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ROOT LOCOLOGIES AND IDEMPOTENTS OF LIE
AND NONASSOCIATIVE ALGEBRAS

Davip J. WINTER

Locological spaces are introduced. The G-locology for a
subset R of a group G leads to the symmetric G-topology
of R. The connected components of R correspond to ideals
of any normal finite dimensional G-graded nonassociative
algebra A which, for A an idempotent Lie algebra with set
R of roots, are the central primitive idempotents of A.

0. Introduction. The underlying ideas in this paper are that
“jdeals” in a Lie algebra or graded nonassociative algebra A corre-
spond to “open sets” in the set R of roots of A4; and “direct sums”
correspond to “disjoint unions of open sets.”

The first section is devoted to making these ideas precise, in
the language of locologies and topologies for R.

The second section is devoted to the development of a theory
of decompositions of idempotent nonassociative algebras 1 as sums
1=E, + .--+ E, of pairwise orthogonal central primitive idem-
potents; and to showing for idempotent Lie algebras that the
central primitive idempotents correspond to the connected compo-
nents R, ---, R, of R discussed in Section 1.

The third section is devoted to relating the open set structure
of R to the ideal structure of a Lie algebra L not assumed to be
idempotent, taking as starting point Theorem 1.21.

1. Locological spaces and root locologies. Let B be a set,
k a set with a specified point 0ek called the origin of k, H a
collection of functions from R into k. Suppose that H contains the
zero function which maps all elements of R into 0. Suppose,
furthermore, that for each acR, x(a) =0 for some xeH. For
XcH, let R(X)={aecR|x(a) =0 for all e X}. Then the collection
% ={R(X)| X c H} of subsets of R contains R and ¢; and is closed
under intersections since

R(U X) = NRX) .

We call R(X) the locus of zeros of X. The collection & is a locology
for R in the sense of the following definition.

DEFINITION 1.1. A locology for a set R is a collection & of
subsets of R such that
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(1) ¢e% and Re %

(2) & is closed under intersections, that is, & C & implies
N> Sez.
A locological space is a set R together with a locology & for R. []

If, in the above example, H also separates the points of R, we
can imbed R in the set F(H, k) of functions from H to k by regard-
ing a € R as the function a: H— &k such that a(x) = 2(a) for x e H.
Thus, R(X) so imbedded is R(X) ={acR|a(x) =0 for all ze X}.
Let us suppose furthermore that % is a group with product + (not
necessarily commutative) and identity equal to the origin 0. Then
the sets R(X) satisfy the following conditions, ¢ + b and —a denot-
ing pointwise product and inverse of a, bc R and a € R respectively.

(1) if a,be R(X), then ¢ + be R(X) if a +beR, a —be R(X)
if a —beR, and (—a) + be R(X) if (—a) + beR;

2. if aeR(X) and —acR, then —ac R(X).

Thus, R(x) is closed and symmetric in the G-locology for R in the
sense of the following definition, G being the group G = F(R, k).

DEFINITION 1.2. Let R be subset of a group G with product
ab(a, b€ G). Then a subset S of R is G-closed if (S*U SS™* U SS)N
RcS, and S is symmetric if S*NRcS. Here, ST = {ablac S,
beT}, S2=8S,S*'={a?|laeS} for S, TcG. The collection & of
G-closed (respectively symmetric G-closed) subsets of R is called
the G-locology (respectively symmetric G-locology) of R. O

The G-locology (respectively symmetric G-locology) for a subset
R of a group G obviously satisfies the axioms for a locology for R.

We now assume that R is an arbitrary locological space with
locology . The elements of & are called the closed sets of R,
their complements the open sets of R. Note that B and ¢ are both
open and closed. For any subset S of R, &5 ={ANS|AcZ} is a
locology for S, called the relative locology on S. The closed and
open sets of S are called the relatively closed and open sets of S
respectively. If S is closed, &5 ={Ae&|ACS}. The closure of
a subset S of R is the intersection S of all closed sets of R con-
taining S. Note that S is closed, contains S and is contained in
every closed set containing S. We say that a subset S of R is
connected if S =S, U S, where S, and S, are disjoint and relatively
closed in S implies that S =S, or S = S..

PROPOSITION 1.8 Let S be connected. Then S is connected.

Proof. For A, B closed, SCAUB and SN AN B = ¢, we must
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show that Sc 4 or Sc B. But this follows from the fact that A
and B are closed and, since S is connected, Sc 4 or Sc B. O

For xe R, C(x) is the union of all connected subsets of R which
contain z.

THEOREM 1.4. For xeR, Clx) is closed and connected and
contains x. For z,yc R, either Clx) = C(y) or Clx) N Cly) = 4.

