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FIXED POINT SETS OF PRODUCTS AND CONES

JOHN R. MARTIN, LEX G. OVERSTEEGEN

AND E. D. TYMCHATYN

A space X is said to have the complete invariance pro-
perty (CIP) if every nonempty closed subset of X is the
fixed point set of some self-map of X. Examples are given
to show that for the class of locally connected continua,
the operations of taking products, cones, and strong defor-
mation retractions need not preserve CIP In fact, it is
shown that the operations of taking products and cones do
not preserve CIP for LC00 continua.

l Introduction* A subset K of a space X is called a fixed
point set of X if there is a continuous function /: X —> X such that
f(x) = x iff xeK. In [8, p. 553] L. E. Ward, Jr. defines a space
X to have the complete invariance property (CIP) if every nonempty
closed subset of X is a fixed point set of X. Examples 4.3, 5.1 and
6.1 in [4] are examples of non-locally connected continua which show
that CIP is not preserved by the operations of taking strong defor-
mation retractions, products and cones. The purpose of this paper
is to construct locally connected examples showing that CIP is not
preserved by the above operations and, in fact, provide examples
which answer Questions 5.2, 6.3 and 6.4 in [4]. In particular, we
show that if X is a locally connected continuum possessing CIP, then
X x I and Cone (X) need not have CIP. Moreover, it is shown that
it is possible for X to be either a 1-dimensional continuum or an
LC°° continuum.

2* Notation and terminology* The terminology used in this
paper may be found in [1]. In particular, Hubert space Eω with
metric p and Euclidean w-dimensional space En are as defined in [1,
pp. 10-11]. For k — 1, 2, 3, , let ak denote the point in Eω given
by the formula ak = (l/k, 0, 0, 0, •••), and let aQ denote the origin
of Eω. Let Sk denote the ^-dimensional sphere in Eω consisting of
all the points x = (xl9 x2y xi9 ) such that p(x9 ak) = l/k and such
that xt = 0 for i > n + 1. Then we define

An = U Sk», AZ = O S£ .
k=l k=m

A point p in a space X is said to be homotopically stable if for
every deformation H: X x I -> X, H{p, t) = p for all t e I. For
instance, α0 is a homotopically stable point in each of the spaces
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An and AZ.

3* Products* We first consider some variations of a property-
considered by L. E. Ward, Jr. in [8, Theorem 1].

DEFINITIONS 3.1. (1) A space X has property Q if for every-
nonempty closed subset K of X there is a point p e K, a retract R
of X containing K, and a deformation H\R x I-+R such that
H(x, t) Φ x if x Φ p and t > 0.

(2) If in (1) we omit p and stipulate that H(x, t) Φ x if a? g K
and £ > 0, then we say that X has property Q (weak).

(3) A space X has property W if for every point p e X there
is a deformation H: X x I —• X such that iϊ(#, t) Φ x ifxφp and
ί > 0 .

(4) If in (3) #(#, ί) Φ x whenever t > 0, we say that X has
property W (strong).

We note that if X is a space having property W (strong) and
Y is an arbitrary space, then the product space X x Y has property
W (strong). Since W (strong) => W => ζ> =*Q (weak), the following
proposition shows that any metric space satisfying one of these
four properties has CIP.

PROPOSITION 3.2. Any metric space (X, δ) having property Q
(weak) has CIP.

Proof. Let K be a nonempty closed subset of X, and let R and
H be as in Definition (2). We may assume that δ <; 1, and let
r: X->R be a retraction of X onto R. Define a map /: X-+ X by

/(a?) = H(r(x), δ(r(x), K))9 (xeX).

Then it is easy to check that / is a self-map of X whose fixed point
set is K.

PROPOSITION 3.3. Let X, Y be spaces such that one has property
Q and the other has property W. Then X x Y has property Q.

Proof. Suppose that X has property Q and Y has property W.
Let K be a nonempty closed subset of I x Γ . Let π denote the
natural projection of X x Y onto X. Then there is a point p e π(K),
a retract R of X containing π(K), and a homotopy F: R x I—>R
such that

F(x, 0) = x ,

F(x, t) Φ x if x Φ p and t > 0 .
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Let q be a point in Y such that (p, q) e K. Then there is a homo-
topy G: Y x /-> Y such that

G(y, 0) = y ,

/, t) Φ y iί y Φ q and ί > 0 .

Now (p,q)eKczRx Y and ί x Γ is a retract of I x Γ . Define
a homotopy H: (R x Y) x I-*R x Y by

, ί), <?(»,«)), (xeR,yeY,teI).

Then Hί(s, y), 0) = (x, y), and jff((&, y), t) Φ (x, y) if (x, y) Φ (p, q) and
t > 0. Therefore X x Γ has property Q.

As a corollary to Propositions 3.2 and 3.3, we obtain the follow-
ing theorem.

THEOREM 3.4. Let X, Y be metric spaces such that one has
property Q and the other has property W. Then X x Y has CIP.

