which isn't even in D), then C is non-singular at P and we can
assume the intersection of L± and C is transversal (moving Lx a little
if necessary). Now let tc and tLl be local parameters for C and Lx

respectively. Then fλ = tctLlu19 f2 — tcu29 for nx and ^ 2 units at P.
So we see /ί + fi = t%(u\ + u\t2

Ll), which implies that fl + /2

2 divides
/ at P. Thus ///x

2 + fi is analytic on D. Since / is irreducible,
/ = u(fϊ + fi), for u a unit in ND. Then v = ^1/2 is in JV̂  and / =
(vff + (vf2y. Q.E.D.

2* An example*

EXAMPLE. Let / = a + (z2 + yψ2 in JVz,, where D = R2 - (0, 0).
Here C is the negative ^/-axis. We can let Lx be the positive #-axis
and L2 be the negative cc-axis. Using the methods in [2], we find
f = x - y + (x2 + τ/2)1/2, /2 = a? + » + (α?2 + 2/2)1/2. So we find/,2 + f2 -
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2(05 + (x2 + y2)112)2 + 2y2 = A(x2 + y 2 + x(x2 + yψ2) = 4(x 2 + ^/2)1/2(x + (x 2 +
yψ2). T h i s m e a n s t; s h o u l d b e 2{x2 + / ) 1 / 4 a n d finally f1 = (x-y +
(x2 + y2)1/2)/2(x2 + yΎ\U = (x + y + (x2 + yψ2)/2(x2 + yψ\ Of course
other representations are also possible.

3* No higher dimensional result* Finally, consider Motzkin's
example, p{x, y) = 1 + x2(x2 — 3)#2 + x2y* in i2[#, #]. Motzkin [3]
showed that this polynomial is ^ 0 everywhere but is not the sum
any number of squares in R[x, y] or see [4]. Moreover, Cassels,
Ellison, and Pfister [1] have shown that p is not the sum of 3 squares
in R(x, y). For our purposes, we homogenize p(x, y) to get q(x, y, z) —
z6 + x\x2 - Zz2)y2 + x2y\ Let D be any domain R3 containing (0, 0, 0).
We find with the above notation.

THEOREM 2. The homogeneous polynomial q(x, y, z) is not the
sum of any number of squares elements of ND. Moreover q is not
the sum of three squares in the quotient field of ND.

Proof Assume q = X h\ where the ht are in ND. Since each hi
is analytic at (0, 0, 0) we can expand in power series, and looking at
the lowest degree terms which appear in any ht (and which must be
of degree 3) we get a new equation X Q\ — Q(χ> V, #) homogeneous of
degree 6. Divide by zQ and dehomogenize and we get a contradiction
to Motzkin's result. Finally, let q = ΣLi h\\g2 where the ht and g
are in ND. Then g2q = Σ ^i Again look at the lowest degree terms
on each side and we get a homogeneous equation which when de-
homogenized gives a contradiction to Cassels, Ellison, and Pfister,
loc. cit. One should note that q ;> 0 for all z, y, z which is clear
since when z Φ 0 we can dehomogenize and when z — 0, we get
#V + x2y\
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