Proof. Since {x} is connected, C(x) contains x. Suppose that
Cle)cAUB and Clx)N AN B=¢ with A, B closed. We may as-
sume with no loss of generality that x€ A. Then every connected
set S containing « is contained in A, so that C(x) c A. Thus, C(x)
is connected. Since C(x) is connected, C(x) = C(x) and C(x) is closed.
Suppose that C(x) N C(y)- 22. Then C(z)> C(x), C(z) D> C(y), whence
C(x) = C(2) = C(y). ]

The above theorem shows that the sets G(z) are the maximal
connected subsets of B. We call C(x) the connected component of
R containing =x.

COROLLARY 1.5. R can be decomposed as a disjoint union R =
U:.: B, where the R, (i€ I) are the connected components of R. O

The connected components R, of R are closed.

COROLLARY 1.6. Suppose that R = ,;.; R; (disjoint umnion)
where R; is nonempty, oven and connected for all i. Then

(1) the R, are the connected components of R;

(2) each open and closed subset S of R is a union S = J,.,; R,
of certain of the R;; and every such union is open and closed.

In particular, the collection =2 of open and closed subsets of R is
closed under unions and intersections and is therefore a topology
for R.

Proof. We first prove part of (2), namely, that each union
S = Ui.; R; of a subcollection R(i€I) of the R; is open and closed.
Since the R, are open, S is open since S° = [,.; R; is closed—as the
intersection of closed sets. Similarly, S° = U,.;R; is open. Thus,
S is also closed. Taking I = {i}, we have shown in particular that
each R, is open and closed, as is its complement R; in R. This
having been shown, we now note that for (1), it suffices to show
that C = R, for any connected set C containing R,. This follows
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easily from the connectedness of C and the fact that R, R: are
closed and disjoint, Cc R, U R: and CN R, is nonempty. For the
remaining direction of (2), it suffices to show that whenever
R,N S # ¢, S contains R,. This follows directly from the fact that
S, S° are closed and disjoint, R, is connected, R, SU S° and R; N
S =+ ¢. O

We now specialize our considerations to a fixed subset R of a
group G. We regard R as locological space with the G-locology
for R, and refer to R with this locology as a G-locological space.
For Sc R, we denote the complement of S in R by S°. We say
that S is G-open if S° is G-closed.

THEOREM 1.7. Let S be a G-closed set of R. Then
(SS°uU S SUS S USSTUSESHTUIS)IS) NRCS®

Proof. Let aeS, beS°. Then we have b = a™*(ab) = (ba)a™ =
a(a™d) = (ba™)a = (ab™a™ = a(dba)™. Let d be any one of the
elements ab, ba, a7'b, ba™, ab™’, b'a. Since S is closed, b¢ S and
be(SdUdSTUSIUdSUdSUSd™?), it follows that d ¢ S. Thus,
d e R implies deS°. O

In general, the collection <7 of open and closed sets in a loco-
logical space R is not closed under finite unions and intersections.
For example, if R is the disjoint union of nonempty sets A, B, C, D,
then & = {¢, R, A, B, A°, B°} where the closed sets of R are ¢, R,
A, B, C, D, A°, B°, (AU B). However, & is closed under finite
unions and intersections for G-locological spaces R.

THEOREM 1.8. Let = be the collection of subsets S of R which
are both G-open and G-closed. Let S, Te =. Then

(1) for aeS,b¢S, we have ab¢ R, a™'b¢ R, ab™ ¢ R;

(2) SUT and SNT are in =.

Proof. (1) follows from Theorem 1.7 because, since S and S°
are both closed, we have (SS°US'S°USS“ ) YNRcSNS°=g. For
(2), it suffices to prove that SU T is closed and open for all S, T'e
=, since Se & implies S°e =2 and (SN T) =8S°U T°. Moreover,
SUT is clearly open, since S and T are open. We claim that
SUT is closed. Thus, let ¢,beSU T. Then one of the following
cases result:

(1) (a,be8) or (a,beT);

(2) (@€8S,a¢T,beT,b¢S) or (beS,b¢T,acT, ae¢S).
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In case (1), {ab, b, ab} N RcSUT. In case (2), the same is true
by the first assertion of the theorem which we have already
proved. O

COROLLARY 1.9. Let S, Te = and let acS, be T. Then either
a,beSNT or R contains none of the elements ab, a='b, ab™.

Proof. Suppose that SN T' does not contain both of a, b. Then
either ae€S and ¢S or a¢T and beT. In either case, ab¢R,
a"'b¢ R and ab¢ R by Theorem 1.8. O

CorOLLARY 1.10. If <7 is finite, then R =R, U --- UR, (dis-
joint union) where the R, are the minimal nonempty elements of
 (respectively, the minimal monempty symmetric elements of ).