We remark that the class of spaces satisfying property W
includes any space which admits a strongly convex metrization (see
[1, p. 219] and [8, p. 554]), compact manifolds without boundary
[6], and all compact triangulable manifolds with or without boundary
[7], Furthermore, property W (strong) holds for the case where
one of the above manifolds has Euler characteristic equal to zero,
or for the case where the space is a metric group which contains
an arc [4, p. 1028].

The following example answers (5.2) in [4] and shows that the
hypothesis of property Q in Theorem 3.4 cannot be replaced by
property Q (weak).

EXAMPLE 3.5. For k = 1, 2, 3, , let pk denote the unique
point on the upper semicircle of SlaE2 whose first coordinate is
1/fc. Let Blf B2, J53, be a null sequence of disjoint copies of A1

lying in the disk bounded by Si such that
(1) For each k = 1, 2, 3, , Bk Π Si = {pk} where pk is the

point in Bk which corresponds to the point α0 in A1. Then,

(2) l i m ^ B k = {a0} c S i .

Define Γ = S ί U U f c = i 4
Then Y is a 1-dimensional planar Peano continuum. It follows

from the proof of Theorem 1 in [5] that Y has property Q (weak)
and thus has CIP. However, F x ί does not have CIP. To see
this, let

C = {(α0, 0)} U U *«*-i x {0} ,
k=l
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Suppose /: Yxl-+Yx I is a mapping whose fixed point set is CU
D. Since the points α0, pu p2, p5, are homotopically stable points
of Y, it follows that /({#} x I)a{q} x I for any point q e {α0, pu p2,
Pz9 •}• Consequently, if 0 < t < 1 and f(pk, t) = (pk, s), it follows
that s < t if k is odd, and s > t if A; is even. Therefore /(α0, £) =
(α0, t) for all £ e / which is a contradiction.

The following examples are higher dimensional analogues of
Example 3.5.

EXAMPLE 3.6. If we use the same notation as was used in
Example 3.5 and let Bk be homeomorphic to An(Ak) for k = 1, 2,
3, •••, then we obtain an LCn(LC°°) continuum Yn(Y°°) such that
Yn x I(Y°° x I) does not have CIP. Moreover, it is easy to show
that Yn{Y^) satisfies property Q (weak) and hence has CIP.

To see this for Y°°, suppose C is a nonempty closed subset of
AT = U*U S£. Let R denote the retract of AT defined by

R = SIU\J [Sk

k\C[] (Sk

k - W ) Φ 0} .

We first construct a deformation of R which shows that AT has
property Q (weak) by constructing deformations on each of the S£
lying in R. For each k > 1 such that S£ c R, choose one point ck e
C f] (S£ — {α0}). If aoeC, consider a deformation of S£ which fixes
ck and α0 for all values of t, and for t > 0 moves points along radial
rays from the point ck to the point α0 at infinity. To obtain the
required deformation of R we use the above deformations together
with a deformation of Si1 whose terminal map is a translation of
Si which fixes the point α0 at infinity. If aQ & C, then there are
only finitely many values for k such that Sk c R. In this case, we
consider a deformation of Si whose terminal map is a rotation of
Si, and we adjust the previous arguments so as to obtain deforma-
tions of the Si into R which agree with the new deformation of
Si. This shows that AT has property Q (weak) and these arguments
can be modified to show that Y°° has property Q (weak).

4* Cones* The following example answers Questions 6.3 and
6.4 in [4] by showing that the cone over a 1-dimensional Peano
continuum having CIP need not have CIP.

EXAMPLE 4.1. First we construct a 1-dimensional planar Peano
continuum X such that every point in X is homotopically stable.
We start the construction by considering the Hawaiian earring A1 =
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U?=i Si. Let 2?!*, Bf, J53

Λ, be a null sequence of disjoint copies of
A1 lying in the disk bounded by Si and lying in the exterior of the
disk bounded by Sl+1 such that

(1) For each k = 1, 2, 3, , £** Π SJ = {δ?} where δ£ denotes
the unique homotopically stable point of J5fc\

(2) The set {bl\k = 1, 2, 3, •} is a dense subset of Si.
The first stage of our construction yields the space A1 U U£ =i &£•

In the second stage, the above process is repeated for each of the
Hawaiian earrings B£. This process is continued and we obtain a
continuum X with the required properties. It follows from the
proof of Theorem 1 in [5] that X has property Q (weak) and hence
has CIP. We now show that the cone over X, denoted by Cone (X),
does not have CIP.

By Cone (X) we mean the identification space obtained by taking
the disjoint union of X x I and a set consisting of a single point v,
and then identifying each point of the form (x, 1) with the point v.
The point v is called the vertex of Cone (X) and, if 0 <; t < 1, we
shall regard X x [0, t] as a subspace of Cone (X). Moreover, since
X is a compact metric space, we may assume that Cone (X) is
embedded in Eω.

Suppose Cone(X) has CIP and /: Cone (X) —»Cone (X) is a mapp-
ing whose fixed point set is X x {0}. Since the fixed point set of
/ is X x {0}, it follows that there is a number q such that 0<q<l
and f~\v) c Y where

Y = {(Xf t) I (χt t) 6 Cone (X) and t ^ q) .