Proof. Let the R; be the connected components of R in the
topology 2 for R (respectively, in the topology 2, = {Se Z|S is
symmetric} for R). O

DEFINITION 1.11. The open components (respectively the sym-
metric open components) of R are the minimal nonempty elements
of & (respectively o). O

COROLLARY 1.12. Let & be finite and express R as the disjoint
union R=R, U ---UR, of its open (respectively symmetric open)
components. Then a subset S of R is closed if and only if SN S,
18 closed for 1 <1 < m.

Proof. If S is closed, then SN R, is closed since R, is closed
for 1 <1 < n. Suppose, conversely, that SN R, is closed for 1 <
1<n. Leta,beS=SNR,U---USNR, If a,beSN R, for some
1, then {ab, a™b, ab™}N RC SN R, since SN R, is closed 1 <1 < n).
Thus, suppose that ae SN R;,, beSNR; with ¢ j. Then acR,
and b¢ R,, so that {ab, a™'b, ab™'} N B = ¢ by Theorem 1.8, since R,
is open and closed. It follows that (S*US*SUSSHNRcS and
S is closed. O

The above corollary determines the locology of R in terms of
the locology of its open components R,, ---, R, for & finite.

COROLLARY 1.13. For &7 finite, the set of connected components
of R (im the G-locology) is the union of the sects of commected com-
ponents of the open (respectively symmetric open) components
R, ---,R, of R. |
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For the remainder of this section, we specialize to G-locological
spaces K where R is the set of roots of a G-graded nonassociative
algebra A, G being a group. Here a mnonassociative algebra is a
vector space A over a field & and a product 2ye A (x, y € A) which
is bilinear in the sense that

(1) (w+yzr=22+yz (x,y,z€A);

(2) z(y +2) =2y + 22 (x, 9, z€ A),

(3) (cx)y = cloy) = w(cy) (v, y€ A, cek).

A subalgebra of A is a subspace B of A such that B®*c B; and an
ideal of A is a subspace B of A such that ABc B and BACB.
Here, BC is the span of {bc|be B, ccC} and B* = BB. A G-graded
nonassociative algebra, G being a group, is a nonassociative algebra
A together with a G-grading of A, that is, a collection {4,|a e G}
of subspaces of A indexed by G such that

(1) A =34, (direct sum of subspaces);

(2) A,A,Cc A, for all a,be@G.

The set of roots of A with respect to the G-grading of A is R =
{aeGla +1, A, # 0} where 1 is the identity of G and 0 is the null
space of A. The elements of R are called roots. We let H = 4,
Ay =>,.sA, and Hy = >\, . H H,~ + H,~H, for SCR.

We let (B) be the subalgebra of A generated by B for any
subset B of A.

DErFINITION 1.14. We say that the G-graded nonassociative
algebra A is normal if

(1) for each ae@G and Sc@G, A,A; =0 = A A, implies that
A (As) ©{As) and (A A, C{Ay;

(2) AA) Cc Ay, (AHA, (A for all SCG;

(3) AA4,A,-)C A A, for all ae@G;

(4) AyBc B and BA,C B and Ay B imply that (As> < B for
all ScG.

Note that graded Lie algebras and associative algeras are
normal.

THEOREM 1.15. Let A be mormal and let S be a subset of R.
Then

(1) for S closed, Hy is an ideal of H and {As) = A; + H
where S* = SN S

(2) for S open and symmetric, {Asy is an ideal of A and
(As) = Ag + A

(8) for S jopen and closed, {(RSURS*USRUSR}NRCS,
{S' SUSS*TUSS*US'SYNR=¢ and {RSURS*USRUS™R}IN
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{RS°UR(S)*'US‘RU(S) 'R} N R = ¢;
(4) for S open, closed and symmetric, {As> = Ay + Hs 13 an
ideal of A.

Proof. For (1), suppose that S is closed. By normality, H. is
an ideal of A, = H. Clearly, AjH,. U HuA;C Ag. Finally, A;A;C
Ag; + Hg since S°NRcS. The first part of (3) follows from
Theorem 1.7 for S open and closed, since (S2USS*US'S)NRCS;
and the second and third parts follow from the first applied to
both S and S°. Clearly, (4) follows from (1) and (2). For (2),
assume that S is open and symmetric and let B = A, + A% Let
acS°. Since S is symmetric, a*¢S. By (8), (S°'SUSS° )N R = 4.
Thus, A,A; =0 = A;A,. By normality, therefore, (A, + A4,){4s> C
(A and (A H(A, + A,) {4y for all aeS°. Thus, (4;) is an
ideal of A. It now remains only to show that (A4,> = B, that is,
that B = Ay + A% is a subalgebra of A. For this, it suffices, by
normality, to show that A;B U BA;C B; for then (A € B by nor-
mality, since Ay B, so that (4> = B. Since B = A; + A%, to
show A;BU BAgC B reduces to showing that A;A%U A3A;C A +
A%. Therefore, consider D = A,(A4,A,) where a,b,cecS. If a +b +
ceSora+b+c¢R, then Dc B. Thus, assume that a+b+ceS°.
Since S° is closed, ¢¢S° and ¢ =(a +b +¢) — (b + ¢), we have
b+ c¢S°. But then either b +c¢eS, in which case DcC A%; or
b+ c¢R, in which case D = A4,0) =0. Thus, in all cases, DCB.
Thus, AjA%Lc B. Similarly, A3A;C B, and it follows that (4> CB,
therefore (45> = B. |

DEFINITION 1.16. If A*=0, A is abelian. If A has no ideals
other than 4 and 0, A is simple. |

COROLLARY 1.17. For A simple and monabelian and normal,
Hy, = H for every nonempty symmetric open set S of R.

Proof. By Theorem 1.15, A; + A% must equal A, so that H =
HS. D

COROLLARY 1.18. Let A be normal and let S, T be open and
CZOSed SetS Of R. Then ASﬂT ‘l’ 'H-(SQT)* a’)’bd <As> n <AT> = ASﬂT +
Hy. N Hy. are tdeals of A.

Proof. This follows directly from Theorem 1.8 and 1.15. O

Some of our observations can now be summarized as follows.
The proof is straight forward.
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THEOREM 1.19. Let A be finite dimensional and mnormal, let
R, ---, R, be the open components of R, let A, = Ay, + Hp;(1 =1 =
n) and let I be the sum of all ideals of A which are contained in
H. Then

(1) the A, are ideals of A 1<i=n) and A=H+ A, +
e 4 A";

(2) I is an ideal of A contained in H and IA, =0 = A1 for
all a € R;

(3) A=HPA®D --P A, (direct sum) where A = AJ/I, H=
H+ Il and A, = A, + I/I1 £ i < n). [

Finally, we specialize to the context of a finite dimensional
Lie algebra L over a field & with split Cartan subalgebra H. Let
G be the group G = F'(H, k) with a product a + b(a, be @) defined
by (@ + b)(h) = a(h) + b(h) (he H). Then the Cartan decomposition
L=3,.cL, is a G-grading for L such that H= L, Let R be
the corresponding set of roots with the G-locology, so that L =
H + ZaeR La'

Corollary 1.18 and Theorem 1.19 can now be refined as follows.

COROLLARY 1.20. Let S, Te<=2. Then

(1) [Ls, L) € Lsor + Hgpy, where T, = T U (—T);

(2) for S and T symmetric, acS, beT, we have [L,, L, =
[H,, L)) = [L,, H,] = [H,, H,] = 0 unless a,be SN T.

Proof. Since S+ T)NRCR+S)NRER+T)NRcSNT by
Theorem 1.7, we have [Lg, L;]C Lgy, + Hgnr.. Suppose next that
S and T are symmetric, acS and beT. If a +b=0o0ra—>b=0,
then @, b€ SN T by symmetry. Thus, suppose that a + b # 0 and
@ —b+0. Then ¢ +b¢R, a —b¢R and —a +b¢ R unless a,be
SNT, by Corollary 1.9. Since [H,, L,] = [[L,, L_,], L,] = [[L., L],
L_,) + [L,, [L_,, L,]], it follows that [H,, L,] =0 unless a,beSN T
or a, —be SN T; that is, unless @, b SN T. And since [H,, H,] =
[[H,, L)), L_,] + [L,, [H,, L_,]], it follows that [H,, H,] =0 unless
either ¢, be SN T or a, —be SN T; that is unless ¢,be SN T. O

COROLLARY 1.21. Let R, ---, R, be the symmetric open compo-
nents of R and let L, = Lp, + H,(1 <1 =<mn). Then L=H + L, +
«~++ L,, [L;,, L,Jc L,, [L;,, L;] =0 for 1<4,j<n and ©t#* j and
L*=L,+ -+ + L,.

Proof. Since R=R,U---UR, (disjoint union of symmetric
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open and closed sets), this follows directly from Corollary 1.20 and
the fact proved in Winter [4] that L*=3,cr [Lo, L_ ]+ Dwecr L. [

Before turning to the next section, we mention that the set &
of open and closed (respectively symmetric open and closed) sets of
a G-locology for R determine a topology (<) for R as defined
below. Our use of this topology has been restricted to the case
where & is finite, in which case & =<(=). That (&) is, in
general, a topology for R is evident.

DEFINITION 1.22. The set (&) of unions of subsets of & is
called the G-topology (respectively symmetric G-topology) for R. []

2. Idempotent nonassociative algebras and Lie algebras. In
this section, all nonassociative algebras are finite dimensional.