We note that for a point of the form (x, q), f(x, q) — (x, s) for some
s > q. Let a: Cone (X) - > Γ be a retraction of Cone (X) onto Y
defined by

, t) if q <, t ^ 1 ,

Let ^: Γ-> Y be the mapping defined by g(x, t) = α/(#, t) for all
(#, £) e Y. It follows that g is a fixed point free map and, conse-
quently, there is a number ε > 0 such that p(g(xf t), (x, t)) ^ ε for
every point (x, t) e Y. From the construction of X it follows that
there is a polyhedron PaX and a retraction rx: X —> P from X onto
P such that ρ{rx{x)9 x) < ε/2 for all xeX. Define a mapping r2: Y->
^ by r2(x, t) = (r^s), ί) for all (a, ί) e Y. Then X = r2(Γ) is an AR-
space which is homeomorphic to Cone (P). Let h:K->K be the
map defined by h(x, t) = r2fif(α?, t) for all (af t) e K. Then /0(Λ(a?, ί),
(x, ί)) > ε/2 for all (», ί) 6 Z*. But this contradicts the fact that K
has the fixed point property and, therefore, Cone (X) does not have
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CIP.
The following examples are higher dimensional analogues of

Example 4.1.

EXAMPLE 4.2. If we follow the construction used in Example
4.1 and replace A1 by An, then we obtain an w-dimensional LCn~ι

continuum Xn such that Cone (Xn) does not have CIP. In a similar
fashion, one can replace A1 by A?, B" by a copy of A™+k, and
modify the construction of Example 4.1 to obtain an LC°° continuum
X°° such that Cone(X°°) does not have CIP. A modification of the
proof of Theorem 1 in [5] as applied to Example 4.1, together with
the ideas introduced in 3.6, can be used to prove that Xn and X°°
have property Q (weak) and hence have CIP. We omit the details.

5* Deformation retracts* In [4, p. 1024] it is shown that CIP
is not preserved by strong deformation retractions of non-locally
connected continua. The following example shows that for each
positive integer w = 1, 2, 3, , there is a contractible (w+2)-dimen-
sional LCn~ι continuum Zn having CIP which contains a strong
deformation retract not having CIP.

EXAMPLE 5.1. Let Xn denote the ^-dimensional LCn~ι continuum
defined in 4.2 and let Bn denote the (n + l)-dimensional LC71'1 con-
tinuum defined by R. J. Knill in [2, p. 37]. Define Zn to be the
wedge obtained by taking the disjoint union of Cone (Xn) and
Cone (Bn), and then identifying the vertex of Cone (Xn) with the
vertex of Cone (Bn). Clearly, Zn is a contractible (n + 2)-dimensional
LC71'1 continuum containing Cone (Xn) as a strong deformation
retract. Since Cone (Xn) does not have CIP, to complete the proof
we must show that Zn has CIP. But, since Cone (JSn) is an arcwise
connected continuum without the fixed point property [2, p. 40], it
follows from Proposition 3.6 of [4, p. 1022] that Zn has CIP if
Cone (Bn) has CIP. We now show that Cone (Bn) has CIP.

Let v denote the vertex of Cone (Bn) and let K be a nonempty
closed subset of Cone(Bn). If veK, then K is a fixed point set of
Cone (Bn) by Theorem 1 of [8, p. 554]. Thus, without loss of gener-
ality, we shall assume that KczBn x [0,1/4]. It is easy to show,
using Lemma 2.1 of [4, p. 1018], that there is a mapping /0: B

n x
[0, 1/2] -»Cone (Bn) such that the fixed point set of fQ is K and
fo(Bn x {1/2}) = v. For 0 < t ^ 1/4, let

C? = {(x, s) I (x, s) 6 Cone (Bn) and s ^ 1 - t}

and let ht: Cone (J5n) —•C* be the homeomorphism defined by
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ht(x, s) = (x, ts + 1 - t) for all (x, s) e Cone (Bn) .

Let gn: Cone (Bn) -> Cone (Bn) denote the fixed point free map defined
by R. J. Knill in [2, p. 40]. Then ft = htg

nhrι is a fixed point free
self-map of Ct*. Let σ(t) = ί - 1/2 if 1/2 < t < 3/4, and σ(ί) = 1/4
if 3/4 ^ t <; 1. Define a function /: Cone (J5n) -> Cone (J5n) by

, *) =

if O ^ ί ^ i ,

if — < t ^ — ,

It follows that / is continuous and that the fixed point set of / is K.

REMARKS 6. We end the paper with the following three remarks.

6.1. By using only spheres of dimension ^n + 1 in the con-
structions found in 3.6 and 4.2, it is possible to construct examples
which are both Gn and LC°°.

6.2. The authors do not know of any locally contractible ex-
amples.

6.3. The question posed in [3, p. 165] as to whether every
AR-space (AiVίJ-space) has CIP remains unsolved.
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