DEFINITION 2.1. In a nonassociative algebra A, an idempotent
is a subalgebra E of A such that E=E*+0. If EQ K, E, is
proper in K. If EE,=0= E,E, E, and E, are orthogonal. If an
idempotent E cannot be written as E = E, + K, where E, and E,
are proper orthogonol idempotents in FE, then E is a primitive
idempotent. The tdentity of A is 1, = A" = N, A”; where AW =
A? and AU = A" for all +. An idempotent E of A is central if
either 1, =F or 1, = E + F where E and F are orthogonol idem-
potents. If A= A*+0, A is an idempotent algebra. And A is
primitive if A is a primitive idempotent of A.

Note that 1, = 0 if and only if A is solvable in the sense that
A® =0 for some i. For A nonsolvable, 1, is an idempotent of A
and 1, contains every idempotent E of A. If A = A*=£0, then
A =1,, in which case A is an idempotent algebra. If E is a central
idempotent of A, we have 1,F = K1, = E, since 1, = E + F where
(F+ F)E=FEFE+ F)=E.

It is possible to align our language even more closely with the
classical theory of idempotents by noting that each central idem-
potent E of A determines a unique minimal central idempotent,
called 1, — FE, such that 1, — E and E are orthogonal and such that
1, =E+Q,—E). Forif 1,=FE+F=FE+G where F and G
are central idempotents orthogonal to A, then 1, = L% = F + FG=
E+FNG@=E+ FNG =FE + H where H is the central idem-
potent (F'N G)* contained in F'NG.

THEOREM 2.2. A mnonassociative algebra A has only finitely
many central primitive idempotents K, ---, E,. They are pairwise
orthogonol and their sum is 1,=FE + --- + H,. FEvery central
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idempotent E of A is the sum E = Xzz,., E; of those E; mot ortho-
gonol to E. In particular, A has only finitely many central idem-
potents.

Proof. We claim first that any central idempotent E of A
can be written as EF=E, + --- + E, where the FE, are pairwise
orthogonol central primitive idempotents. We use induction on the
dimension of E. If E is primitive (as when E has dimension 1),
we take F = E,. Otherwise, we can write ¥ = F + G where F and
G are proper orthogonol idempotents. Since E is central, so are F
and G. By induction, we may write both F' and G, and therefore
also E, as sum K =FE, + --- + E, of pairwise orthogonol central
primitive idempotents, as claimed. Since either 1,=F or 1,=FE+F
where [E, F] =0 and F is a central idempotent, we can write F'=
E,.,+---+FE,and 1,=FE, + --- + E, where the E; are pairwise
orthogonal central primitive idempotents for 1 <7< n. Let P be
any central primitive idempotent. Then P =1,P= Pl, = PE, +
-+++PE,=EP+ ---+E,P and PE,UE,PcPnE, for all <. Thus,
PE, == 0 for some 1, say 4 = 1, without loss of generality. We claim
that P = F, since PE, +0. We have P=P*“ =P, + --- + P,
where P; = (PN E;)*. Since P} = P, and P,P, =0 = P,P; for i+#j,
P = P; for some j. Thus, PC E;. Since PE, # 0, we have j =1
and PcE,. If P=1, then 1, = P = E,, and we are done. Other-
wise, write 1, =P+ Q where P and @ are orthogonol central
idempotents. Then E, =El,=EP+ EQ=P+ENQ=P~+ P
where P’ = (E, N Q). Thus, P’ =0 and E, = P; for otherwise P’
is an idempotent orthogonol to P and E, is not primitive. |

THEOREM 2.3. Let G be the connected component of the identity
of the automorphism group Aut A of a monassociative algebra A.
Then G and its Lie algebra G stabilize each central idempotent of
A. If the characteristic is 0, the central idempotents are stable
under the derivations of A. And if A is a Lie algebra of charac-
teristic 0, the central idempotents are ideals of A.

Proof. The subgroup H of elements of G which stabilize each
central idempotent of A is closed. Furthermore, G permutes the
central idempotents of A. Since there are only finitely many, by
Theorem 2.2, G: H is finite. But then H is open, since H and its
finitely many cosets are closed. Thus, H is open and closed, so
that G = H by the connectedness of G. Thus, the central idempo-
tents of A are stable under G, therefore under G. In characteristic
0, G = Der A, where Der A is the algebra of derivations of A. If
A is a Lie algebra of characteristic 0, we therefore have ad AC
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Der AC G, so that the central idempotents of A are ad A-stable,
that is, they are ideals of A. |

COROLLARY 2.4. Let the central idempotents of Abe E,, ---, E,.
Then for any idempotent ideal I of 1, I =1 + --- + I, where I,
18 an tdempotent of E1 =1 =mn). If A is a Lie algebra, these I,
can be taken to be ideals of 1,.

Proof. I=1,I=>r EIC>r E;nNIcIandI=>", I where
I, =(E,NI)*. Note that I, is an ideals of 1, if A is a Lie
algebra. |

COROLLARY 2.5. Suppose that L 1s a Lie algebra. Then the
Cartan subalgebras H of 1, = L' are the subalgebras H = H, +
-+« + H, where the central primitive idempotents are K, ---, E,
are H,; is a Cartan subalgebra of E, for 1 < i < n. For each such
H H,=ENH for 115 n.

Proof. Each such H is a Cartan subalgebra of 1,, since
(1)(ad H) = 3, (E)ad H) = >0, (E;)(ad H;) = > H, = H. Con-
versly, let H be a Cartan subalgebra of 1, = L. Let H, = E,N
(H+ 3..; E) for 1 <4 <, and note that Hc H, + --- + H, since
HCE + ---+E,, We may conclude that H,c(E)(ad H;)C
(B)fad H)y=E,NHCH for1<t1<mn, sothat H=H, + --- + H,.
But then H;, = E;N H = (E,)(ad H) = (E,),(ad H;) and H; is a Cartan
subalgebra of E, for 1 <1 < n. O

Note that the Cartan subalgebra H, in the above theorem, is split
if and only if H, is split for 1 <7 < n. In the proofs of Theorems
2.6 and 3.3, we make use of [H,, H;] =0 for ¢ j to conclude that
R(X;U X;)=R(H,U---UH,)=RH + --- + H,) = R(H).

THEOREM 2.6. Let H be a split Cartan subalgebra of an idem-
potent Lie algebra L, and let R =R, U---U R, be the decomposition
of the set R of roots of H into its connected components B, 1<1=<n)
wn the symmetric G-locology for R where G = F(H, k). Then

(1) R, is open and closed for 1 <1 < m;

(2) the ideals E;={Lg) = Lg, + Hz, (1=1=m) are the
central primilive idempotents of L so that L=E + --- + K,
[E;, E;] =0 for @ = j;

(3) L is primitive if and only if R is comnected.

Proof. Let E, ---, E,, be the central primitive idempotents of
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Land H . =HNE;, (1 <i¢<m). By Theorem 2.2 and Corollary 2.5,
L=E+---+ E, H, is a split Cartan subalgebra of E,(1<i=<m)
and H=H, + --- + H,. Let X,=Ur H; — H, and R, = R(x,)
1 =17 m). We claim that the R,, which are closed, are also open;
and that the R, are, in fact, the connected components of RB. Note
first that R,NR; = R(X,U X;) = R(H)=¢ for 7+ j. Next, let
ac R, so that 0 = L,(ad H) = >, (K,).(ad H;) and 0 # (E,).(ad H,) for
some 4. Then 0 = (&)),(ad H;) since [E,, E;] =0, so that a(H;) =0
for 7 = j. Thus, ae R(X,) = R,. It follows that R=R,U---UR,
(disjoint union of closed sets). Furthermore, a(H,) # 0, and we see
easily that R, therefore is also R, = R — R(H,), an open set
(1 <7< m). Moreover, we see that R, = {aec R|(L,),(ad H) # {0}}
1=t=m). Since R, N R; = ¢ for 1 +# j, it follows that E, contains
Ly, and E;N Lg; =0 for 1 <4, <m and 7 # j. Since R, is open,
closed and symmetric, F;, = Ly, + Hj, is an ideal of L (1 =14 < m).
Since E;D{Lz,) = F}, since F} = F, 1 <4 <m) and since L = L’ =
L,+H,=F,+ .--- +F,, the F, are central idempotents of L. It
follows easily from Theorem 2.2 that E, = F;, so that E,=Lg +Hp,
14 m). For (1) and (2), it now remains only to show that R,
is connected. Thus, suppose that R, = SU T (disjoint union) where
S, T are relatively closed and symmetric in R,. Since S and T are
relatively closed and symmetric in R,, and disjoint, S and T are
relatively open in R,. It follows that, in the Lie algebra L,=Lg,+
H, S and T are open, closed and symmetric. Thus, [Ls, L;] = 0 by
Corollary 1.2, since SN T = ¢. It follows that E,=Lg +H,; =E+F
where £ =Ly + Hy, F =L, + H;, E*=FE, F* = F, EF = 0. Since
E; is primitive, E;, = FE or F; = F and T =¢ or S =¢. It follows
that R, is connected (1 <7< m). In particular m = n. Now (3)
follows from (1) and (2), and all assertions have been established. []

COROLLARY 2.7. For a Lie algebra L with split Cartan subal-
gebra H and set R of roots, if L is semisimple (characteristic 0) or
classical (characteristic p > 0), then the conmected components R, of
R in the symmetric G-locology are the irreducible root systems of R
in the sense of Bourbaki [1]. |

In the proof of Theorem 2.6, it is actually shown that the R,
are open and closed in the locology {R(x)| X cC H} which, a priori, is
a coarser locology than the symmetric G-locology. On the other
hand, the R, are also the connected components of R in the sym-
metric G-topology of R.

3. Ideal structure and locology of a Lie algebra and its root
spaces. In this section, we consider a finite dimensional Lie algebra
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L with split Cartan subalgebra H and corresponding set R of roots
with the symmetric G-locology of 1.2, 1.20.

THEOREM 8.1. Let L=L,+ --- + L, (sum of ideals) where
[Li, L] =0 for 1<4,j<n and i # j. Then

(1) H=H,+ +---+ H, and R=R,U---UR, (disjoint) where
H,=HNL, and R, ={acR|(L)(ad H) = 0} for 1 <1 £ n;

(2) R, is open and closed, H;, is a Cartan subalgebra of L,
and L; = H; + Lg, for 1 <1 = n;

(8) L*=3\L7, LY = Lg, + Hg, and [L, L7] = L7 for 1<1=mn.

Proof. As in the proof of Theorem 2.6, we see that H = H, +
-~++H, R=RU---UR, (disjoint), R, is open and closed and H, is
a Cartan subalgebra of L, for 1 <4 <n. For aeR,, we havea ¢ R;
and therefore (L;),(ad H) =0 for 7= j. It follows that the de-
composition of L, under ad H is L; = H; + 3,cp, Ly = H; + L,
Clearly L~ = Ly + --- + Lg, since [L,, L;] = 0 for ¢+ 5. Since L;D
Ly, and [L, L}] = L?** for all m, we have L;,D Lp, L; =[L, L;]D>
Ly, ---. Thus LD Lg,. Since Lg, + Hp, is and ideal of L, and
L/(Lp, + Hp,) is nilpotent, we also have L;C Lg, + Hg, so that
L; = L, + Hg, for 1 =1 = n. That [L, Li] = L7 is clear since L=
L+ ---+ L, and [L,, L;] = 0 for 4+ j.

The following theorem is proved in Winter [3] and, under a
stronger hypothesis, in Winter [2].

THEOREM 3.2. Let L be a Lie algebra, I and ideal of L.
Suppose that either the characteristic p of L is 0 or (ad )’ cad,l.
Then I(ad (HNI)) is a Cartan subalgebra of I for every Cartan
subalgebra H of L. O

THEOREM 3.3. Let I be an ideal of L and suppose that
I(ad HNI) is a Cartan subalgebra of I. Let I =1 + --- + I,
(sum of ideals) where [I,, ;] =0 for 1 <14, =<n and i+ j. Then

(1 H=H,+---+H, and R,=R,U---UR,US (disjoint)
where H,=HNI, R, ={acR|[(H,)+0}, S=R,H;,) and R,=
{aeR — S|L,(H;) # 0} for 1 <1 < n;

(2) R, is relatively open and closed in R, — S, H; + I is a
Cartan subalgebra of I, and I, = (H; + I;5) + I, for 1 =4 < n.

Proof. I(adl,) = H, + Iy is a Cartan subalgebra of I by
Theorem 3.2. We have H,=I(ad H) =37, [ (ad H) = >, H,.
Letting X, = Uz, H; — H, and B, = R,(X,) for 1 <4 < m, we have
R.NE;=R(X,UX)=RH,U---UH)=RH,+---+H)=R,(H)=8
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for all 7+ j. Here, we use the fact that [k, h;] =0 (h,e H,) for
all ¢ # j implies that a(h,+---+h,) = a(h,) +---+ a(h,). Let R, be
the complement of S in Ié:, so that R, N R; = ¢ for ¢ # j. For ac
R, — S, we have 0= I,,(H,) = I,,(ad H;) for some %; and therefore
a(H;) = 0 for j + 4; and therefore a(H;) + 0 and ael/%:—S=R,.. It
follows that R, =R, U---UR,US (disjoint), with R, relatively
open and closed in B, — S. It also follows that I, = I,(ad H,) +
Seer, Lo = (H; + Is) + Ip,. As in the proof of Theorem 3.1, K =
H,; + I is Cartan subalgebra of I implies that K, = KNI, = H,+ 1
is a Cartan subalgebra of I, for 1 <1 < n. O

We can now improve Corollary 1.21 and use it and Theorem 3.3
to prove that if H,= HNL> is a Cartan subalgebra of L, the
connected components R, of R in the symmetric G-locology are
both open and closed. Whether this is true when H, is not a
Cartan subalgebra of L~ is an open question, the answer of which
is probably negative.

THEOREM 3.4. Let R, ---, R, be the connected components of R,
in the symmetric G-locology, and let L; = Lg, + Hp, (1 <1t < n).
Then [L,, LJC L;, [L;, L;] =0 for i+ j and L* =L, + --- + L,.

Proof. Choose a decomposition R = R, U---U R, (disjoint) with
n maximal satisfying all of the following conditions:

(1) The R, are closed, nonempty, pairwise disjoint;

(2) every connected subset of R is contained in some R;;

(3) the conclusion of the Theorem 3.4 holds.
We claim that the R, are the connected components of R, that is,
that each R, is connected. If R, is not connected, then R, = R, U
R, ., (nonempty, closed, disjoint) and each connected subset of R, is
either in R, or in R),,. In the context of the Lie algebra L,=
Ly, + Hg , R, and R, are relatively closed and open, so that L,=
L, + L, with L:c L,, Lic L, [L, L)) =0 where L, = Ly, + Hpg,
and L, = Ly, , + Hg,,,. Thus, R, ---, R, ,, R,, R',,, satisfies condi-
tions (1), (2), (8), a contradition. We must conclude that R, (and,
similarly, B, for all 7) is connected as asserted. Note that the
assertion L® = L, + --- + L, is verified as in Corollary 1.21. O

COROLLARY 8.5. Suppose that H, = HN L~ is a Cartan subal-
gebra of L*. Then

(1) the connected components R, (1 <i1=<n) of R are both
open and closed;

(2) Hy, is a Cartan subalgebra of Lg, + Hp, =L, 1=1=mn)
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and L =L, + -+ + L, (sum of ideals of L) where [L,, L;] =0 for
E R

Proof. We have (2) by Theorem 3.4 and the hypothesis. Thus,
by Theorem 3.3, R, is open and closed in B, — S=R—-S=R —
R(H.) =R — ¢ = R. L

Finally, we note that Theorem 3.4 is in the direction of a con-
verse to Theorem 3.1. It provides a decomposition L*=L,+---+L,
where L, = Ly, + H,, and the R, are the connected components of
R. It follows immediately that the same is true if the R, ---, R,
are pairwise disjoint and every connected component of R is con-
tained in one of the R, as is the case when R=R, U ---UR, is
disjoint union of open and closed sets (the situation which immerges
in Theorem 3.1). Although it may not be possible to lift such a
decomposition L* = L, + --- + L, to a decomposition L = L,+---L,
of L (compare with the hypothesis of Theorem 3.1), the following
lifting is possible when H is abelian.

THEOREM 3.6. Let H be abelian and let L° =L, + --- + L,
with L; = Ly, + Hg,, R=R,U---UR, (disjoint) and [L,, L;,)C L,,
[Li, L;] = 0 for all i # j. Then there is a Lie algebra L, containing
L as ideal and decomposition L = L, +---+ L, (sum of ideals such
that [L, L1 =0 for i+ j and L,nL =L, (1 <1 < n).

Proof. L is ideal of M=(Der L) P L (semidirect) where [D, xz]=
D(xz) for DeDer L, xe L. Let he H and define D;: L — L so that
D, is linear, D(H) =0, Dil;, =adh|y,. DJLg)=0 for i+ j.
One easily verifies that D,eDer L (1 <4 < n). Since D, depends on
h, we use the notation D, = D,h). The span H, of {D(h)|1<i< n,
he H} is a commutative subalgebra of Der L and we let .= H,+L
and A= Efo + H. Clearly H is a Cartan subalgebra of L. Let

{xeLl[x L] =0 for all ¢+ 5 and [z, H] = 0}. We claim that
H H+---+H,. Clearly, H, + --- + H, contains H,. Let he H
and x = h — (Dy(h) + --- + D,(h)). Then [x, L,] =0 for 1<% < m.
Furthermore, [x, H,] =0. Finally, [#, H,]=0. It follows that «
centralizes L. In particular, e L(ad B ) H. It follows that ze
H, for all i and that h=a + D(h) + -+ + D(h)eH, + --- + H,.
Thus, HCH+ -+H,, so that HCHI -+H,. Since [Hl, H]=0
and [H,, L,]=0 for 7,¢3, we have [H,, D(H)] 0 and [H,, D,(H)] 0
for © # j, so that [Hi, Ho] = 0. It follows that HiCLo(ad ) =
(1<i<mn). Thus, H= H1 -+ H, LetL,=H,+L, (1§z§n)
It is then evident that L = L + -+ + L, is a decomposition satis-
fying the asserted conditions. |
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Clearly, the R, i£1 Theorem 3.6 are open and closed in R in the
locology defined by H.
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